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Abstract

Modelling fluid turbulence is perhaps one of the hardest problems in Applied
Mathematics. In a recent paper, the author argued that the classical Navier–Stokes
equation is not sufficient to describe the transition to turbulence, but that a Reiner–Rivlin
type equation is needed instead. This is explored here for the simplest of all viscous fluid
flows, the Couette flow, which is a simple shear between two moving plates. It is found
that at high wavenumbers, the transition to unstable flow at the critical Reynolds number
is characterized by a large number of eigenvalues of the Orr–Sommerfeld equation
moving into the unstable zone essentially simultaneously. This would generate high-
dimensional chaos almost immediately, and is a suggested mechanism for the transition
to turbulence. Stability zones are illustrated for the flow, and a simple asymptotic
solution confirms some of the features of these numerical results.

2010 Mathematics subject classification: primary 76F20; secondary 65F15.
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1. Introduction

At low speeds, most fluids flow in a smooth laminar manner, but it is a familiar
fact that at higher speeds the motion of the fluid becomes turbulent and disordered.
Nevertheless, although everyone has an intuitive grasp of what constitutes a turbulent
flow, the physics underlying this phenomenon is not entirely certain and, consequently,
mathematical models of turbulence are not yet resolved. Understanding turbulent flows
is made more difficult by the fact that they are inherently unsteady and fully three-
dimensional, and are characterized by eddies over a wide range of length scales.

There is an enormous amount of literature devoted to the study of turbulence and
attempts to include it in models of physical phenomena where it occurs. A survey of
much of this work is given by Jiménez [14], and a more detailed account is available
in the text by Davidson [5]. The review article by Sreenivasan [33] discusses early

1School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania 7004, Australia;
e-mail: Larry.Forbes@utas.edu.au.
c© Australian Mathematical Society 2015, Serial-fee code 1446-1811/2015 $16.00

89

https://doi.org/10.1017/S1446181115000176 Published online by Cambridge University Press

mailto:Larry.Forbes@utas.edu.au
https://doi.org/10.1017/S1446181115000176


90 L. K. Forbes [2]

insights and current uncertainties in the experimental and theoretical understanding of
turbulence.

In the late nineteenth century, Osborne Reynolds [25] carried out a series of
experiments that showed that water flowing in a glass tube becomes unstable at a
value of the Reynolds number Re = ρHV/µ of about 2000, where ρ and µ were the
density and viscosity of the fluid and H and V were characteristic lengths and speeds,
respectively. This single dimensionless number Re has since dominated discussion of
laminar and turbulent flow, and a history of its development is given by Rott [28].
Later, Reynolds [26] introduced the technique of separating the fluid velocity vector
q in the Navier–Stokes momentum equation into the sum of its time-averaged value q̄
plus a rapidly-varying component q′ with expectation value zero, so that q = q̄ + q′,
and then averaging the equation over time. The aim is to obtain an equation for the
slowly varying component q̄ but, due to the convective nonlinear terms in the Navier–
Stokes equation, terms of the formσi j = −ρq′iq

′
j also appear. This is the famous closure

problem of turbulence: since there is no obvious formula for the so-called Reynolds
stress term σi j, at some level, modelling is required in order to close the system
of equations. Early attempts simply treated σi j as an additional viscous stress term
involving the slowly varying variables q̄ with an enhanced eddy viscosity coefficient,
but this was later replaced with more complicated K-epsilon type models that make
this coefficient a function of flow variables (see Kitsios et al. [15] and Speziale [31]).
More recently, elaborate moment-closure models have been developed to represent the
Reynolds stress term σi j, and make use of techniques from field theory and statistics.
Further details on such methods are given in the review articles by Cambon and Scott
[3] and McComb [19].

Mathematical models of fluid turbulence in incompressible fluids, including those
based on advanced statistical techniques [19], take as their starting point the classical
Navier–Stokes equation of conservation of momentum for a viscous fluid. This is
generally stated without further explanation. A key assumption in the derivation of
Navier–Stokes theory is that there is a linear relationship between the stress tensor
T in the fluid and the strain-rate tensor D, as might be anticipated for small to
moderate values ‖D‖ of the maximum strain rate. Nevertheless, when the Navier–
Stokes equation is used to analyze the stability of simple flows to small perturbations,
based on linearized theory, it generally gives predictions in poor agreement with
experiment. A detailed discussion of much of this work is available from the text
by Drazin and Reid [6]. In this classical approach, some exact solution of the Navier–
Stokes equation is first obtained for the velocity vector q0 and pressure p0. Small
perturbations q1 and p1 are then added to these quantities, and the new velocities
and pressures are substituted into the Navier–Stokes equation. Linearization is now
undertaken, in which only first-order terms in q1 and p1 are retained, and this yields a
coupled system of linear partial differential equations in these perturbation quantities.
These linear equations admit solutions with an exponential dependence on time t, of
the form exp(−iωt). As a result, a new system of linear equations is obtained, in
which the complex number ω = ωR + iωI is an eigenvalue. Clearly, if the imaginary
part is negative, Im{ω} = ωI < 0, the exponential term in the solutions decays with
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time, so that the solution is stable. However, if ωI > 0, then that particular eigenmode
grows exponentially with time and the solution is therefore unstable. As discussed
by Bayly and Orszag [2], results on the stability of a particular flow are usually
presented in terms of the value of Reynolds number Re at which the linearized solution
first becomes unstable, so that ωI = 0. For simple viscous flows, this linearized
analysis based on eigenvalues ω typically predicts that the boundary between stable
and unstable behaviour occurs at very large values of Reynolds number Re, whereas
experiments such as those of Reynolds [25] show that the flow becomes unstable at far
smaller values of about Re = 2000.

As a result of this discrepancy, there has been considerable dissatisfaction with
linearized stability analyses of this type. Trefethen et al. [35] have argued instead
for a theory of “stability without eigenvalues”. In this approach, modes which
have eigenvalues with negative real parts and therefore decay at large time, might
nevertheless grow moderately large at early times: large enough to trigger nonlinear
instability. In this way, behaviour that is stable in a classical linearized sense might
still be capable of triggering instability leading to turbulence. Objections to the
results of linearized eigenvalue analysis have also focused on the fact that, since
fluid flow is governed by nonlinear equations, large-amplitude nonlinear structures
might develop in the flow, for which no linearized counterpart exists. Such large-
scale phenomena have been predicted by Waleffe [37] to occur near walls in turbulent
flows, based on solutions to the Navier–Stokes equations. Hof et al. [13] subsequently
observed similar events in a turbulent pipe flow. This concept has been developed
further by Cherubini et al. [4], who sought the types of initial disturbances that would
then give rise to the large-scale coherent structures required. An overview of these
structures from a dynamical systems viewpoint is given by Eckhardt [7], and Rabin
et al. [22] have used a variational formulation with the Navier–Stokes equations to find
optimal conditions for generating these coherent structures. Recently, extreme-value
analysis in a statistical framework has been used by Faranda et al. [8] to determine the
likelihood of transition to turbulence from various initial conditions.

In a recent paper, Forbes [9] has argued that the Navier–Stokes equations, while
often accepted uncritically as governing the behaviour of turbulent flows, may in fact
not be appropriate for that purpose. After all, Navier–Stokes theory is predicated on the
assumption that there is a linear relationship between the stress in the fluid and the rate
of strain. This is entirely analogous to Hooke’s Law in solid mechanics, and assumes
that the local rates of strain in the fluid are small. However, a defining property of
turbulence is precisely that strain rates may be large, associated in part with the intense
swirling motion and the generation of large vorticity. Forbes [9] included additional
nonlinear terms in the constitutive relation between stress and strain rate: these are
sometimes referred to as “elastic” terms in the rheological literature [30], but regarding
them as accounting for material nonlinearity may be more appropriate in the present
context. This led to a version of the Reiner–Rivlin equations of viscous flow, which
was first developed by Reiner [24] and Rivlin [27] and presented also by Aris [1].

Forbes [9] showed that the Reiner–Rivlin equation has the remarkable property that
it predicts exactly the same flow patterns as the Navier–Stokes equation for planar
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flow. However, in the fully three-dimensional case, the material nonlinearity terms in
the Reiner–Rivlin equation are the cause of complex additional vorticity, for which
Navier–Stokes theory has no equivalent. (This then invalidates “Squire’s theorem”
[32] for such flows.) Forbes [9] used this equation to study the stability of plane
Poiseuille flow to small disturbances which are nevertheless fully three-dimensional.
Classical linearization was employed, with the consequent calculation of eigenvalues
ω of the approximate system. It was found that the material nonlinearity terms
served as an additional source of instability for the flow, beyond that possible purely
in Navier–Stokes theory. Some surprising outcomes were also observed. Whereas
Navier–Stokes theory predicts that higher wavenumber disturbances are damped more
rapidly, in the Reiner–Rivlin equation, they are precisely the modes that are the most
unstable. Furthermore, at high wavenumbers, when the critical Reynolds number is
reached at which the flow becomes unstable, this is characterized by a large number
of eigenmodes crossing into the unstable zone Im{ω} = ωI > 0 almost simultaneously.
The real parts of these modes Re{ω} = ωR are not integer multiples of one another,
and so the transition to instability would involve high-dimensional quasi-periodic
behaviour in the linearized system. It is then highly probable that nonlinear effects
would cause this to collapse into a type of high-dimensional chaos, through the Ruelle–
Takens–Newhouse bifurcation (see Thompson and Stewart [34, p. 196]); Forbes [9]
proposed this as an explanation for the transition from laminar to turbulent flow.

There is a sizeable amount of literature on elastic instabilities in more complex
rheological flows. These generally involve a much more complicated constitutive
law between the stress tensor and the rate of strain tensor, than in the Reiner–Rivlin
model [1]. In particular, a time derivative of the stress tensor is usually present (see
Shaqfeh [30]), and this term appears to have a stabilizing effect on the linearized
system. This is consistent with the findings of Lee and Finlayson [17] and Wilson et al.
[38] for certain rheological fluids. Nevertheless, various types of nonlinear instability
are present in these flows, and are a consequence of the nonNewtonian terms in the
stress fields [30]. However, for a Reiner–Rivlin fluid in which time-derivatives of
the stress tensor are not present, Graebel [11] found that the nonlinear viscous terms
have a destabilizing influence, and this is consistent with the numerical results of
Forbes [9]. Perhaps the most intriguing flows of viscoelastic fluids are those involving
certain polymers, where even at low speeds, strong nonlinear instabilities may arise,
resulting in elastic turbulence [20]. When polymers are dissolved in fluids, their
presence may reduce the critical Reynolds number at which instability is observed,
and the interaction has been referred to as “elasto-inertial turbulence” by Samanta
et al. [29]. Flows having the appearance of fully developed turbulence have been
measured experimentally at arbitrarily small Reynolds numbers, and are described by
Larson [16] and Groisman and Steinberg [12].

The present paper follows, to some extent, the investigation begun by Forbes [9]
of the turbulence properties of the Reiner–Rivlin equation. Here, the simplest of all
viscous flows is studied, because it allows a deeper analysis. The flow in question is
Couette flow [6], which is an exact solution both for the Navier–Stokes and the Reiner–
Rivlin equations. It is a simple uni-directional shear flow with a linear velocity profile
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in the vertical z-coordinate. The governing equations are briefly reviewed in Section 2,
and the linearized stability equations for small-amplitude perturbations are discussed
in Section 3. This involves a classical eigenvalue analysis of a linearized system
of equations equivalent to an Orr–Sommerfeld equation (see Drazin and Reid [6,
p. 156]). Numerical results are presented that show how accounting for material
nonlinearity may permit large numbers of eigenvalues to cross into the unstable zone
Im{ω} = ωI > 0 more or less simultaneously, and at significantly lower Reynolds
numbers than anticipated purely on the basis of Navier–Stokes theory. This confirms
the results of Forbes [9], and likewise suggests that turbulence may thus be the result
of material nonlinearity that causes the sudden appearance of high-dimensional chaos
through quasi-periodicity and the Ruelle–Takens–Newhouse mechanism [34, p. 196].
The simpler nature of Couette flow also permits approximate stability zones to be
computed in parameter space; some of these are illustrated in Section 3. Furthermore,
when Reynolds number becomes infinite and only the nonlinear viscous terms are
present, the eigenvalue distribution has an intriguing structure. Although this elasto-
inertial limit may perhaps not be immediately relevant to turbulence in commonly
experienced fluids, it is nevertheless important, because it reveals the role played by
material nonlinearity more generally. In addition, it permits asymptotic validation
of some features of the numerical results, in the case of Couette flow. This limit is
therefore studied in Section 4. The paper concludes with a discussion in Section 5.

2. The governing equations

The details of this approach are given in the text by Aris [1] and reviewed at some
length by Forbes [9], and so only a brief overview will be given here. A Cartesian
coordinate system is present with axes represented as (x1, x2, x3) = (x, y, z), in which
x is the streamwise coordinate, y points laterally and z is directed vertically. The
fluid velocity vector is denoted by the symbol q and its three components in Cartesian
coordinates are (q1, q2, q3) = (u, v,w).

The fundamental equation in classical continuum mechanics is Cauchy’s law

∂q
∂t

+ (q · ∇)q = f +
1
ρ

div T, (2.1)

which expresses the conservation of linear momentum. Here, the fluid density is ρ,
and since the fluid is taken to be incompressible, ρ is a constant and, as a result, the
law of conservation of mass may be expressed as

div q = 0. (2.2)

The relation (2.1) is given in Aris [1, p. 102] and Mase [18, p. 128]. The symbol f
denotes the body force vector per mass acting on the fluid, and T is the stress tensor.

In Navier–Stokes theory, the stress tensor T is assumed to depend linearly on the
rate of strain tensor

D = 1
2 (∇q + ∇qT). (2.3)
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Here, the notation ∇q indicates a matrix of derivatives of the velocity vector
components (the velocity gradient tensor in Mase [18, p. 112]), and ∇qT is its
transpose. If p represents the pressure in the fluid, then the constitutive relation is
taken to have the form

T = −pI + 2µD,

where I is the three-dimensional identity matrix and the constant µ is the usual dynamic
viscosity of the fluid. This linear relationship between stress T and strain rate D in
equation (2.3) is the Newtonian assumption, and it yields the familiar Navier–Stokes
equation

∂q
∂t

+ (q · ∇)q +
1
ρ
∇p = f +

µ

ρ
∇2q. (2.4)

Reiner [24] and Rivlin [27], however, sought to generalize the description of the
stress tensor T for a viscous fluid, to allow a general nonlinear analytic dependence
on the strain rate tensor D in equation (2.3). It turns out that this may be achieved,
without loss of generality, simply by including the square of the tensor D only, due to
the Cayley–Hamilton theorem, and this is discussed further by Aris [1, Section 5.22]
and Forbes [9]. The simplest form of this relationship now becomes

T = −pI + 2µD + 2τD2

with a second (nonlinear) viscosity coefficient τ. This gives rise to the simplest form

∂q
∂t

+ (q · ∇)q +
1
ρ
∇p = f +

µ

ρ
∇2q +

2τ
ρ

div(D2) (2.5)

of the Reiner–Rivlin equation. Forbes [9] showed that this equation (2.5) gives
identical solutions for the velocity vector q as the Navier–Stokes equation (2.4) in
two-dimensional flow, but with different pressures. However, the three-dimensional
version of equation (2.5) possesses extra sources of vorticity, not available to the
Navier–Stokes equation (2.4).

Now consider Couette flow of a viscous fluid between parallel horizontal
impermeable plates located on the two surfaces z = −H, and z = H. The top plate
has speed −V in the horizontal x-direction, and the bottom plate moves with speed V ,
in the opposite direction to the top plate. This establishes the simple one-dimensional
shear flow u(z) = −(V/H)z, in which the streamwise component of velocity has a linear
profile with height z. The lateral and vertical velocity components are v = 0 and w = 0,
respectively. The pressure p for this flow can be taken to be zero throughout the fluid.
The problem may be nondimensionalized using the length H and speed V as reference
quantities and, as a result, there are now two important dimensionless parameters

Re =
ρHV
µ

and F =
ρH2

τ
(2.6)

describing the flow. The first of these is the familiar Reynolds number Re that gives
the inverse nondimensional viscosity. The second constant F is the inverse of the
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coefficient of nonlinear viscosity, and measures the effect of material nonlinearity.
In much of the rheological literature, this parameter F is substituted with either the
Weissenberg or Deborah number (see Poole [21]), but since those parameters are
dependent on the Reynolds number, they are avoided here in favour of the constant
F in equation (2.6), as in Forbes [9].

3. Linear stability of plane Couette flow

The simple Couette flow velocity (u, v,w) = (−z, 0, 0) in dimensionless variables
is now subject to a perturbation ε(u1, v1,w1), in which ε is an appropriately small
dimensionless constant. The pressure p is similarly assumed to be εp1. Importantly,
these perturbations must be fully three-dimensional, since the theorem proved by
Forbes [9] shows that planar flows are indistinguishable from those obtained on
the basis of the Navier–Stokes theory (2.4). These forms are now substituted into
the Reiner–Rivlin equation (2.5), and terms retained only to first order in the small
parameter ε. In dimensionless form, it is now assumed that the perturbation functions
can be represented as

u1(x, y, z, t) = û1(z) exp(i[Kx + Γy −Ωt])
v1(x, y, z, t) = v̂1(z) exp(i[Kx + Γy −Ωt])
w1(x, y, z, t) = ŵ1(z) exp(i[Kx + Γy −Ωt])
p1(x, y, z, t) = p̂1(z) exp(i[Kx + Γy −Ωt]).

(3.1)

In these expressions, the dimensionless wavenumbers K and Γ in the streamwise and
lateral directions, respectively, are real quantities, but the dimensionless frequency
Ω = ω(H/V) is in general a complex number. As discussed in Section 1, this parameter
Ω (or its dimensional counterpart ω) will be an eigenvalue of the stability problem to
follow, and the perturbations (3.1) will be unstable if Im{Ω} > 0.

The continuity equation (2.2) allows the function û1(z) in equations (3.1) to be
eliminated at once from the formula

iKû1 + iΓv̂1 +
dŵ1

dz
= 0. (3.2)

Equations (3.1) are substituted into the linearized system that is derived from the
Reiner–Rivlin equation (2.5), and the pressure function p̂1(z) is eliminated by cross-
differentiation. This leaves a system of two ordinary differential equations for the
remaining two functions v̂1(z) and ŵ1(z). The first equation is

Ω

K

[
i(K2 + Γ2)v̂1 + Γ

dŵ1

dz

]
= −i(K2 + Γ2)zv̂1 − Γz

dŵ1

dz
+ Γŵ1

+
1

ReK

[
(K2 + Γ2)2v̂1 − (K2 + Γ2)

(d2v̂1

dz2 + iΓ
dŵ1

dz

)
+ iΓ

d3ŵ1

dz3

]
+

1
2F

[
(K2 + Γ2)

(
2i

dv̂1

dz
+ Γŵ1

)
+ Γ

d2ŵ1

dz2

]
(3.3)
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and the second equation is

Ω

[
Γŵ1 + i

dv̂1

dz

]
= −KΓzŵ1 − iKv̂1 − iKz

dv̂1

dz

+
1
Re

[
(K2 + Γ2)

(dv̂1

dz
− iΓŵ1

)
+ iΓ

d2ŵ1

dz2 −
d3v̂1

dz3

]
+

1
2KF

[
−iΓ2(K2 + Γ2)v̂1 + Γ(K2 − Γ2)

dŵ1

dz

+ i(Γ2 + 2K2)
d2v̂1

dz2 + Γ
d3ŵ1

dz3

]
. (3.4)

These two equations are to be solved subject to the no-slip boundary condition on the
two plates at dimensionless heights z = ±1. In view of equation (3.2), the appropriate
conditions for the two stability equations (3.3), (3.4) are therefore

v̂1 = ŵ1 =
dŵ1

dz
= 0 on z = ±1. (3.5)

A solution is sought to the system (3.3)–(3.5) using a spectral representation. The
two functions v̂1 and ŵ1 are expressed as

v̂1(z) =

∞∑
n=1

Anφn(z), ŵ1(z) =

∞∑
n=1

Bnψn(z) (3.6)

with basis functions

φn(z) = sin
(n
2
π(z + 1)

)
ψn(z) = cos

(n
2
π(z + 1)

)
− cos

(n + 2
2

π(z + 1)
)

(3.7)

chosen, so that the expressions (3.6) satisfy the boundary conditions (3.5) identically.
These representations (3.6) are substituted into the two equations (3.3) and (3.4). The
first equation (3.3) is then multiplied by the basis functions φk(z) and integrated over
the domain −1 < z < 1. The second equation (3.4) can result in some ill-conditioned
systems, and requires care. In an earlier version of this work, it was multiplied by
functions ψk(z), k = 1, 2, . . . , and similarly integrated, but this can result in a spurious
pair of eigenvalues Ω lying on the imaginary axis, and these move further away from
the origin as the number of modes is increased. A similar difficulty has been noted
by Valério et al. [36], and here the difficulty becomes more pronounced for lower
wavenumbers K and Γ. To overcome this ill-conditioning, equation (3.4) has been
multiplied simply by test functions cos((kπ/2)(z + 1)), k = 1, 2, . . . , and integrated
over its domain −1 < z < 1. This eliminates the problem of the false purely imaginary
eigenvalues of magnitude that increases with the number of modes. Nevertheless,
some ill-conditioning is still present, and for a very large N, a pair of spurious
eigenvalues may still be produced: however, they have finite and negative imaginary
parts, with large real parts of opposite sign, and so they do not affect the stability
verdict.
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Because of the relative simplicity of Couette flow, all the resulting quadratures are
evaluated exactly in closed form, so as to maintain accuracy. After a considerable
amount of calculation, a system of linear algebraic equations is obtained, involving
the Fourier coefficients An and Bn. For numerical purposes, the infinite series (3.6)
are truncated to some finite number of N modes, and this results in a generalized
eigenvalue problem of the form[

P(1A) P(1B)

P(2A) P(2B)

] [
A
B

]
= Ω

[
Q(1A) Q(1B)

Q(2A) Q(2B)

] [
A
B

]
. (3.8)

Here, the eight quantities P(1A), . . . ,Q(2B) are all N × N block matrices, and [A B]T

is a 2N × 1 vector containing the coefficients in the series in equation (3.6). For
completeness and ease of reproducibility, the full form of (3.8) is given in the
Appendix. This system is solved for the eigenvalues Ω using the MATLAB routine
eig, which is an implementation of the QR algorithm. In fact, it is found that
slightly more symmetrical results are achieved by creating the single matrix Q−1P
using Gaussian elimination and then using the QR method to determine its eigenvalues
directly. In many of the results to be presented here, the system (3.8) has been solved
with N = 151 modes, so that a generalized eigenvalue problem of size 300 × 300
is produced. The code runs in only a few minutes on a standard laptop computer.
The execution time increases significantly as more modes are used, and some such
examples will be discussed in order to establish the convergence of the method.

Figure 1 presents the eigenvalue distribution in the complex Ω-plane for
wavenumbers K = Γ = 80 and Reynolds number Re = 4000. This diagram affords
a direct comparison between the result for pure Navier–Stokes theory, shown in
Figure 1(a), and the predictions of Reiner–Rivlin theory in Figure 1(b). The classical
Navier–Stokes result in (a) is obtained from the algorithm (3.8) simply by specifying
that 1/F = 0 in the code. Clearly, all the eigenvalues Ω have negative imaginary
part, and so the perturbations (3.1) must decay as time increases and, as a result, the
original Couette flow is predicted to be stable, as expected. On the other hand, the
result in (b) for the Reiner–Rivlin case with F = 500 possesses a very large number
of eigenvalues all with positive imaginary part at the approximate value Im{Ω} ≈ 30.
This is clearly a solution for which the perturbations (3.1) will grow exponentially
with time, and so the base Couette flow will now be unstable. Furthermore, since
the real parts are not integer multiples of one another, the linearized solution will
contain a superposition of a large number of growing modes of frequencies of irrational
multiples of each other, and thus would constitute an unstable quasi-periodic orbit
of very high dimension. Forbes [9] argued that nonlinear effects in the full Reiner–
Rivlin equation (2.5) would then trigger a bifurcation to high-dimensional chaos, and
identified this as the explanation of fluid turbulence. The spectra shown in Figures 1(a)
and (b) appear to contain isolated eigenvalues as well as continuous portions, although
this cannot be confirmed purely on the basis of numerical results. Nevertheless, Valério
et al. [36], in their analysis of the stability of viscoelastic flows, have presented results
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Figure 1. A comparison of the eigenvalue distribution for plane Couette flow, for (a) the Navier–Stokes
system with F = ∞ and (b) the Reiner–Rivlin case with F = 500. The two dimensionless wavenumbers
are K = Γ = 80 and the Reynolds number is Re = 4000. Different numbers of modes are used in each case,
to analyze convergence.

at least qualitatively similar to those in Figure 1(b) and discussed continuous spectra
in those flows.

Figure 1 also permits an analysis of the convergence of the calculation of the
eigenvalues Ω with increasing number of modes N. For the pure Navier–Stokes
spectrum presented in Figure 1(a), results are shown with 201 and 401 modes
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which demonstrate features that have been observed consistently throughout this
study. As more modes are included, there appear more eigenvalues with very large
negative imaginary parts. There seems to be fairly little consistency in most of those
eigenvalues, and so it is reasonable to suggest that they may not be genuinely part of
the spectrum of the exact linear differential equations (3.3) and (3.4). In any case,
those modes would decay so rapidly that they would have little effect on the numerical
solution. However, there is a high degree of convergence on the approximately U-
shaped structure at the top of Figure 1(a). The uppermost eigenvalues (the ones that
determine the stability) have converged at least to graphical accuracy (about three
significant figures), although convergence is somewhat slower near the approximately
horizontal section. This is again consistent with the work of Valério et al. [36] who
observed slower convergence close to continuous portions of the spectrum. Similar
comments apply for the unstable Couette flow in the Reiner–Rivlin case illustrated
in Figure 1(b). There, the results with N = 201 modes for the apparently continuous
section at the top of that figure are still not quite converged, but the two sets of values
with N = 301 and N = 401 modes are almost indistinguishable in that portion of the
diagram. Lower down on that figure, there are also some isolated eigenvalues which
are highly converged and some apparently continuous portions which likewise may be
genuinely part of the spectrum, although there are also many eigenvalues with very
large negative imaginary parts that appear not to be genuine. However, they are not of
primary concern in this discussion of turbulence and its possible causes.

The algorithm (3.8) has been run for a large set of values of the Reynolds number
Re and nonlinear viscosity coefficient F, for a variety of streamwise and transverse
wavenumbers K and Γ. Of particular interest has been the critical value of the Reynolds
number Re at which stable Couette flow first becomes unstable in flow described
by the Reiner–Rivlin equation (2.5), since this may correspond to the transition to
turbulence in this flow. Recall that in Navier–Stokes theory, this simple Couette shear
flow apparently never loses its stability in the linearized (small disturbance) case [6].
This theory is recovered from the Reiner–Rivlin equation (2.5) only in the limit F→∞
at which the nonlinear viscous terms disappear entirely.

It turns out that, for most of the wavenumbers K and Γ investigated, there are
two values of the Reynolds number that are of interest in the transition to unstable
flow. At the lower Reynolds number, a single pair of eigenvalues crosses into the
unstable zone Im{Ω} > 0, and this is the first point of instability. However, at a
somewhat higher Reynolds number, a very large number of eigenvalues cross this
boundary almost simultaneously: it is suggested here that this may be the true trigger
of turbulent behaviour in the full nonlinear system, since this event produces a linear
solution of high-dimensional quasi-periodic behaviour, which is structurally unstable
in the nonlinear case and collapses into high-dimensional chaos by the Ruelle–
Takens–Newhouse mechanism [34, p. 196]. The difference between these two critical
Reynolds numbers depends particularly sensitively on the value of the streamwise
wavenumber K.

This is illustrated in Figure 2 for streamwise and transverse wavenumbers K = Γ =

100. For a variety of different values of F (on the vertical axis), numerical results were
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Figure 2. Stability region for plane Couette flow, dependent on the two (inverse) viscosity parameters
Re and F. The two dimensionless wavenumbers are K = Γ = 100. The darker (green) region represents
unconditional stability, the middle (yellow) zone corresponds to instability of only a single pair of modes,
and the region to the right contains solutions with a high-dimensional unstable quasi-periodic orbit, which
in the nonlinear equations would correspond to turbulence. (Colour available online.)

obtained for many different values of Reynolds number Re (on the horizontal axis), and
an estimate was made by eye of the values at which a single eigenvalue pair crossed
into the unstable zone, and then when an ensemble of eigenvalues crossed into this
region in the complex plane, at a slightly higher Reynolds number. Necessarily, these
judgements are somewhat subjective, particularly in the latter case, and this is why the
stability boundaries in Figure 2 are a little irregular.

The Couette flow is unconditionally stable in a linearized theory, for low Reynolds
numbers in the darker shaded region (green online in Figure 2) to the left of the
diagram. In this zone, every eigenvalue has a negative imaginary part. Notice that
as F →∞ and the Navier–Stokes limit is recovered, this unconditionally stable zone
apparently extends out to an arbitrarily large Reynolds number. The first boundary,
between the darker (green online) and lighter (yellow online) regions is the value of
Reynolds number at which a single eigenvalue pair first develops a positive imaginary
part, Im{Ω} > 0. In the lighter (yellow) zone between the two boundaries, the flow
is thus unstable, but only to one single mode. However, the second boundary on the
border of the region marked “unstable” is an estimate of the Reynolds number at which
an entire line of eigenvalues crosses into the unstable zone, so that high-dimensional
quasi-periodic behaviour ensues. This is possibly the border of greater interest, since
Reynolds numbers Re larger than about this value would give solutions that would be
turbulent in the fully nonlinear theory.

Figure 3 shows the distribution of eigenvalues Ω in the complex plane,
corresponding to a horizontal slice through Figure 2 at the inverse nonlinear viscosity
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Figure 3. Distribution of eigenvalues in the complex plane for nonlinear viscosity coefficient
F = 1000. Results are shown for the three values of Reynolds number Re = 1000, Re = 2450 and
Re = 4000. The two dimensionless wavenumbers are K = Γ = 100. The (red) arrow shows the boundary
between the stable and unstable zones for all three diagrams.

parameter F = 1000. As previously, the two wavenumbers for this case are K =

Γ = 100. The (red) arrow at the left of the diagram marks the level at which Im{Ω} = 0,
and so eigenvalues below this line correspond to stable modes, while those above
the line represent unstable modes that grow exponentially with time in the linearized
theory.

In the first diagram on the left of Figure 3, the Reynolds number has the value
Re = 1000, and this is well within the darker (green) stable zone in Figure 2. This
corresponds to a solution that is unconditionally stable, which is evident from the
diagram, since all the eigenvalues lie well within the stable zone Im{Ω} < 0.

The middle diagram in Figure 3 has Reynolds number Re = 2450. It lies on the
second boundary to the right of Figure 2, and so has been identified here as being
at about the point of transition to turbulent flow. Observe that, although one or two
eigenvalues had already crossed into the unstable zone at a slightly lower Reynolds
number (about Re = 2220), at Re = 2450 an entire line of eigenvalues crosses into the
unstable section Im{Ω} > 0 of the complex plane. In the final diagram on the right-
hand side of Figure 3, with Reynolds number Re = 4000, that line of eigenvalues has
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Figure 4. Stability region for plane Couette flow, dependent on the two (inverse) viscosity parameters
Re and F. The two dimensionless wavenumbers are K = Γ = 30. The darker (green) region represents
unconditional stability, and the region to the right contains solutions with only a single unstable mode.
(Colour available online.)

now moved strongly into the unstable zone. In linearized theory, the large number of
unstable modes it creates, with their arbitrary different frequencies, would generate a
complicated quasi-periodic orbit; nonlinear effects would then cause a rapid transition
to a high-dimensional chaotic attractor. This is the structure that is suggested by
Forbes [9] to be the cause of true fluid turbulence.

Similar results to those shown in Figure 2 are obtained at other values of the
wavenumbers. Another such case is illustrated in Figure 4, for the lower wavenumbers
K = Γ = 30. Again, there is a darker shaded (green online) region to the left, in which
all the eigenvalues have negative imaginary parts, so that the underlying Couette flow
is stable in that parameter region. There is again an intermediate zone (yellow online)
in which the flow is unstable to a single pair of eigenvalues, and the clear region to
the right of the diagram is the zone in which a large number of eigenvalues exist with
positive imaginary parts and real parts that are not rational multiples of each other.
Turbulence is anticipated to occur in that parameter space. The borders between these
three regions have again been estimated by eye from a large number of computer runs,
and so are a little irregular.

A horizontal slice through the stability diagram in Figure 4 with K = Γ = 30 is
again depicted in Figure 5, at the value F = 1000 of the inverse nonlinear viscosity
coefficient. Eigenvalue distributions are shown for the three different Reynolds
numbers Re = 500, 5000 and 8000. A similar pattern of behaviour is observed, as
for the higher wavenumbers K = Γ = 100 presented in Figure 3. The first picture on
the left side of Figure 5 is for a solution with Reynolds number Re = 500, and all its
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Figure 5. Distribution of eigenvalues in the complex plane for nonlinear viscosity coefficient F = 1000.
Results are shown for the three values of Reynolds number Re = 500, Re = 5000 and Re = 8000. The two
dimensionless wavenumbers are K = Γ = 30. The (red) arrow shows the boundary between the stable and
unstable zones for all three diagrams.

eigenvalues lie well within the region of stability, in which the imaginary part of each
eigenvalue Ω is negative. In the central frame, for which Re = 5000, the approximately
horizontal line of eigenvalues has moved upwards and is poised to cross into the
unstable zone Im{Ω} > 0. The final diagram on the right-hand side of Figure 5 now
represents an unstable solution, since the line of eigenvalues has now crossed into the
unstable zone, producing a high-dimensional quasi-periodic solution in the linearized
theory and therefore a chaotic solution of high dimension when nonlinear effects are
taken into account.

In a practical experiment, it is unlikely that the perturbation to Couette flow would
consist simply of a single pair of wavenumbers K, Γ as discussed in this section.
Instead, it is to be expected that an arbitrary perturbation would involve a large number
of such solutions, and so the actual distribution of eigenvalues would no doubt be a
complicated superposition of many results like those shown in Figures 3 and 5. Thus,
even in linearized theory before nonlinear effects are taken into account, an unstable
solution in the Reiner–Rivlin scenario would represent a structure of remarkable
complexity.
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Figure 6. The eigenvectors (a) v̂1(z) and (b) ŵ1(z) corresponding to the single eigenvalue Ω = 0 + 0.0379i,
for Reynolds number Re = 5000 and nonlinear viscosity coefficient F = 1000. The two dimensionless
wavenumbers are K = Γ = 30.

The eigenfunction for a mode that is about to become unstable is considered in
Figure 6. This is taken from the central panel in Figure 5 for the eigenvalue in the
centre of the (possibly continuous) line that is about to cross into the unstable zone,
and is the one located purely on the imaginary axis. The eigenvalue in question has the
value Ω = 0 + 0.0379i and thus represents a mode that is marginally unstable. The
Reynolds number is Re = 5000 and the other parameters are as in Figure 5. The
coefficients An and Bn that comprise the eigenvector in equation (3.8) for that particular
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Figure 7. Distribution of eigenvalues in the complex plane for nonlinear viscosity coefficient F = 1000.
Results are shown for infinite Reynolds number Re = ∞. The two dimensionless wavenumbers are
K = Γ = 100. A convergence analysis is included, using N = 101 modes (+), N = 201 modes (o) and
N = 301 modes (*).

eigenvalue are identified from the solution algorithm, and then the functions v̂1 and ŵ1
are reconstructed from the spectral forms (3.6). They are illustrated in Figure 6 over the
domain −1 < z < 1 between the plates. In each variable, the perturbation mode consists
of a peaked disturbance localized near the centre of the channel. Qualitatively similar
results for more complex viscoelastic fluids were also obtained by Valério et al. [36].

4. Extended results for infinite Reynolds number

Although it is possibly not immediately applicable to the study of turbulence in
fluids that are commonly encountered, it is nevertheless of value to study the extreme
case of infinite Reynolds number, in which the only contribution to viscosity is through
the nonlinear nonNewtonian terms. This is achieved in the present algorithm simply by
setting the parameter 1/Re to zero, and so represents the “elasto-inertial” situation [29].

4.1. Numerical results The distribution of eigenvalues in the complex Ω-plane for
a solution with infinite Reynolds number Re = ∞ is displayed in Figure 7. Here, the
wavenumbers are K = Γ = 100 and the nonlinear viscosity coefficient is F = 1000.
There is a single eigenvalue Ω = 0 + i0 in the centre of the figure and, interestingly,
the distribution of eigenvalues at this value of F appears to be symmetrical both about
the vertical line Re{Ω} = 0 and the horizontal line Im{Ω} = 0, giving apparent four-fold
symmetry. In this diagram, results have been shown for 101, 201 and 301 modes, as a
further check on the convergence of the eigenvalues. There are two nearly-horizontal
lines of eigenvalues at about Im{Ω} ≈ ±8, for which convergence with 201 and 301
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modes is reasonable. There is a high degree of convergence for the isolated eigenvalues
shown on the real axis. However, there is no consistency in the remaining eigenvalues
outside this central region, with more being added further out as the number of modes
N is increased. Therefore, these are unlikely to be genuine solution modes, although
the central portion −10 < Im{Ω} < 10 is nevertheless reliable.

4.2. Asymptotic results A useful approximate check on the validity of results such
as those shown in Figure 7 is possible for the case 1/Re = 0, by supposing that the
second viscosity coefficient 1/F is large. In that case, equations (3.3), (3.4) reduce to
the approximate set

Ω

K

[
i(K2 + Γ2)v̂1 + Γ

dŵ1

dz

]
≈

1
2F

[
(K2 + Γ2)

(
2i

dv̂1

dz
+ Γŵ1

)
+ Γ

d2ŵ1

dz2

]
, (4.1)

and

Ω

[
Γŵ1 + i

dv̂1

dz

]
≈

1
2KF

[
−iΓ2(K2 + Γ2)v̂1 + Γ(K2 − Γ2)

dŵ1

dz

+ i(Γ2 + 2K2)
d2v̂1

dz2 + Γ
d3ŵ1

dz3

]
. (4.2)

As these are now constant-coefficient linear differential equations, they permit an
exponential solution, in which both functions v̂1 and ŵ1 contain a factor exp(λz).
After some considerable algebra, equations (4.1), (4.2) are combined to yield a quartic
equation for the exponent λ. This complicated expression may be shown to reduce to
the form

(λ2 − ξ2)[Γ2λ2 + 4(ΩF)Kλ − {4(ΩF)2 + ξ2Γ2}] = 0, (4.3)

where ξ =
√

K2 + Γ2 has been defined for convenience. The four roots of this quartic
are written as

±ξ, −α + β, −α − β, (4.4)

where the two parameters

α =
2(ΩF)K

Γ2 ; β =
ξ

Γ2

√
4(ΩF)2 + Γ4 (4.5)

involve the unknown eigenvalue Ω.
These four roots (4.4) of the quartic (4.3) show that the asymptotic form for the

function ŵ1 is

ŵ1(z) = C1 cosh(ξ(z + 1)) + C2 sinh(ξ(z + 1))
+ e−αz[C3 cosh(β(z + 1)) + C4 sinh(β(z + 1))], (4.6)

where the four constants C1, . . . ,C4 are as yet unknown. The fluid is required to satisfy
the no-slip boundary conditions on the two plates at z = ±1, and so the function ŵ1 in
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equation (4.6), and its first derivative, must both be zero there as in equation (3.5). At
the lower plate z = −1. This immediately gives the relations

C1 = −eαC3,

C2 =
1
ξ

eα(αC3 − βC4).

The two conditions are similarly applied at the upper plate z = 1. The constant C4 may
be eliminated in favour of C3 which must remain arbitrary to avoid a trivial solution.
Consequently, the dispersion relation

−2β cosh(2α) + sinh(2β) sinh(2ξ)
[ (α2 − β2)

ξ
− ξ

]
+ 2β cosh(2β) cosh(2ξ) = 0 (4.7)

is obtained after further substantial algebra.
The dispersion relation (4.7) is a difficult nonlinear transcendental equation for the

eigenvalue Ω, when the relations (4.5) are taken into account. Consequently, solutions
are extremely difficult to obtain. Nevertheless, by inspection, two possibilities present
themselves. The first occurs when α = 0 and β = ξ, and the second results from the
choice, β = 0. These give the two sets of eigenvalues

Ω = 0 and Ω = ±i
Γ2

2F
. (4.8)

Thus, in this asymptotic limit, one eigenvalue is always zero and the others occur as a
complex conjugate pair. This shows that there is always an eigenvalue with Im{Ω} > 0
so that the effect of large nonlinear viscosity coefficient 1/F is always to destabilize
the flow. This is further confirmed by observing that equation (4.7) remains satisfied
if Ω is replaced with −Ω. Thus the complex plane of the eigenvalues is invariant to a
rotation of 180 degrees about the origin.

The eigenvalue distribution is shown in Figure 8 for infinite Reynolds number
Re = ∞ and a reasonably large value F = 100 for the inverse nonlinear viscosity
coefficient. These results were obtained from the generalized eigenvalue problem (3.8)
as previously. The eigenvalue distribution exhibits the four-fold symmetry observed
in Figure 7, although again it is only the central portion containing the two horizontal
lines of eigenvalues that can be considered as part of the genuine spectrum of the
differential equation system. Nevertheless, the flow pattern corresponding to the
situation depicted in Figure 8 would clearly possess unstable modes at many different
frequencies, and nonlinear effects would result in a bifurcation to high-dimensional
chaos. Such a solution would, therefore, represent an example of “elasto-inertial
turbulence” as discussed by Samanta et al. [29].

The results of the approximate asymptotic solution (4.8) are also drawn on Figure 8
with three small circles (red online). As in Figure 7, there is again an eigenvalue at
the origin of Figure 8, and this agrees entirely with the result Ω = 0 in the asymptotic
solution (4.8). The complex conjugate pair Ω = ±50i in the asymptotic prediction (4.8)
for these parameter values is also indicated on the diagram, and agrees moderately well
with the full numerical results. It is found that this agreement improves as F is reduced,
as anticipated. A very similar outcome is achieved when F is made negative.
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Figure 8. Distribution of eigenvalues in the complex plane for nonlinear viscosity coefficient F = 100.
Results are shown for infinite Reynolds number Re = ∞. The two dimensionless wavenumbers are
K = Γ = 100. The three (red) circles are the results of the asymptotic solution in equation (4.8).

5. Conclusion

The stability of plane Couette flow to small perturbations has been studied here
for a fluid that may possess some degree of material nonlinearity. The reason for
this is to explore the proposition advanced by Forbes [9] that small amounts of
nonlinear viscosity coupled with moderately high wavenumber perturbations can
produce instability of a rather complicated form, even when the classical Navier–
Stokes equations of viscous flow predict this flow to be stable. In these cases, it
is found that there is a critical Reynolds number Re at which a large number of
eigenmodes of the flow become unstable almost simultaneously, and at frequencies
that are not integer multiples of one another. In linear, small-perturbation theory
this would result in high-dimensional, quasi-periodic behaviour in time, but nonlinear
effects would cause a bifurcation to a chaotic attractor of high dimension. Forbes
[9] identified this as an explanation for the transition from laminar to turbulent flow
in plane Poiseuille flow. Similar behaviour has been confirmed here for the simpler
Couette flow, in which the velocity profile is linear. The Navier–Stokes equations
(2.4) predict that Couette flow is unconditionally stable to small perturbations at
any Reynolds number [6], but this is not confirmed by experiment. However, the
Reiner–Rivlin equations (2.5) show that predictions of critical Reynolds number,
commensurate with experimental findings, could occur at appropriate wavenumbers
K, Γ and nonlinear viscosity 1/F.

The numerical solution of this linearized problem has been accomplished using
an accurate spectral method, based on the representations in equations (3.6), (3.7),

https://doi.org/10.1017/S1446181115000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000176


[21] Transition to turbulence from plane Couette flow 109

which are in fact slightly more general than those in Forbes [9] since they are not
restricted to symmetric modes only. The simpler structure of the Orr–Sommerfeld type
equations arising from Couette flow precludes a consideration of only the symmetric
modes, unlike the situation in the slightly more complicated Poiseuille flow studied
in [9]. Paradoxically, this makes the numerical determination of the eigenvalues
somewhat more difficult, since the nonorthogonal basis functions (3.7) introduce a
degree of ill-conditioning. This is discussed by Frederiksen [10] in a related stability
problem arising in meteorology, and in some detail for viscoelastic fluids by Reddy
et al. [23] and Valério et al. [36]. The simple decomposition algorithm presented here
is sufficient to contain the effects of this ill-conditioning, and convergence to the key
eigenvalues of interest has been demonstrated.

The results presented here give a reasonably consistent view of how turbulence may
arise in Couette flow, and of its underlying mathematical structure. At high Reynolds
numbers, the distribution of eigenvalues is almost symmetrical about the real axis
in the complex eigenvalue plane. This means that even small amounts of nonlinear
viscosity τ cause a destabilization of the flow, with a large number of unstable modes
over a range of different frequencies. This structure would be encountered reasonably
abruptly as Reynolds number is increased beyond a certain value, and thus would result
in turbulent behaviour almost immediately. The effect of the usual (linear) dynamic
viscosity coefficient µ is to stabilize the flow, and this is accomplished mathematically
essentially by moving the entire pattern of eigenvalues downward toward the region of
negative imaginary part. This behaviour was evident in Figures 3 and 5. The simpler
structure of Couette flow permitted this understanding of the structure to be confirmed
by an asymptotic solution valid at high Reynolds numbers.

It may, therefore, be the case that fluid turbulence is indeed a manifestation of
weakly nonNewtonian effects [9] with similar underlying physics and mathematical
structure as the exotic “elasto-inertial turbulence” phenomena encountered in
rheological flows of polymer fluids, such as those shown by Larson [16]. This seems
worthy of further theoretical and experimental investigation. In addition, as discussed
in [9], a method for the determination of the nonlinear viscosity parameter F for
common fluids is also suggested by this work, since uni-directional and planar flows
calculated using the Reiner–Rivlin equation (2.5) have identical velocity patterns to
those of Navier–Stokes theory, but different fluid pressures. Consequently, careful
experimental measurements of wall pressures in such flows may give data from which
F can be inferred accurately. This, too, seems worthy of future investigation.
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Appendix A. The solution algorithm

When equation (3.3) is multiplied by basis functions φk(z) and integrated, it requires
the evaluation of the integrals

S (1)
nk =

∫ 1

−1
zφn(z)φk(z) dz,

S (2)
nk =

∫ 1

−1
zψ′n(z)φk(z) dz,

S (3)
nk =

∫ 1

−1
ψn(z)φk(z) dz,

S (4)
nk =

∫ 1

−1
φ′n(z)φk(z) dz,

S (5)
nk =

∫ 1

−1
ψ′′n (z)φk(z) dz.

(A.1)

Similarly, the second equation (3.4) multiplied by functions cos((kπ/2)(z + 1)) and
integrated requires the quantities

C(1)
nk =

∫ 1

−1
zψn(z) cos

(kπ
2

(z + 1)
)

dz,

C(2)
nk =

∫ 1

−1
φn(z) cos

(kπ
2

(z + 1)
)

dz,

C(3)
nk =

∫ 1

−1
zφ′n(z) cos

(kπ
2

(z + 1)
)

dz,

C(4)
nk =

∫ 1

−1
ψ′n(z) cos

(kπ
2

(z + 1)
)

dz,

C(5)
nk =

∫ 1

−1
φ′′n (z) cos

(kπ
2

(z + 1)
)

dz,

C(6)
nk =

∫ 1

−1
ψ′′′n (z) cos

(kπ
2

(z + 1)
)

dz

(A.2)

to be evaluated. The quadratures in these expressions (A.1), (A.2) are all performed
exactly, so as to maintain accuracy. In the code, they are calculated as

S (1)
nk =

2
π2

[ 1
(n + k)2 −

1
(n − k)2

]
γnk,

S (4)
nk =

n
2

[ 1
(n + k)

−
1

(n − k)

]
γnk,

C(2)
nk =

1
π

[ 1
(n − k)

+
1

(n + k)

]
γnk, (A.3)
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C(3)
nk = −

n
π

[ 1
(n − k)2 +

1
(n + k)2

]
γnk,

C(5)
nk = −

n2π

4

[ 1
(n − k)

+
1

(n + k)

]
γnk

for n , k, and zero otherwise. The remaining quantities are likewise evaluated to give

S (2)
nk =

1
π

[
n
{ 1

(n − k)2 −
1

(n + k)2

}
+ (n + 2)

{ 1
(n + 2 + k)2 −

1
(n + 2 − k)2

}]
γnk

S (3)
nk =

1
π

[ 1
(n + k)

−
1

(n − k)
−

1
(n + 2 + k)

+
1

(n + 2 − k)

]
γnk

S (5)
nk =

π

4

[
n2

{ 1
(n − k)

−
1

(n + k)

}
− (n + 2)2

{ 1
(n + 2 − k)

−
1

(n + 2 + k)

}]
γnk

C(1)
nk = −

2
π2

[ 1
(n − k)2 +

1
(n + k)2 −

1
(n + 2 − k)2 −

1
(n + 2 + k)2

]
γnk

C(4)
nk = −

1
2

[
n
{ 1

(n − k)
+

1
(n + k)

}
− (n + 2)

{ 1
(n + 2 − k)

+
1

(n + 2 + k)

}]
γnk

C(6)
nk =

π2

8

[
n3

{ 1
(n − k)

+
1

(n + k)

}
− (n + 2)3

{ 1
(n + 2 − k)

+
1

(n + 2 + k)

}]
γnk

(A.4)

for n , k and n , k − 2 and zero otherwise. In all these evaluated quadratures (A.3)
and (A.4), it is convenient to define

γnk = 1 − cos((n + k)π).

It is now possible to create the elements of the two matrices P and Q in the
algorithm (3.8). For convenience, symbols

ξ2 = K2 + Γ2 and ∆k = ξ2 +

(kπ
2

)2

are defined (and the first of these was encountered in Section 4.2). It now follows, after
some algebra, that the block matrices on the left-hand side of (3.8) have components

P(1A)
kn = ξ2

[
−i

(
S (1)

nk −
1
F

S (4)
nk

)
+ δkn

∆k

ReK

]
P(1B)

kn = Γ

[
S (3)

nk − S (2)
nk +

1
2F

(
S (5)

nk + ξ2S (3)
nk

)
+

i
ReK

(kπ
2

)
∆k

(
δkn − δk−2,n

)]
P(2A)

kn = i
[
−K

(
C(2)

nk + C(3)
nk

)
−

Γ2

2FK
ξ2C(2)

nk +
1

2F

(
Γ2

K
+ 2K

)
C(5)

nk

]
+ δkn

1
Re

(kπ
2

)
∆k

P(2B)
kn = Γ

[
−KC(1)

nk +
1

2FK
{(K2 − Γ2)C(4)

nk + C(6)
nk } −

i
Re

∆k(δkn − δk−2,n)
]
,

(A.5)

in which the rows are represented by the index k and columns by index n. In these
expressions, the term δkn is the usual Kronecker delta, having value 1 when k = n and
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zero otherwise. The block matrices on the right-hand side of equation (3.8) are simpler,
and can be written as

Q(1A)
kn =

i
K
ξ2δkn,

Q(1B)
kn = −

Γ

K

(kπ
2

)
(δkn − δk−2,n),

Q(2A)
kn = i

(kπ
2

)
δkn,

Q(2B)
kn = Γ(δkn − δk−2,n).

(A.6)

Although seemingly complicated, these expressions (A.3)–(A.6) are straightforward
to code.
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[14] J. Jiménez, “Turbulence”, in: Perspectives in fluid dynamics. A collective introduction to current
research (eds G. K. Batchelor, H. K. Moffatt and M. G. Worster), (Cambridge University Press,
Cambridge, 2000) 231–288.

[15] V. Kitsios, L. Cordier, J.-P. Bonnet, A. Ooi and J. Soria, “Development of a nonlinear eddy-
viscosity closure for the triple-decomposition stability analysis of a turbulent channel”, J. Fluid
Mech. 664 (2010) 74–107; doi:10.1017/S0022112010003617.

https://doi.org/10.1017/S1446181115000176 Published online by Cambridge University Press

http://dx.doi.org/10.1146/annurev.fl.20.010188.002043
http://dx.doi.org/10.1146/annurev.fluid.31.1.1
http://dx.doi.org/10.1088/0169-5983/44/3/031404
http://dx.doi.org/10.1016/j.piutam.2012.06.021
http://dx.doi.org/10.1016/j.chaos.2014.01.008
http://dx.doi.org/10.1017/S1446181114000224
http://dx.doi.org/10.1175/1520-0469(2000)057<0312:SVFTNM>2.0.CO;2
http://dx.doi.org/10.1063/1.1706334
http://dx.doi.org/10.1038/35011019
http://dx.doi.org/10.1126/science.1100393
http://dx.doi.org/10.1017/S0022112010003617
https://doi.org/10.1017/S1446181115000176


[25] Transition to turbulence from plane Couette flow 113

[16] R. G. Larson, “Fluid dynamics – turbulence without inertia”, Nature 405 (2000) 27–28;
doi:10.1038/35011172.

[17] K.-C. Lee and B. A. Finlayson, “Stability of plane Poiseuille and Couette flow of a Maxwell fluid”,
J. Non-Newtonian Fluid Mech. 21 (1986) 65–78; doi:10.1016/0377-0257(86)80063-5.

[18] G. E. Mase, “Continuum mechanics”, in: Schaum’s outline series (McGraw-Hill, New York,
1970).

[19] W. D. McComb, “Theory of turbulence”, Rep. Prog. Phys. 58 (1995) 1117–1206;
doi:10.1088/0034-4885/58/10/001.

[20] L. Pan, A. Morozov, C. Wagner and P. E. Arratia, “Nonlinear elastic instability in channel flows at
low Reynolds numbers”, Phys. Rev. Lett. 110 (2013) 174502; 5 pages;
doi:10.1103/PhysRevLett.110.174502.

[21] R. J. Poole, “The Deborah and Weissenberg numbers. The British Society of Rheology”, Rheology
Bulletin 53 (2012) 32–39; http://pcwww.liv.ac.uk/∼robpoole/PAPERS/POOLE 45.pdf.

[22] S. M. E. Rabin, C. P. Caulfield and R. R. Kerswell, “Triggering turbulence efficiently in plane
Couette flow”, J. Fluid Mech. 712 (2012) 244–272; doi:10.1017/jfm.2012.417.

[23] S. C. Reddy, P. J. Schmid and D. S. Henningson, “Pseudospectra of the Orr-Sommerfeld operator”,
SIAM J. Appl. Math. 53 (1993) 15–47; doi:10.1137/0153002.

[24] M. Reiner, “A mathematical theory of dilatancy”, Amer. J. Math. 67 (1945) 350–362;
http://www.jstor.org/stable/2371950.

[25] O. Reynolds, “An experimental investigation of the circumstances which determine whether the
motion of water shall be direct or Sinuous, and of the law of resistance in parallel channels”, Proc.
R. Soc. Lond. 35 (1883) 84–99; doi:10.1098/rspl.1883.0018.

[26] O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of
the criterion”, Philos. Trans. R. Soc. Lond. A 186 (1895) 123–164;
http://www.jstor.org/stable/90643.

[27] R. S. Rivlin, “The hydrodynamics of non-Newtonian fluids. I”, Proc. R. Soc. Lond. A 193 (1948)
260–281; http://www.jstor.org/stable/97992.

[28] N. Rott, “Note on the history of the Reynolds number”, Annu. Rev. Fluid Mech. 22 (1990) 1–11;
doi:10.1146/annurev.fl.22.010190.000245.
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