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ON THE MICROWAVE HOTSPOT PROBLEM
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Abstract

When an object is heated by microwaves, isolated regions of excessive heating can
often occur. The present paper investigates such hotspots by both perturbation and
numerical means. For quite normal materials, it is shown that small temperature
anomalies can grow to form hotspots. Furthermore, such effects do not need to be
associated with thermal runaway.

1. Introduction

Microwave heating is by now a familiar technique in both industrial and
domestic environments. Considering the large number of problems that it
engenders, it is surprising that there has been little theoretical work on the
thermal aspects (see [4] for a fairly comprehensive guide and [1, 2, 3 and 5]
for more recent work). One of the more serious problems is the occurrence of
hotspots. In this phenomenon, a localised temperature anomaly is magnified
out of all proportion. A particularly dramatic example occurs during the
microwave drying of bricks. In this case, a hotspot can cause the brick to
explode [7]. The present paper explores the hotspot phenomenon, in order
to provide a basis for possible remedies.

Microwave heating results from the dissipation of microwaves as they
propagate through a body. For many materials, the rate of dissipation is tem-
perature dependent, and this can dramatically affect the heating. As shown
in Section 2 (and in reference [3]), several theoretical materials will show
thermal runaway when subjected to uniform heating. Furthermore, as shown
in Section 2, a small perturbation can explode, even when normalised by the
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runaway background field. It should be noted, however, that realistic mate-
rials will only show the required absorption behaviour over a limited range
of temperature. Consequently, the results must be treated with caution. In-
deed, the simplest theories suggest that the absorption will moderate in a
fashion that prevents runaway. Even so, it is found that a normalised per-
turbation can still reach extremely large values. This conclusion is supported
by the numerical analysis of Section 4 in which the evolution of a localised
temperature anomaly is simulated according to the full nonlinear theory.

2. The uniform temperature field

It is assumed that the dissipation of energy has negligible effect on the
electromagnetic field and so the temperature distribution can be considered
in isolation. For many materials, the absorption rate of energy is dependent
on temperature [4] and so the thermal history will be described by an equation
of the form

where K is the thermal diffusivity and / describes the energy absorption. For
most microwave applications, the heating is so rapid that there is negligible
heat loss through the surface of the body. Consequently, it is reasonable to
assume zero heat flux at the boundaries. For a body with initially uniform
temperature distribution, and uniform heating, this will result in a uniform
distribution at later times with temperature evolving according to

dT/dt = f(T). (2)

Consider the exponential dissipation function f = Aexp(aT) where A and
a are positive. In this case, (2) will have the solution

T(t) = - ln(aC - aAt)/a (3)

where C = exp(-aT{0))/a.
It will be noted that (3) implies a temperature explosion at a finite time.

Such a behaviour, however, is not a unique property of an exponential / .
Indeed, it is a property of any f(T) satisfying f(T) > AT" with n > 1 and
A > 0. This can be seen from the inequality

dT/dt >ATn

which can be integrated to yield

n — 1
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Rearranging (4),

from which it is clear that the T becomes infinite in a finite time.
The above solutions illustrate a runaway behaviour of the type that has

been associated with hotspots [3]. It is unlikely, however, that the above
forms of / will be valid at large temperatures. Indeed, it is more likely that
an Arrhenius type law ( / = foexp(-E/RT) with f0 the limiting rate of
dissipation) will be valid. Although the solution will no longer demonstrate
a runaway behaviour, the next section shows that it can still exhibit hotspot
type phenomena.

3. Linear perturbations

A possible explanation for the phenomenon of hotspots is the existence of
thermal instabilities. Under such circumstances, a small local anomaly could
blow up to form a hotspot. Consider the perturbation r , ( r , t) of a uniform
temperature field T0(t). Temperature T(= TQ + TX) satisfies (1), from which

(5)
in the case of small perturbations. Consider a Tx of the form

T,(r, t) = f(r)T(t).

From (5),
o

T~1-Q / (^o) = KV2T/T=-X

O

where A is a constant. Obviously T satisfies
o

and f satisfies
V2f =-XT/K.

Furthermore, it should be noted that (6) will have the solution

T = Af(T0) exp(-Af). (7)

The spatially uniform solution TQ is considered to be unstable if T{/To-*
o

oo in some temporal limit, this being the case if T/To —• oo. From (7),
however,

O i f

r / r 0 oc {fiToj/TQje (8)
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and so, if the temperature blows up in a finite time, the material will be
unstable if f(T0)/TQ —> oo in that time. This is certainly the case if /
satisfies f(T)> AT" (n > 1 and A > 0). Furthermore, this will also be the
case for exponential / . Consequently, for a large class of materials, TQ will
be unstable in the linear sense. In such circumstances, small local anomalies
in temperature will build up to form hotspots.

Although experimental studies [6] indicate that a great number of mate-
rials exhibit a temperature dependence for / that could lead to the above
instability, the available information is often limited in its temperature range
and there is the likelihood that the dissipation will be moderated at elevated
temperatures. Even so, it is possible for a large temperature differential to
develop before the moderation comes into effect. To illustrate this, consider
o

T/To for the Arrhenius Law and a range of the parameter e = RT(0)/E.
Figure 1 shows some numerical results for e between 0.1 and 0.4 (X = 0.2
and fo/T(O) = 1), with (2) solved using a Runge-Kutta scheme. It will be
noted that there is a peak in the temperature differential that is accentuated
as e->0.

As a particular example, consider a solid sphere (radius a) under the in-
fluence of the spherically symmetric perturbation T{ = T(r)T(t). T satisfies
the differential equation

dr1 r dr K
(9)

0 5 T ime

Figure 1. The normalised perturbation.
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which has bounded solutions of the form f = sin((£)I /2r)/r. Parameter A
satisfies

in the case of an insulated boundary (df/dr = 0) at the surface r = a.
Furthermore, the first four nontrivial solutions to (10) are given by (A/K) * a =
4.493, 7.725, 10.904 and 14.066. Since the higher-order modes will dampen
out at a greater rate, it is obvious that any composite perturbation will tend to
the lowest mode in the fullness of time. For present purposes, however, what
happens in the short term is of greater interest. In particular, one must ask

o

whether the normalised perturbation (T/To) will peak. This occurs when

d(T/T0)/dt = 0 which, together with (2) and (6), yields

To(/(To)-X)-f(T0) = 0.

For the Arrhenius law, this implies that T(= RTQ/E) satisfies

7-aip(~)(X-^)=0. (11)

where y = AE/f0R. For y = 0, 0.1, 0.2, and 0.3, (11) will have the solutions
0.1, 0.7806, 0.6154 and 0.4341. Above a value of about 0.305 for y, the roots
cease to exist. It is clear that y needs to be as large as possible for the peak
to be eliminated, or at least moderated. Consideration of the spherical case
suggests that this is equivalent to maximising KE/(L fQR) where L is a
typical dimension of the heated body.

4. Some numerical results

Although the previous section suggests a possible mechanism for hotspot
formation, the results should be treated with caution since they are based
on a linear perturbation analysis. In order to provide additional evidence,
the present section considers a numerical solution to the full problem. For
a rectangular spacetime mesh with spatial intervals of length h and time
intervals of length T , an explicit finite difference discretisation of (1) is given
by

Tijk = Tijk + a^(i+l)jk + '(i-l)jk + Ti(j+l)k + Ti(j-\)k

where Tl
ijlc denotes the temperature at the space-time point (ih, jh, kh, Ix)
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and a = KT/II . Consider a cube with sides of length 2 and with centre
located at the origin. Assume the sides to be insulated (dT/dn = 0) and
that, at time t = 0, there exists an isolated temperature anomaly of the form

= (l+<Jexp(-9r-r)).

Furthermore, assume / to behave according to the Arrhenius law with
/(0) = 0.1. Figure 2 shows the behaviour of (T - To)/To at the origin
(To being the solution with 3 = 0) for 6 = 0.1, K = 0.5 and values of e
between 0.1 and 0.4. It will be noted that the behaviour is very similar to
that predicted by the linear perturbation analysis. The development of the
hotspot profile (e = .2) is shown in Figure 3. Here it will be noted that the
hotspot phenomena is over before there is any significant dispersion of the
initial perturbation profile. Similar conclusions arise when there are several
hotspots, as illustrated in the profiles of Figure 4. This shows a situation
with two additional hotspots on each coordinate axis, one on each side of
the origin. For the above simulations, T = 0.002 and h = 0.05 . The results,
however, were validated over a range of these parameters.

T-TJ/T
0 0

0 5 T i me

Figure 2. The normalised deviation from uniform beating.
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1=4

.0 .5 Distance

Figure 3. The hotspot profile.

t=4

.0 .5 Distance

Figure 4. The multihotspot case.

4. Conclusions

It has been demonstrated that hotspot type phenomena can occur, even
in materials that do not normally exhibit thermal runaway. Although such
effects can be troublesome, there is now some evidence that they can also
be used to advantage in the production of specialised metal alloys [7].
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Consequently, it is important that further theoretical work be undertaken in
order to aid the development of these processing techniques. In these circum-
stances, however, the dissipation is so strong that that interaction between
the electromagnetic and thermal fields cannot be neglected. Consequently,
future work will need to address this aspect.
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