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Abstract

This paper focuses on a type of underdetermination that has barely received any philosophical
attention: underdetermination of data. I show how one particular type of data—RNA
sequencing data, arguably one of the most important data types in contemporary biology and
medicine—is underdetermined, because RNA sequencing experiments often do not determine
a unique data set. Instead, different ways of generating usable data can result in vastly
different, and even incompatible, data sets. But, since it is often impossible to adjudicate among
these different ways of generating data, ‘the data’ coming out of such experiments is
underdetermined.

1. Introduction
Underdetermination of theories by data is a longstanding problem in philosophy of
science (Laudan 1990): since scientific data is always compatible with a number of
different and mutually incompatible scientific theories, it can never, on its own, single
out a particular scientific theory uniquely. And while almost every aspect of
underdetermination—how ubiquitous it is, how to escape it, what kinds there are,
how worrisome these different kinds are, etc.—has been extensively debated
(Tulodziecki 2007, 2017), the general phenomenon is familiar and well understood. In
this paper, I focus on a type of underdetermination that, contrary to the familiar type,
has barely received any philosophical attention at all: underdetermination of data
itself.1

The idea of data as a potentially philosophically interesting notion has a long
heritage. Bogen and Woodward already drew attention to the complexities of data
production in the 1980s (1988, 309–10), yet most discussions since have focused on
data interpretation (Woodward 1989; McAllister 1997, 2011; Bogen 2010). Recent years
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1 The only discussion of which I am aware that touches on underdetermination of data is Wylie (2019),
who argues that fossil specimens—potential data—are underdetermined by context. Note also that I will
not, at this point, talk about underdetermination of data by something, since different kinds of data can
be underdetermined by different things (methods, theoretical assumptions, samples, their production,
etc.). It will become clear in Section 3 what exactly the underdetermination of RNA-Seq data refers to.
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have seen a new surge of discussions involving data, especially in the context of big
data and data-centric approaches to science. However, these discussions, though
plentiful, focus mostly on the unprecedented amounts of data produced and
associated issues, such as data analysis, data models, data collection, data curation,
data infrastructures, or data dissemination. And while it has been argued that data is
relational and underdetermines evidential value (Leonelli 2015), even here the focus
is on how data is used, not on the epistemic status of data itself. The fact that the
latter has been discussed so little is perhaps somewhat surprising in view of the fact
that it is also well known among philosophers that data is not given but made
(Hacking 1992). It is similarly well known that observation—and, by extension, data—
is theory-laden (Hanson 1958). The same point has been argued for experiments,
science’s prime vehicles for producing data (Franklin 2015; Karaca 2013). Lastly,
philosophers of experimentation have also long pointed out that data can be artifacts
of the instruments or procedures used to generate them (Rasmussen 1993; Feest
2014). The epistemic status of data would therefore seem to be a natural candidate for
philosophical discussion; yet, the literature still contains a puzzling gap in this
respect.

My goal in this paper is to begin filling this gap by talking about how one particular
type of data—RNA sequencing data, arguably one of the most important types of data
in contemporary modern biology and medicine—is underdetermined. I will argue
that there is no matter of fact about what ‘the data’ of many modern RNA sequencing
experiments is. Just as in traditional underdetermination evidence does not single out
a particular theory, in this case modern RNA sequencing experiments often do not
determine a particular data set and therefore leave open what ‘the data’ coming out of
such experiments is. Moreover, as I will show, this underdetermination is not
epistemically innocent in the sense that, trivially, slightly different methodological
choices give rise to slightly different data sets. Instead, as I will argue, what ‘the data’
of such experiments is depends so heavily on the ways in which experimental reads
are made usable, that different ways of generating usable data can result in vastly
different and, in the most extreme cases, even incompatible, data sets.

I will proceed as follows: after providing some background and describing modern
RNA sequencing technology (section 2), I will explain some different ways in which
the experimental reads coming out of such experiments can be made usable and show
that these can result in vastly different, and even incompatible or opposing, data sets
(section 3). I then go on to explain why we should think of this as a genuine and
serious case of data underdetermination (section 4). Next, I discuss some of the
consequences of this type of underdetermination for already existing data, and end by
highlighting why philosophers should pay more attention to data underdetermina-
tion (section 5).

2. Background and RNA-Seq
RNA is a nucleic acid molecule that carries genetic information for making proteins
and regulating gene expression. It is involved in many of the most fundamental
biological cellular processes and, since it sheds light on how instructions from DNA
are interpreted and subsequently used, data from experiments that sequence RNA are
of enormous importance in modern biology and medicine. RNA-Seq, short for ‘RNA

2 Dana Tulodziecki

https://doi.org/10.1017/psa.2025.10147 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10147


sequencing’, is a recent and powerful high-throughput next-generation sequencing
technique that is used to sequence and measure gene expression in different cell
types, tissues, organisms, or species, from different developmental stages, or under
different experimental conditions (such as healthy vs. diseased tissue (Kruse et al.
2019), treated vs. untreated cells (Calhoun et al. 2022), preserved vs. unpreserved
tissue (Kruse et al. 2017), and so on). Gene expression levels measure how active a
gene is in producing functional, biological outputs, and RNA transcripts—RNA
molecules copied from a gene—function as a proxy for measuring this activity, with
higher numbers of transcripts indicating higher activity levels and therefore stronger
gene expression, and lower numbers the reverse. RNA-Seq allows one to count all the
different RNA transcripts in a sample, and therefore makes it possible to measure
which genes are expressed, at what levels they are expressed, and how these
expression levels change in response to different conditions or treatments, thereby
also making it possible to compare gene expression levels of different samples.

RNA-Seq is used in virtually every life science discipline that deals with biological
samples (Lonsdale et al. 2013; Schaum et al. 2018; Zhang et al. 2020), from agriculture and
environmental science to neuroscience and precision medicine. It has revolutionized
work in these areas, because, unlike previous methods such as microarrays, it can
sequence an entire transcriptome (the entire set of RNA molecules in a cell or organism
at a particular time, during a particular experimental condition) at once. One major
limitation of microarrays is that they can only detect previously known and specified
sequences, whereas RNA-Seq can detect and identify novel, previously unidentified
transcripts (and previously unknown genes), thereby vastly expanding our knowledge of
the transcriptome. Moreover, microarrays can only provide relative rankings of gene
expression within a sample and are not able to capture gene expression levels in
numerical form, and so RNA-Seq made it possible for the first time both to quantify gene
expression levels and to quantitatively compare different samples—all without needing
to know anything about the genes in the samples in advance.

So, how does RNA-Seq work? Very briefly, RNA-Seq can ‘directly’ read nucleic
sequences of RNA molecules. It first extracts all the RNA from a sample, then converts
the RNA into more stable DNA, in the process creating a library that represents all the
RNA molecules of the sample. The sequencer then reads the sequence of bases in the
DNA, one constituent base at a time, resulting in millions of short sequences (‘reads’).
These reads provide a snapshot of the sample’s entire transcriptome, i.e. of all the
RNA molecules present in the sample. Through processes called ‘mapping’ and
‘quantification’, it is then determined which RNA molecules (and hence which genes)
the reads came from and how much of each molecule was in the sample, with this
amount serving as a proxy for gene expression in the form of ‘read counts’, i.e. the
number of reads for each RNA transcript.

3. Making data usable
However, these ‘raw’ read counts are unusable in their initial form.2 To be able to
compare samples, the read counts first need to be adjusted for variations in

2 Before the reads are counted, just like for other biological data and techniques, read errors need to
be identified and corrected, low-quality reads need to be sorted out, and so on. It is only after these
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‘sequencing depth’, the total number of sequencing reads for a particular sample.
Sequencing depth typically varies among samples, due to their respective RNA quality
and quantity. For example, if sample A has twice as many RNAs as sample B, the read
counts for sample A might be roughly twice as high as those for sample B, but this
would not necessarily indicate doubled biological gene expression levels.3 Similarly, if
the sequencer sequences more of sample A than of sample B because the sample
quality of A is higher, sample A will receive more read counts without this indicating
biologically higher expression levels. To account for this, and so that the read counts
can reflect actual gene expression and not merely sample variation, the read counts of
all the samples in an experiment first need to be adjusted to a common base (or scale)
via a procedure called ‘scaling’. It is only after this is done that read counts are even
candidates for analysis and interpretation.

There are currently three main types of scaling method for RNA-Seq.4 The first
involves housekeeping genes. These are genes that are thought to be expressed at a
constant level across samples within an experiment and that allow other genes to be
scaled in proportion to the reference values of the housekeeping genes. In the second
method, the total gene expression method (also sometimes called ‘the total count
normalization method’), the total number of reads in each sample is used as a scaling
factor by which each gene’s read counts are divided.5 In contrast to housekeeping
genes, which use only specific genes as reference, total count normalization relies on
the totality of mapped reads. The third method uses so-called spike-in controls. These
are known biological or synthetic sequences of known concentration that are added
to (‘spiked into’) the sample before sequencing, and this known quantity of RNA can
then be used as a reference point.

However, it turns out that these different scaling methods can lead to vastly
different data sets. One such example comes from RNA-Seq experiments trying to
identify changes in gene expression levels during aging in yeast. While scaling with
spike-ins led to data that showed that all genes in the yeast genome were upregulated
(more strongly expressed) during aging (Hu et al. 2014), not using spike-ins resulted in
data that showed that there were gene expression changes in only a few hundred genes,
some upregulated and some downregulated, with the expression levels of most genes
unchanged (Chen et al. 2016; Lesur and Campbell 2004). Similarly, using total count
normalization to scale read counts for an experiment involving cMyc oncogene—a
protein-coding gene that can promote cancer development—produced data that
showed that overexpression of cMyc activated only a specific number of target genes
(Lovén et al. 2012, 2013). However, scaling using spike-in controls produced data that

cleaned-up reads are assigned or mapped to specific genes that the counting begins. Since issues related
to this are not the focus of this paper, I won’t pursue them here.

3 This example assumes an exhaustive sequencing of the two samples.
4 Each of these comes in a number of variations, but since those details don’t matter for my purposes,

I will ignore this additional complication here.
5 There are several variations on this method (see, for example, Cole et al. 2019). The terms ‘scaling’

and ‘normalization’ are not used consistently in the literature. I use ‘scaling’ to refer to procedures that
are used to provide a common base for different samples and ‘normalization’ to refer to methods that
need to be implemented even within a single sample to make it usable (such as adjusting for gene length,
library size, sequencing depth, and so on). The vast majority of RNA-Seq experiments involve more than
one sample and hence both scaling and normalization, so I’ll often refer to both.
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showed that cMyc amplified almost the entire genome (Lin et al. 2012; Nie et al. 2012).6

Thus, as we can see, different scaling methods can produce incompatible data from one
and the same RNA-Seq experiment. Moreover, this issue is not just confined to the three
main types of scaling methods, but extends to variations of the various methods within
a category. For example, there are a variety of different total count normalization
methods and here, too, it has been shown that different methods can produce
significantly different data (Bullard et al. 2010; Dillies et al. 2013).

4. The underdetermination of RNA-Seq data
So, why should we think of this as a case of data underdetermination? The answer
involves the fact that the different scaling methods all rest on different assumptions
and that whether and to what extent an experiment meets these assumptions is
usually and largely unknown. To give some quick and easy examples, one
assumption underlying the housekeeping gene method is that the chosen set of
housekeeping genes is, in fact, constantly expressed in the sample. The total gene
expression method presupposes that total expression among different experimental
conditions is the same, and spike-in controls presuppose that the spike-ins
themselves won’t be affected by the biological condition under investigation and, in
the case of synthetic spike-ins, also that “they have the same technical effects as
real genes” (Evans et al. 2018, 781). And while each of these assumptions has been
known to be violated sometimes, there are “many situations in which the validity of
any assumption is unknown for the given experiment” (790). Further, not just does
there “not exist an : : : analysis of published data, which evaluates the
assumptions,” there is also “no clear way to perform such an evaluation” (791).

The data coming out of many RNA-Seq experiments is therefore underdetermined:
to choose the most appropriate scaling method (i.e. the method most likely to
produce data actually reflecting the sample’s biological expression levels), one would
need to know to what extent the various assumptions underlying the different scaling
methods are met in the experiment at hand, when in many cases this is impossible. In
the classical case of underdetermination of theories by evidence, underdetermination
obtains when there are two or more incompatible theories among which we can’t
adjudicate on evidential grounds because they are all compatible with the observable
evidence. Here, underdetermination of data obtains due to the fact that the read
counts that come out of one and the same sequencing run are compatible with
differently scaled, potentially even opposing, data sets among which one can’t
adjudicate. It is thus, in principle, unclear what the best scaling method is, and given
that different methods lead to different data, the data in these cases is genuinely
underdetermined. Since differently scaled data sets are all compatible with the
original sample, there is no matter of fact about what ‘the data’ of such an
experiment is.

One might think that one obvious step towards resolution would be to simply use
several methods at once. But this would help only to a limited extent: if it turned out
that the methods agreed, one could be confident in the general data trends; if they
disagreed, however, one would know to worry, but not how to resolve this worry,

6 For further and different examples, see Lovén et al. (2012), Chen et al. (2016), and Evans et al. (2018).
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since one still wouldn’t know which method’s underlying assumptions are best
instantiated in a given experiment. At any rate, using several different methods is not
usually a live option (even in cases in which it may be a theoretical one), because both
sequencing and subsequent analysis are expensive, for many researchers prohibi-
tively so. Only a small number of universities can afford their own in-house
sequencing facilities and even in those cases the cost is significant because such
facilities inevitably rely on commercial (re)sources for equipment, reagents, and
support. If local sequencing is not an option—as is the case for the vast majority of
researchers—samples are sent out to commercial facilities, often at still greater cost.
Note that in both cases even ‘merely’ bioinformatic work is quite expensive due to
labor costs and so using different methods is not usually realistic.

Regardless, the foregoing discussion might lead one to wonder who usually
determines which scaling and normalization methods are used. While some
researchers might be actively involved in such decisions, more often than not the
researchers designing the experiments have little to no expertise in any of the
methods and techniques involved in producing the experimental data, and often not
even in any of the methods required for the subsequent statistical analyses. Instead,
researchers often buy kits and packages that outsource the entire sequencing and
analysis process to a sequencing facility.7 They are provided with a standardized kit to
prepare their samples, which are then sent to the sequencing facility, where
sequencing is done by a technician before one of the resident bioinformaticians deals
with the raw (and still unusable) read counts. This includes scaling and normalization
procedures, but often also involves the requisite statistical analyses of the scaled and
normalized data. When all this is complete, researchers receive a report compiled by
the sequencing facility about the fully processed and possibly even analyzed data.
Thus, the researchers who design the experiment are often quite removed from the
data generation process itself, and many simply send their samples out for sequencing
without giving any thought to the methods and procedures involved, much less their
underlying assumptions. But not just are many researchers removed from this
process practically speaking, they are also often in a field (cell biology, medical
physiology, oncology, plant science, agriculture, etc.) that does not come with
background, expertise, or even competency in molecular biology or bioinformatics.
And since the methods involved in scaling, normalization, and data analysis are
heavily mathematical and statistical, they cannot be used or even understood without
significant training. The important consequence of this for our purposes is that for
most researchers, not just the methods themselves but also their assumptions remain
obscure and inaccessible. While some researchers might go out of their way to reflect
on and pick specific methods tailored to their experiment, most of the time the
bioinformatician employed by the sequencing facility picks the method that will be
used. Sometimes labs have their own guidelines about what methods to use when,
sometimes a researcher’s institution will have guidelines they want followed,
sometimes particular methods are used simply because they became entrenched and
are “what has always been done.” The key point here is that it is relatively rare for a
method to be matched specifically to a particular experiment or sample because its
underlying assumptions are thought to be most appropriate for that specific case.

7 For how this affects data production, see Krohs (2012).
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And, just like cell biologists don’t usually have training in bioinformatics,
bioinformaticians don’t usually have training in cell biology, or the specific subject
matter expertise relevant to the researcher’s discipline. The requisite kind of tailoring
of method to experiment, however, requires both.

This is perhaps also a good point at which to mention that spike-in controls are
the least commonly used scaling method. I already mentioned earlier the cost
associated with doing RNA-Seq experiments. Spike-in controls not only increase this
cost but also require, ideally, robotics for procedure automation as well as additional
expertise—not just technical expertise in ‘spiking in’, but also theoretical expertise
in how to choose an appropriate spike-in sequence for a particular sample and
experiment. Some facilities have experience with spike-ins, but many don’t have
staff with the required expertise on site. In those cases, spike-in controls might add
another layer of expertise that needs to be brought in externally, for example
through companies specializing in such controls.

5. Consequences for already existing data
While RNA-Seq scaling and normalization problems are not unknown in the scientific
literature,8 they and their consequences have been underappreciated. Part of the
reason for this might be the following two tendencies: first, the tendency to think that
the potential differences in RNA-Seq data are not significant enough to be genuinely
problematic; second, the tendency to think of RNA-Seq data as highly reliable. For
example, specifically with reference to next-generation sequencing technologies like
RNA-Seq, Leonelli has noted “the reliance on specific technologies for data production
as proxy markers for data quality” (2017, 4). The perception of reliability might also
be especially strong in the case of RNA-Seq because it is not just highly sophisticated,
but also heavily automated and standardized, with many detailed protocols. It also
explicitly eliminates many of the problems and biases of previous sequencing
techniques that depended more strongly on individual researcher usage (although it
should be noted, of course, that plenty of the ‘usual’ biological and technical biases
also occur in RNA-Seq). Moreover, where previous methods generated qualitative or
at most semi-quantitative data that was in more obvious need of researcher
interpretation, RNA-Seq generates entirely quantitative data, a fact that might
further contribute to the notion that RNA-Seq data is more objective and less prone to
interpreter bias. Perhaps there is even a tacit assumption that numbers are more
objective representations of actual biological states of affairs than are researcher
interpretations of qualitative data. Further, whereas microarrays relied on pre-
designed probes with known sequences, the fact that RNA-Seq measures gene
expression more directly and that it can measure an entire transcriptome—including
previously unknown genes and transcripts—might lend a further air of objectivity
and reinforce the idea that it offers an unbiased view of what the transcriptome
‘really’ is.

An important point to note here is that because “the use of technology as proxy for
data quality continues to occur among editorial boards, research institutions and

8 There is also evidence that at least some researchers are uneasy about “their use of high-throughput
technologies for data production,” and especially about “the level of technical skill required to use those
tools, [and] the proficiency with which lab members were operating the technology” (Leonelli 2017, 5).
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funders, and international research consortia” (Leonelli 2017, 5), researchers are in
fact incentivized not to deviate from the existing standardized procedures of certain
facilities—even if this would serve their experiment—since using that facility and its
protocols serves as such a data quality proxy.

What, then, are the consequences of all this for existing data sets? In the luckiest
case, the researcher who deposited the data was a person who thought about these
issues carefully, documented their thoughts, and then went to make these available,
along with the untreated read counts and unprocessed data, as well as the scaled/
normalized data. But such cases are the exception, not the norm. As we just saw, RNA-
Seq experiments are often performed without a particular rationale for using a
particular scaling or normalization method. This means that there are enormous
quantities of already existing and publicly available data sets for which it is unclear
not just why a particular method was used but also whether they are genuinely
underdetermined or whether they, at least theoretically, come with a preferred
method. Unfortunately, even in principle, this situation can be addressed only
partially. As has often been pointed out, “existing databases have a hard time getting
data producers to post and appropriately annotate their own data” (Leonelli 2017, 4).
So, even if data is available, it might have been made available in sloppy or haphazard
ways. For our purposes, this means that often, even if ‘the data’ is there, it consists
only of the scaled or normalized data, not the original untreated read counts. In those
cases, it is impossible to retroactively apply different methods, even if it becomes
clear that a different method would have been preferable (and, at any rate, spike-in
controls need to be added to samples before sequencing and so it is too late for this
method, anyway). Moreover, even in cases in which the untreated read counts are
available, the experimental metadata might be insufficient for judging whether
certain assumptions underlying the different methods are met or violated for a given
experiment, even when—with sufficient documentation—this could have been
determined.

On a practical level, this means that there is often no way to tell whether an
already existing data set is genuinely underdetermined or not. In fact, since this can
often not be resolved, there is meta-level underdetermination of judgment about
whether there is lower-level epistemic underdetermination at the data level. It is
impossible to tell what sort of situation one is in: is one looking at a data set that is
such that a different method would have produced data in conflict with what was
originally concluded? If so, was one of the methods preferred and was it used for the
original data, or was there no preferred method and the data is experimentally
underdetermined? Since such questions cannot be resolved, there is no way of
knowing how widespread either of these kinds of underdetermination really are. It is
practically underdetermined whether the data is epistemically underdetermined, and
nobody knows just how bad things are.

The downstream consequences of this situation are not insignificant, especially in
an age in which analysis and use of legacy data are becoming increasingly
scientifically important and encouraged. Plenty of existing data sets are used in
comparative experiments and in influential review papers and meta-analyses.
Without seeking to understate or diminish the enormous successes of RNA-Seq and
the very important role RNA-Seq has played in many fields, especially medicine, what
the discussion of data underdetermination shows is that there is an urgent need to

8 Dana Tulodziecki

https://doi.org/10.1017/psa.2025.10147 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10147


further reflect on the epistemic status of much of this data. Is most of this
underdetermination genuine or in principle resolvable? Regardless of the answer,
existing data needs to be probed with a view to ascertaining this, and also with a view
to ensuring that no assumptions were violated during the scaling and normalization
processes. The specter of data underdetermination also raises a number of further
questions it is important to shed light on: are there particular types of experiments,
specimens, or biological conditions that are especially prone to genuine under-
determination? If so, what, if anything, do they share? Is there a way of overcoming
such underdetermination, and if so, how? But even regardless of the question of
whether genuine underdetermination occurs, practical underdetermination of
existing data is already sufficient to cast doubt on the reliability of ‘the data’ and
to prompt further analysis of its epistemic status.

It should also prompt philosophers both to rethink the epistemic status of data
more generally and to think about how data underdetermination might affect widely
used and important philosophical concepts, among them empirical equivalence,
classical underdetermination, phenomena, and, not least, the notion of evidence
itself.
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