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Abstract

We record (422) + (223) + ('23) = 1192 functional identities that, apart from being amazingly amusing in
themselves, find application in the derivation of Ramanujan-type formulas for 1/ and in the computation
of mathematical constants.
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It is all about 7.

1. Introduction and statement of results

One of the best-known results of Ramanujan is his collection of series for 1/x in [23].
One of the memorable achievements of Jonathan and Peter Borwein was proving
the entries in Ramanujan’s collection around 70 years later [7]. As a representative
example, we quote the series [23, Equation (29)]

(B syl 18
2ol gla) =2 xar b
Here and below we use
_T(s+n)  fsGs+1)---(s+n-1) ifn=12,...,
="y TN ifn=0

for the Pochhammer symbol (or shifted factorial) as well as the related notation

X" (1.2)

ap, ars .., Ay )= S (aO)n(al)n"'(am)n
by, ....by ’ nl (b (bmdn

for the generalized hypergeometric function.
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[2] Hypergeometric modular equations 339

Ramanujan’s series for 1/m may all be expressed in the form

B

’

1

d = 8 1—gs
+ _ F(z’ b ; )
(“ xdx)3 A0 0f

X=X0 /s

where @, 8 and x( are algebraic numbers and s € {é, }1, % %}. In the example (1.1), we
have
— 5 _ 8 - L -1
=35, B=3, X=g and s=3.

Behind such identities there is a beautiful machinery of modular functions, something
that was hinted by Ramanujan a century ago and led to the earlier and later proofs
[7,8,12].

A more recent investigation on interrelationships among Ramanujan’s series in the
works of several authors [4, 11, 20, 24, 27, 28] suggests considering transformation
formulas of the type

1

() = 1)o7 :

I, 1

s, 1—3s

1
F(2’
201

") (1.3)
where x(p), y(p) and r(p) are algebraic functions of p and s,t € {%, i, % %}. For
example, Aycock [4] was mainly interested in using instances of (1.3) to derive
formulas such as (1.1). The discussion of transformation formulas of the type (1.3)
in [4, pages 15-16] contains just eight formulas that were obtained by searching the
literature. Just to mention a few, we list the examples'

1 1 5 2
115 o7y
P62 6;—), 1.4
3 2( L1 (4-x)3 (1.4)

11 1
20 20 7.
3F2(

2
sx e —
1, 1 ) Vi = x

43 256x 1+27x (1, 3, 2 256x°
3F2( ; )= 3 2( ;—) (1.5)
L1 T (1+270%)  1+3x 1,1 7 (1+3x4
and 1 1 2 1 1 5 3
3 5> 3 3 2 5, 2 64x°(1 —x)
F% 7 Bt - ) = =R 0 7 B 0) e
S x(1 - x) oo U ey (1.6)

We should point out that algebraic transformations of hypergeometric functions, in
particular, of modular origin, are related to the monodromy of the underlying linear
differential equations. This is a reasonably popular topic, with Goursat’s original
139-page contribution [18] as the starting point. See [2, 21, 25] for some recent
developments.

The goal of this work is to systematically organize and classify identities of the type
(1.3). In particular, we will show that the functions that occur in (1.4)—(1.6) are part
of a single result that asserts that 42 functions are equal. Our results also encapsulate
identities such as

1 1
Fop() = Txfec(l—fx) and fo(x) =

1+x

foo =), (17)

1+x

'Some misprints in [4, page 15] have been corrected.
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where

o)

feb(x)=2{ 2 (j!Z!!E!)Z}xn

n=0 j+k+{=n

and

foel) = f]{ )y (]7—;;)3})‘” :

n=0 j+k=n

that is, fep(x) is the generating function for sums of squares of trinomial coefficients,
while fs.(x) is the generating function for sums of cubes of binomial coefficients.
Results for Apéry, Domb and Almkvist—Zudilin numbers, as well as sums of the fourth
powers of binomial coefficients, will also appear as special cases of our results.

Our results also include transformation formulas such as

—(l—éllx)5/23F2(l %1% (1+4x))
11 1
- (1—411x)1/2 a7 o4 (7=5))

that are part of a 13-function identity.

This work is organized as follows. In the next section, some sequences and their
generating functions are defined.

The main results are stated in Sections 3—5. Each section consists of a single
theorem that asserts that a large number of functions are equal.

Short proofs, using differential equations, are given in Section 6. Alternative proofs
using modular forms, that help put the results into context, are given in Section 7.

Several special cases are elucidated in Section 8. An application to Ramanujan’s
series for 1/m, using some of Aycock’s ideas, is given in Section 9.

2. Definitions and background information

The series in (1.2) that defines the hypergeometric functions , F; and 3 F, converges
for |x| < 1. Clausen’s identity [3, page 116] is

{F( a, b )}2 F( 2a, 2b, a+b )
x|y = s x).
2 1a+b+% 352 24 + 20, a+b+3

It may be combined with the quadratic transformation formula [3, page 125]

a, b
‘x|l =, F “4x(] —
l’x) 2 1(a+b+l’ X x))

2 2

2a, 2b 2 2a, 2b, a+b
{ZFl(a ;X)} =3F2( L3 4x(l - ))

+b+% 2a+2b, a+b+3

2a, 2b
2F1(
+b+

to give
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We will be interested in the special case 2a = s, 2b = 1 — s, that is,

1- 2 5.8 1-
{ZFI(S’ | s;x)} :3F2(2 v s;4x<1—x>), @.1)

where s assumes one of the values 1/6, 1/4, 1/3 or 1/2. For cosmetic reasons
we introduce the following nicknames for these special instances of hypergeometric

functions:
s, 1—s

Jfe(x) = 2F1( |

;C SX)

and

s 1-
Fe(x) = 3172(2 j :

where { =€, =1,2,3,4and C;, =432,64,27,16 for s = 1/6,1/4,1/3,1/2, respectively.
The arithmetic normalization constants C; are introduced in such a way that the series
fe(x) and Fy(x) all belong to the ring Z[[x]]; for example,

o I - G

n=0

F3(x):Z(3nn)( n") X and Fy(x) = ( )

n=0

4Cxx),

(2.2)

The convergence domains of the series for fy(x) and F’ g(x) are then |x| < 1/Cy and
|x| < 1/(4Cy), respectively.

Our further examples of the series from Z[[x]] are generating functions of so-called
Apéry-like sequences. Let @, 8 and y be fixed and consider the recurrence relations

(n+ D*(n+ 1) = (an* + an + P)t(n) + yn*t(n — 1) (2.3)
and
n+ 1T+ 1)=-Qn+ (an® + an + a - 28)T(n) — (@* + 4y’ T(n - 1).

We assume that n is a nonnegative integer in each recurrence relation and use the single
initial condition #(0) = T(0) = 1 to start each sequence.
Define the generating functions

f(x) = Z tn)x", F(x) = Z (znn)t(n)x" and G(x) = Z T(n)x".
n=0 n=0 n=0

It is known [2, 10] that

) 1 x(1 — ax —yx?)
fl= 1+ yx2 F( (1 +yx2)? )
- ! G( al ) 2.4)

I —ax—yx? \1-ax—yx?

When y = 0, the first equality in (2.4) reduces to (2.1).
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TaLE 1. Solutions to recurrence relations.

(@, 8,7) 1(n) T(n)

oSO B

J

o gl 3
(10,3,-9) Z(’;) (zjj)z D (ng;g!)z oY ()(211)(2;1—2])

J Jj+k+l=n

S R 1. 1 .

J

Let fo.(x), Feq(x) and Gg,(x) be the functions f(x), F(x) and G(x), respectively, for
the parameter values

(Q,B’ 7) = (_17, _6’ _72)
Similarly, let fep(x), Fep(x) and Gep(x) be the respective functions that correspond to
the values

(aaﬁv )’) = (10, 3a _9)’
while fe.(x), Fe.(x) and Ge.(x) are the respective functions that correspond to the
values

(@,8,7) =(7,2,8)
and f5(x), Fs5(x) and Gs(x) are the respective functions that correspond to the values

(a,B,y)=(11,3,1).

Formulas for the coefficients #(n) and T (n) that involve sums of binomial coefficients
are known in the four special cases defined above, and these are listed in Table 1. The
entries for #(n) come from a list that is originally due to Zagier [26, Section 4]. It
may also be mentioned that the numbers 7'(n) in the cases (a,S,y) = (=17, -6, -72),
(10,3, -9) and (7, 2, 8) are called the Apéry numbers, Domb numbers and Almkvist—
Zudilin numbers, respectively.

Finally, let H(x) be defined by

) n 4
n
H(x) = Z{Z( ) }x".
n=0 j=0 J
In our results below we use the labels ‘Level 1°, ‘Level 2’ etc to distinguish the
appearance of different generating functions; the function H(x) is labeled ‘Level
10’ while the other labels can be extracted from the subscripts of the corresponding

functions. Levels themselves, in particular, their origins and meaning, are discussed
further in Section 7 in the context of modular forms.
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3. Results: part 1

Our first meta-identity is the subject of the following theorem.

TueorEM 3.1. The following 42 functions are equal in a neighborhood of p = 0:

Level 1:
1
(1+4p—8pHl/2(1 +228p — 408p? — 128p3 — 192p* + 768p> — 512p%)1/2
p(l — p)*(1 —4p)*(1 - 2p)(1 + 2p)°
((1 +4p —8p2)3(1 +228p — 408p? — 128p3 — 192p* + 768p> — 512p6)3)

3.1
~ 1
T (1=2p +4p2)1/2(1 — 6p + 240p% — 920p3 + 960p* — 96 + 64p0)!/2
p*(1 = p)°(1 —4p)°(1 = 2p)*(1 + 2p)°
X Fi (3.2)
(1 =2p+4p?3(1 —6p +240p% — 920p3 + 960p* — 96p> + 64 p®)3
1
T (L+4p—8p)12(1 — 12p + 72p? — 128p3 — 192p* + 768p5 — 512p)!/2
( p’(1 = p)d =4p)*( =2p)y°(1 +2p) ) (3.3)
(1+4p - 8p2)3(1 —12p + 72p* — 128p3 — 192p* + 768p5 — 512p6)3 )
1
(1 =2p=2p)2(1 = 6p + 6p2 + 16p3 + 204p* — 456p5 — 8p)1/2
< F ( p*d = p)"2(1 - 4p)*(1 - 2p)(1 +2p)° ) (3.4)
(1 =2p—2p2)3(1 —6p +6p% + 16p3 + 204p* — 456p5 — 8p©)3 '
1
T (1=2p+4p)12(1 - 6p + 40p3 — 96p3 + 64p©)1/2
< F ( Po(1 = p)*(1 = 4p)*(1 = 2p)°(1 + 2p)* ) 3.5)
(1 =2p +4p23(1 — 6p + 40p? — 96p° + 64p5)} ‘
1
(1 =2p=2p)12(1 - 6p + 6p2 + 16p3 — 36p* + 24p5 — 8p6)1/2
PP =p)*(d =4p)d =2p)’(d +2p)
X Fy 213 2 3 4 5 613
(1=2p—=2p>3(1 —6p+ 6p> + 16p> —36p* + 24p> — 8p°)
(3.6)
B 1
T (1-8p +4p>)1/2(1 — 240p + 1932p2 — 5888p3 + 7728 p* — 3840p3 + 64p6)1/2
xF,( —p(1 = p)*(1 = 4py’(1 = 2p)*(1 +2p)"? )
(1 —8p +4p2)3(1 — 240p + 1932p2 — 58883 + 7728p* — 3840p5 + 64p6)3
(3.7)
_ 1
T (1=8p+4pH)12(1 + 12p2 — 128p3 + 48p* + 64p6)1/2
( -p*(1 = p)(1 = 4p)(1 = 2p)"*(1 + 2p)* )
% Fy . (3.8)
(1 -8p+4p?)3(1 + 12p? — 128p3 + 48p* + 64p°)3
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Level 2:

S. Cooper and W. Zudilin [7]
1 p(1=p)*( - 4p)° - 2p)(1 +2p)’
2 3 il 2 3 n) G9
1+20p —48p” +32p° —32p (1+20p —48p? +32p> — 32p*)
1 (p2(1 - p)°( -4py’(1 -2p)d +2p)3) 3.10)
1 —4p +24p? - 40p3 - 8p* (1 —4p+24p? —40p3 — 8p*)* ’
1 (P3(1 - p)(1 =4py*(1 =2p)’(1 + 2]9)) G.11)
1-4p+32p3-32p* 2 (1—4p+32p3 —32p*)* '
1 F (P6(1 - pl(1—4p)(1 -2p)°(1 + 217)) (3.12)
1—4p+8p3—8p* ° (1—4p+8p3 —8pH* '
1 (_p(l - py(1=4py(1 - 2p)*(l +2p)6)
1—28p +96p? — 112p + 16p° (1= 28p +96p% — 112° + 16p*)*
3.13)
1 (_P3(1 - p)(1 =4p)(1 =2p)°(1 + 2]7)2) (3.14)
1—4p—16p3 + 16p* (1—4p—16p3 + 16p*)* ' ’

Level 3:

Level 4:

T+ 4p 8p?)? F3(p(l _(11)5-14;4p;4]§21)6_ 4p2)) (3.15)
R 2p vap 3(p2(1 - fl) 2_(12; jpi;(zl)(,_ 4p2)2) (3.16)
T a- 2p 2p*)? F3(p4(1 _(ff(zlp__4§;gi6_ 4p2)) (3.17)
T - 8p +4p?) F3( = _(I;)(—ls;?ﬁz)_fp%“) (3.18)
- 2p)z1 Y 2pP F4(f1( 1__2328 ;ZZ;Z) (3.19)
- 2p>§<1 2 4(53(—12;;?((11; ;,f;)z) (3.20)
_ m F4(_P(1 - 2pz(11_+4§),;23(1 - ,,)3) o)
0 —14p> R0 2123(_14;)22”(1 -2 (3.22)
- e 2p)f12 . z_pl))a)sl —) 629
T -2p1 ;pwza o P 2p£i(11+_212)2(1 —) 629
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Level 6, functions F':

_ 1 (p(l - p)(1 —4p*(1 =2p)(1 + 2p))
C 1 - 16p +24p2 +32p3 - 32p* o\'(1 = 16p + 24p2 + 32p3 — 32p*)?
(3.25)
_ 1 (Pz(l -pP(l-4p)(1-2p)(1 + 21?)) (3.26)
T 1—dp-12p2+32p —8p* N\ (1 —4p— 12p2 + 32p° — 8p*)2 ‘
B 1 (—P(l — p)(1 —4p)(1 -2p)*(1 + 2p)2)
T 1+ 8p—48p? +32p3 + 16p* (1+8p—48p? +32p3 + 16p*)?
(3.27)
_ 1 p(1 = p)(1 = 4p)*(1 = 2p)(1 +2p)
(1 =2p+4pH)(1 +4p - 8p?) Fﬁb( (1= 2p + 4p22(1 + 4p — 8p?)? ) (3-28)
_ 1 p*(1 = p)*(1 —4p)(1 = 2p)(1 +2p)
- Fo )
(1-2p-2p>)(1-2p+4p?) (1-2p—2p?)%(1 —2p + 4p?)?
(3.29)
B 1 F (—p(l - p)(1 —4p)(1 -2p)*(1 +2p)2)
T A =2p+4p)(1-8p+4apd) P\ (1 =2p +4p22(1 - 8p + 4p2)2
(3.30)
_ 1 (p(l - p)(1 —4p)*(1 -2p)(1 +2p)) (331
T8 —32p3 +32p% T (1 +8p2 = 32p3 + 32p*)? ‘
B 1 p*(1 = p)*(1 —4p)(1 = 2p)(1 + 2p)
T 1-4p +4p* + 8p* 66( (1—4p +4p2 + 8p*)2 ) (3-32)
_ 1 (—P(l = p)(1 —4p)(1 =2p)*(1 + 217)2)
C1-8p+32p% - 32p3 + 16p* (1-8p+32p*—32p3 + 16p*)?
(3.33)
Level 6, functions G:
1 p(1 —4p)*(1 -2p)
= . 3.34
d+2p0 - p) of d+2p)0 - p) ) (5.34)
1 p*(1 +2p)(1 —4p)
- Ge. 3.35
(1-2p)1 - p)? ¢ ( (1-2p)1 - p)? ) (3:35)
1 -p(1 + Zp)2
- Gea 3.36
(1 =p)1 =4p)(1 -2p)? : ((1—1?)(1—419)(1—21))2) (3.36)
—a —14p)2 6”(p(1 - 212% :1;;2;27)(1 - p)) G-37)
1 p*(1 - p)?
- G 3.38
(1 =2p)(1 +2p)(1 — 4p) 6l’(a ~2p)(1 +2p)(1 - 4p)) (5.38)
_ 1 -p(1 = p)(1 —4p)
T (1-2p2(1 +2p)p? G“((l —2p)(1 + 2p>2) G-39)
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1 p(1-2p)
- Ge. 3.40
(1 =p)d +2p)(1 —4p)? ° ((1 -p)1+2p)1 - 4p)2) (5.40)

1 p*(1-2p)
= e 3.41
(1 +2p)(1 - pP(1—4p) ° ((1 +2p)(1 - p)*(1 —4p)) 41

1 —p(1 —2p)?
= Gee ) 3.42
(1-p)1 -4p)1 +2p)? ¢ ((1 -p)1 -4p)d +2p)2) (5.42)

4. Results: part 2

The results in this section are consequences of the results in the previous section
by taking square roots. For example, by (2.1) we find that the 3F, hypergeometric
function in (3.9) is related to the , F'; function by

4.256
11 (1+20p — 48p2 + 32p° = 32p°)

113 — V(1 — 4m\6(1 — 3
3F2(4’ 2> p(1 = p)’(1 —4p)°(1 2p)(l+2p))

I3 6dp(l-pPU-2p)1+2p)° 2
=LA (T )} (“.1)
1 7 (1+20p—48p? +32p3 —32p*)?
The argument in the , F; function is obtained by noting that the solution of
1-p)3(—-4p)° -2p)1 +2p)?
4x(1 - x) = 256 p( —p)’(1 —4p)°(1 - 2p)(1 +2p)
(1+20p —48p? +32p3 —32p*)*
that satisfies x = 0 when p = 0 is given by
64p(1 — p*(1 = 2p)(1 +2p)?
p(1 = p)°( =2p)(1 +2p) 4.2)

YT 1 20p —48p% + 32p° — 3242

By applying (4.1) and taking the square root of the expression in (3.9), we get an
expression that involves the , F; function. This can be done, in principle, for all of the
hypergeometric expressions in (3.1)—(3.24). In a similar way, the identity (2.4) can be
used to take square roots of the expressions in (3.25)—(3.42). After taking square roots,
the arguments of the resulting functions are not always rational functions of p as they
are for the example (4.2) above; sometimes they are algebraic functions of p involving
square roots that arise from solving quadratic equations.

In Theorem 4.1 below, we list all of the functions obtained by taking square roots
of the expressions in (3.1)—(3.42) for which the arguments are rational functions of p.
The identities have been numbered so that the formula (4.x) in Theorem 4.1 below is
the square root of the corresponding expression (3.x) in Theorem 3.1 above.

TueorEM 4.1. The following 23 functions are equal in a neighborhood of p = 0:
Level 2:

1 ( p(1 - p)*( =2p)(1 +2p)’

4.9
(1 +20p — 48p2 + 32p3 — 32p")12 72\ (1 + 20p — 48p2 + 32p° — 32p4)2) 4.9)
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_ 1 pr(1-p)°
T (1= 4p +24p2 — 40p3 — 8pH)i12 fz((l 4p + 24p2 — 40p3 — 8
1 ; (p *(1-p)1-2p)(1 + 2p))
(1—4p+32p —32pMHiiz 2 (1 —4p+32p3 —32p*)?
1 64p°(1 — p)?
T (1—4p+8p3—8pH)~2 fz((l —4p +8p3 —8p4)2)

347

p4)2) 4.10)

@11

4.12)

1 ( —-p(1 = py*(1 — 4p)* )
(1= 28p +96p2 — 112p3 + 16p*)2

(1 —28p +96p% — 112p3 + 16pH)1/2 S

_ 1 f( -p*(1 = p)(1 - 4p) )
(1—4p—16p3 + 16pH1712 \(1 = 4p — 16p® + 16p")2 )
Level 3:
p(-2p)
(1+4p—8p2)3
p*(1-2p)
(1-2p+4p?)?

)
)
p*(1-2p) )
)

T +4p 8

“a —2p+4p2) £

1
T (- 2p 2p7) 7\ =2p—2p2)°

Vg

(
(
2
(&

(1 - 8p+4p2) (1-8p+4p2)3/)

Level 4.

_ 1 f( p(1-p)? )
T (1 =2p) P+ 2py 2 (0 = 2p) (1 +2p)
1 f( p(1-p) )
T _2,,)3/2(1 +2p)12 7\ (1 = 2p)3(1 + 2p)
_ p(1 - p)’
e 4p>3/2 f“( 4p>3)
1 (1—p>)

= =i A i)

Level 6:

1 p(1-2p)

= e ol G2
1 14

~ (- 4p)(1 +2p) f“((l —ap)(1 + 2p>)

__ 1 p

T (1+2p)2 fG“((l +2p)2)

2
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1 ( p(1-2p) )
= (4.28)
(1 —p)(l w20 T i+ 2p)
e
(4.29)
- el )
i)
= (4.30)
= p—ap ™\ T —ap)
= fsc(p(l -2p)) 4.31)
»
= féc( | (4.32)
2p
1 P
= . . 4.33
(1—2p)2f6((1—2p)2) (433)
5. Results: part 3
The results in this section involve transformations of degrees 2, 5 and 10.
TueorREM 5.1. The following 13 functions are equal in a neighborhood of p = 0:
Level 1:
1
(1 +236p + 1440p2 + 1920p3 + 3840p* + 256p°> + 256 p0)1/2
( p(1=4p)"°(1 + py ) 5.0)
(1 +236p + 1440p% + 1920p3 + 3840p* + 256p° + 256p0)3 ’
1
T (1 —4p +240p2 — 480p3 + 1440p* — 944p5 + 16p©)1/2
2 1-4 5 1 10
XFl( p~(1-4p)’(1 + p) ) (5.2)
(1 —4p +240p% — 480p3 + 1440p* — 944p> + 16p%)3
1 (1 =4p)*(1 +p)
- ( ) (5.3)
(1 —4p +256p> +256p5)1/2 (1 —4p +256p> +256p°)3
_ 1 ( p'(1 —4p)(1 + p)* ) (5.4)
C(1—4p+16p5 +16p912 " \(1 —4p + 16p3 + 16p6)3 ) '
Level 2:
1 p(1+p)(1 - 4py
= 201/2 2 F2( 22 24) (5.5)
(1+4pH)l2(1 +22p — 4p?) (1 +4p3)2(1 +22p — 4p?)
1 (1 1-4
_ Fz( pr(1+p)d-4p) ) (5.6)
(L +4p)12(1 =2p —4p?) “\(1 +4p2)*(1 = 2p — 4p?)*
Level 4:
1 1+py
)
(—apyp2  \N\1T2ap o
1 1+p
() 5
(—apy2 \P T4 69
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Level 5, functions F':

— ! ( p(1 = 4p)*(1 + p) ) 59)
(1 +4p2)1/2(1 +4p + 8p2) 5 a +4p2)(1 +4p + 8p2)2 .
- ! p’(1-4p)1 + py’
T (L+4p)12(1 - 2p +2p?) Fs((1 421 = 2p + 2077 ) (5.10)
Level 5, functions G:
_ 1 p 1\
~(L+p)(1 —4p)p GS((1+p)(l—4p)) (5.11)
_ 1 P\ 1
T (1 + p(1-4p) G5((1 +p) (1 —4p))' (5.12)
Level 10, function H:
_ 1 p(1 + p)(1 —4p)
T (1 +4p2)2 ( (1 + 4p2)2 ) (5.13)

6. Proofs of Theorems 3.1, 4.1 and 5.1

In this section, we will provide proofs of Theorems 3.1, 4.1 and 5.1. We begin with
a proof of Theorem 4.1 because it is the simplest and therefore the explicit details are
the easiest to write down.

Proor oF THEorREM 4.1. The hypergeometric function
s, 1—s
oF 1( | ;X)
satisfies the second-order linear differential equation
d d
E(x(l - X) ﬁ) =s(1 - 5)z.
By changing variables, it can be shown that each function in (4.9)—(4.22) satisfies the
differential equation
d d
%(P(l - p)(1 —4p)(1-2p)(1 + 2p)£) =2(1-4p)(1 +4p-8pY)y.  (6.1)

In a similar way, the recurrence relation (2.3) implies that each of the functions fg,,
Jeb and fo. satisfies a second-order linear differential equation of the form

d d

—(x(l —ax— yxz)—z) = (B+y0z. 6.2)

dx dx
On specializing the parameters and changing variables, we may deduce that each
function (4.25)-(4.33) also satisfies (6.1). By direct calculation, we find that the first
two terms in the expansions about p = 0 of each function in (4.9)—(4.22) or (4.25)—
(4.33) are given by

y=1+2p+0(pH.

It follows that the 23 functions (4.9)—(4.33) are all equal. O
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The proofs of Theorems 3.1 and 5.1 are similar and go as follows.

Proor oF THEOREMS 3.1 anD 5.1. Each function in (3.1)—(3.42) (respectively, (5.1)—
(5.13)) satisfies the same third-order linear differential equation. Moreover, the first
three terms in the expansion of each function in (3.1)—(3.42) (respectively, (5.1)—
(5.13)) about p = 0 are given by

y=1+4p+16p* + O(p®) (respectively, y = 1 + 2p + 6p* + O(p*)).

It follows that the 42 functions in (3.1)—(3.42) (respectively, the 13 functions in (5.1)—
(5.13)) are equal. O

It may be emphasized that the proofs outlined above are conceptually simple,
establish the correctness of the results and require very little mathematical knowledge.
However, the proofs above are not illuminating: they give no insight into the structure
of the identities, nor any reason for why the results exist or any clue as to how the
identities were discovered. In the next section, the theory of modular forms will be
used to give alternative proofs that also provide an explanation for how the identities
were discovered.

In practice, the easiest way to show that each of the functions in (4.9)-(4.33)
satisfies the differential equation (6.1) is to expand each function as a power series
about p = 0 to a large number of terms and then use computer algebra to determine the
differential equation. For example, using Maple, the differential equation satisfied by
the function in (4.9) can be determined from the first 50 terms in the series expansion
in powers of p by entering the commands

> with(gfun):

> n = 64*p*(1-p) "3*(1-2*p) *(1+2%p) "3;

> d = (-32%p"4+32%p~3-48*p " 2+20%p+1) "2;

> s := series(d”(-1/4)*hypergeom([1/4, 3/4]1, [1], n/d), p, 50):
> L := seriestolist(s):

>

guesseqn(L, y());

this produces the output
[{-16p°+20p" =57 +p> ﬂp»+(80p +&na—10p+1r—y@>

+EMf+%P—%@M@=LMW®=%mﬁ

which is equivalent to (6.1). The term ogf in the output stands for ordinary generating
function.

7. Modular origins

We will now explain how the identities in Theorems 3.1, 4.1 and 5.1 were found.
The explanation also puts the formulas into context and reveals why they exist.
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A modular explanation for Theorem 3.1 requires the theory of modular forms for
level 12 as developed in [17]. Some of the details may be summarized as follows. Let
h, p and z be defined by

b= . © (1 _q12j—1])(1 _q]ijl)
- _ q12j-7 _ 412j-5y°
L= gmm i =g

PETR

Ramanujan’s Eisenstein series P and Q are defined by

d
and zzq% log h.

Pq’
1-¢/

~ B o) ]q j ~ e
P(g) =1 242 -0 and Q(g)=1+ 2402
J=1 j=1
Dedekind’s eta-function is defined for Im 7 > 0 and g = exp(2rit) by
nm =g [ Ja-g).
j=1
We will require the following three lemmas, extracted from the literature.

Lemma 7.1. Suppose that k and m are positive divisors of 12 and k > m. Then there
are rational functions ry ,(h) such that

kP(¢") = mP(q") = 2 X ri(h).
Furthermore, there are rational functions s,,(h) and t,,(h) such that
0(q") =2 X su(h) and 177 (m7) = 2° X 1 (h).

Proor. The result for P follows from [17, Theorem 4.5]; the result for Q is [17,
Theorem 4.6]; and the result for Dedekind’s eta-function is [17, Theorem 4.2]. O

Explicit formulas for the rational functions ry,(h), s,(h) and t,(h) can be
determined from the information in [17]. Some examples will be given below, after

Lemma 7.3.
Lemma 7.2. For € € {1,2,3,4}, let Z; be defined by
0'%(q) ift=1,
Z(q) =1 ¢p(g') — P (7.1)
PHLD 1y 5004

Then the following parameterizations of hypergeometric functions hold:

Zig = F( () )6) Z2(q) = Fz((wf)

Z1(q) Z>(q)
2082 (o
2@ = F{(TDTE0Y) ana ) = (DY),

where, as usual, g = exp(2nit) and the hypergeometric functions are as in (2.2).
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Proor. These results may be found in [6, 8, 13] or they can be proved by putting
together identities in those references and applying the special case of Clausen’s
identity given by (2.1). O

The parameter ¢ in Lemma 7.2 is called the level. The next lemma gives the
analogous results for level 6.

Lemma 7.3. The following parameterizations hold:

°(Dn(67) . (n(ZT)n5(6T))
PG\ oG )
n°n(37) ( (D)’ (67) )
POP6n P\ Ror G

and
nQ2rm°(37) ( n’ (1)’ (67) )
POrGn T \peoren)

Proor. This is explained in Zagier’s work [26]. Our functions fg, and fg. correspond
to the functions f(z) in [26] in the cases C and A, respectively. The function in [26]
in the cases C and A, respectively. The function fs, corresponds to the function f(z)
in [26] in the case F but with —¢ in place of g. O

We are now ready to explain how the 42 functions in Theorem 3.1 arise and why
they are equal. We will only focus on the level-3 functions in (3.15)—(3.18) as an
illustration; the other functions can be obtained by a similar procedure by working
with the other levels.

ProoF oF THEOREM 3.1 USING MODULAR FORMS. By Lemma 7.1 and the explicit formulas
in [17, Theorem 4.2],

A1+ BA)(1 = h + h?)
(1 = h2)(1 — h + h2)?

(o’ (31) = 2 x

and
(1 + 4h — 61% + 41> + h*)?
(1+h2)(1—h+h)(1 —4h+ k) - h?)’

1
5BP@) = P@) = 2
Substituting these in the result for Z3(g) in Lemma 7.2 gives

y (1 + 4h — 6h% + 4k + h*)?
1+ 1)1 = h+ 1)1 = 4h+ h2)(1 - h?)
112 h(l+h2)4(1—h+h2)(1—4h+h2)4(1—h2)2)

=3F,( %7 7 3,108
’ 2( 1, 1 (1 + 4h— 612 + 4% + )6

Z
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Under the change of variable p = h/(1 + h?), this be written in the form

(I-p)d - 4p) V1 —4p?
1 ( : p(1 = p)(1 —4p)*(1 - 4p?)

S S— N R 3. -108
(T+4p-8p22 > 2\ 1,1 (1+4p —8p2)°

). (7.2)

We will now obtain three further formulas akin to (7.2) by replacing ¢ with ¢%, ¢* and
—q in the identity for Z3(g) in Lemma 7.2; that is, by replacing 7 with 27, 47 and 7 + %
respectively. First, replacing T with 27 in the formula for Z; in Lemma 7.2 and using
the parameterizations

(1 - h?)

6 6 _ 3
1 ET ) = X T ht 1YL = 4k + )

and
(1 = 2h + 6h* — I® + h*)?

(1+h)(1 =h+h>)(A—4h+ h*)(1 - h?)

1
5BP(g") - P(g") =z X

leads to the identity

Z
(1-p)1—-4p)y1-4p?
_ 1 - (é, 3 3. 0g U= P’ —4p)°(1 - 4p?)?
(I—2p+4p2> 2\ 1,1 ° (1= 2p +4p2)6

). (7.3)
Similarly, replacing v with 47 in the formula for Z; in Lemma 7.2 and using the

parameterizations

(1 = h+ h?)
(1 +A2)2(1 — h2)(1 — 4h + h?)?

@A (121) = 22 x

and
(1 =2h = 2h% + h*)?

(L+12)(1 = h+ k)1 - 4h + h2)(1 - h2)

SBPg™) - P = 2 X

leads to the identity

z
(1= p)(1 —4p)J1 —4p?
11 2 401 ndrq e
zﬁﬂ%(ﬂz’“mgl’(l 1 -4p)d 4p))‘
“2p-2p ’

1 (1-2p-2p>°
In order to replace g with —g, equivalently 7 with 7 + %, use the identity

(7.4)

1= 2/)3

(
]_[(1—< q)f)-[—[(1 =)
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to get
-n"*20)n"*21)

6 () —
PO vt = S one @RI 7

and use the identity
P(-q) = —P(q) + 6P(¢*) — 4P(¢") (7.6)

to deduce that
L13P(-¢’) - P(-q9)) = -3(3P(¢’) - P(9)) + 33P(¢°) — P(¢")) — 2(3P(¢'%) — P(¢")).
(7.7)

Then (7.5) and (7.7) can be used, along with the parameterizations given above, to
replace g with —g in the formula for Z; in Lemma 7.2 and produce the identity

Z
(1 =p)(1 —4p)+/1—4p?

11 2 _ _ A2\
_ I 3o p(1 = p)(1 = 4p)(1 - 4p%) ) as
(1-8p+4p?)? 1, 1 (1 -8p +4p2)6
Finally, equating (7.2)—(7.4) and (7.8) shows the equality of (3.15)—(3.18) in

Theorem 3.1.

The identities (3.1)—(3.8), (3.9)—(3.14) and (3.19)—(3.24) can be obtained in the
same way by using the results for Z;, Z, and Z,, respectively, in Lemma 7.2. The
identities (3.25)—(3.42) can be obtained using the parameterizations in Lemma 7.3
together with the identity (2.4). O

CoroLLARY 7.4. Suppose that y is the solution of the differential equation

d d
d—(p(l -p)1 -4p)1 -2p)(1 + 2p)—y) =2(1 —4p)(1 +4p - 8p)y
P dp

that satisfies the initial conditions y(0) = 1, y'(0) = 2 and suppose that

y= i Hm)p"
n=0

in a neighborhood of p = 0. Then
(n+ D?*t(n+ 1) = (5n° + 5n + 2)i(n) — 4(5n° = 5n + 2)i(n = 2) + 16(n — 1)%t(n = 3),

the coefficient of the term t(n — 1) being zero. Furthermore, y and p may be
parameterized by the modular forms

R CLoUClo RPN G VA el
n* (0 (67) P Gr)n4r)

Proor. The recurrence relation for the coefficients can be deduced immediately by
substituting the series expansion into the differential equations. This is a routine
procedure, so we omit the details.
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Next, let
Y =

Z
(1= p)(1 —4p)T—4p?

By the ‘proof of Theorem 3.1 using modular forms’ detailed above, and especially
(7.2)—~(7.4) and (7.8), all 42 functions in Theorem 3.1 are different expressions for Y.
By the change of variable p = i/(1 + h?) and the formulas in [17],

(1+h%) _ 2oy 37)

F=ax (1=h)(A =h+h)(1—4h+h2) P @ns67)

By Clausen’s formula, the functions y in Theorem 4.1 are related to the functions Y in
Theorem 3.1 by Y = y? and it follows that

_ nCon*37)
n*(0) (67)
Moreover, by the formulas in [17],

_h p@r121)
1+ R PG

Finally, y satisfies the required differential equation with respect to p, by (6.1). O
Theorem 5.1 can be proved in a similar way using the level-10 function

(L= g1 - "1 - g - g1

k= : : : '
q L (1 — g'-7)(1 — g'9-6)(1 — g'0~4)(1 — ¢'0/-3)

and letting

k
1-k2
and then using the properties developed in [14] and [15] along with the results for
level-5 modular forms that are summarized in [9]. We omit most of the details, as they
are similar to the proof of Theorem 3.1 given above. It is worth recording the modular
parameterization.

p= (7.9)

THEOREM 7.5. Let the common power series of each expression in (5.1)—(5.13) be

denoted by
> bmyp".
n=0

Then

nQ20)n'*(57) ()i’ (107)
* (0 (107) Z ()(77(27)775(57))
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Proor. By (7.9) and [14, Theorem 3.5],

_k _ non’(107)
P12 = 006y

Next, starting with (5.5) and using the formula for Z, in Lemma 7.2,

(7.10)

(o) ) 1
Zo PO = T a (L + 22p — 4p%)
, 5,3 p(1+py’(1—4py’ )

Bl

2 4956
1, 1 (1+4p22(1 + 22p — 4p2)*

_ ( 1 )”4 o (nz(r)nz(%)) «
p(L+p)y(1—4py Zx(q)
() e
= X n°(T)n"(27).
p(1+py(1 —4py
Now use (7.9) to write p in terms of k and then use [14, Theorem 3.5] to express the
resulting rational function of k in terms of eta-functions to get

X3F2(

Z5(q)

o0 10 10
" (57) Q2T)n""(57)
Db = S X (P (2r) = TS (7.11)
= n*(0n(20)nP (107) n>(0)P(107)
The proof may be completed by substituting the result of (7.10) into (7.11). O

8. Special cases

Many of the transformation formulas in Theorems 3.1, 4.1 and 5.1 can be simplified,
sometimes significantly, by changing variables. We give several examples.

ExawmprE 8.1. This example is from a paper by Baruah and Berndt [5] and the book by
Borwein and Borwein [7, pages 180-181]. Let X = 4x(1 — x). Then

1 1 1 1 1 1
111 1 D S —
F(Z’ Z’Z;X): F(2’ 2’2; )
A T—x>2\ 1,1 (1= x2
1
= 1 3F2(§’ 2 2. —x )
Vi—x 1 "4(1-x)
1 (}U 1, %_16x(1—x)2)
1+x L1 (1+x*4

! (i’ 2 ﬁ.M)

To(1-2x*

|
>

Il
[\
w
&
[Sod
—_

—
(9%
(3]
=
A=
-
=
=N

. -27X )
1,1 " (1-4x3/

https://doi.org/10.1017/5144678871800037X Published online by Cambridge University Press


https://doi.org/10.1017/S144678871800037X

[20] Hypergeometric modular equations 357

Proor. Let

16p(1 - p)’
X =
(1-2p)1 +2p)}
in each of (3.19), (3.21), (3.23), (3.9), (3.13), (3.2) and (3.7), respectively. ]
ExampLE 8.2. This example was considered by Guillera and Zudilin [20, Equation
(20)1:
11 2 1 15 3
3y 9 3 1 6° _’_64 1_
3F2(3 2 3;4x(1—x))= 3F2(6 2 5. x( x))
1, 1 V1 + 8x 1, 17 (1+8x)3
__ 3 3F2(%, 1,2 64x’(1 —x))
9 —8x 1,17 (9-8x3
Proor. Let
27p%(1 - 2p)?
X=————
(1-2p+4p?)3
in (3.16), (3.2) and (3.5), respectively. O

ExampLe 8.3. The identities in this example are from the unorganized pages of
Ramanujan’s second notebook [22, page 258]:

1 2 2 2 1 1 3
1,2 2731 +x) 3 3. X2 +x)
VI +2x,F( 3 3;—)=1 g F(2 2;—)
e 1( 1 740 +x+ 23 (T+xtaa P ) 5 50

and

1 2 4

7, = 27x(1 + x)

242x—x° F(3 3;—)
2+ 2x=xaFi{ ) 2(1 + dx + x2)3

1 2 4

7 7 27x"(1 +x)
=2(1 +4x+ F(3 3;—).
(I+dxr bl 7 22 + 2x — x2)3

Proofs, by a different method, have been given by Berndt et al. [6, Theorems 5.6
and 6.4].

Proor. Take p = —x/2 in (4.16) and (4.20) to obtain

1 (%, z 27x2(1+x)2)
T+x+2) 7 "1 P41 +x+ 220
1 I -X¥Q+x )

1
= 2F1( B YRS
(1 +x)32(1 = x)172 1 "(1+x30-x
Now apply Pfaff’s transformation [3, Theorem 2.2.5]

a, b a a, c—-b -z
2F1( ;Z)Z(l—Z) 2F1( ;—)
c c 1-z2

to the right-hand side to obtain the first identity.
The second identity is obtained simply by putting p = —x/2 in (4.17) and (4.18). O
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ExampLE 8.4. This example was studied by Rogers [24, Theorem 3.1] and by Chan

and Zudilin [11, Theorems 3.2 and 4.2]:
2

1 112 108x
GolY) = T T6x 3F2(3 1 1+ 16x)3)
1 1,42 10842
1+4x° 2( 1, 1 ’m)
and
1 113 256x
Gl = 197 3F2(4 1,2 L (a1~ 27x)4)
b hd ases
T 1+3x] 2( 1, 1 m)

Proor. The first group of identities is obtained by taking
oo PA=p)d+2p)1 -2p)

(1-4p)y?
in (3.15), (3.16) and (3.37). The second group of identities may be proved by taking
c= p(1—-2p)
(1= p)(1 +2p)1-4p)
in (3.9), (3.11) and (3.40). O

ExampLE 8.5. This example shows that the result of Chan and Zudilin [11, Theorem
2.2] is subsumed by Theorem 3.1:

1 x(I-8x)) 1 x(1+ x)
1+x °“( 1+x )_ 1—8xG6”( 1—8x )
1 x(1 —9x) 1 x(1 —x)
l—xGGa( 1-x ): 1—9xG()C( 1-9x )
and
1 x(1 +9x) 1 x(1 + 8x)
1+ 8x “’( 1+ 8x ): 1+09x "’C( 1+9x )
Proor. The three identities may be obtained by setting
p(1-2p) p(1-2p)
S T P Ty B (e
respectively, in (3.34), (3.37) and (3.40). O
Alternative proofs of the identities in Example 8.5 may be given by taking
P’ P’ P’
x:m, x:(l—p)2 and x:—l—Zp—sz
in (3.35), (3.38) and (3.41) or by taking
X = _P X = ___P and x= _P
(1-2p)* (1-p)1-4p) (1 +2p)?

in (3.36), (3.39) and (3.42).
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ExawmpLE 8.6. Part of this example was mentioned in the identity (1.7) as part of the

introduction:
Joalx) = 1+9xf6b(1+9x) 1+8xf66(1+8x)
Jon(x) = f6a( —9x) =] 1 f“( —x)’
Joe(x) = f6a( 8x) 7 ixf6 (1 +x)

Proor. Each of the three sets of identities can be proved by taking
_pd=-2p __ pd-2p

(1-4py*’ (1= p)(1+2p)

respectively, in (4.25), (4.28) and (4.31). O

and x=p(l -2p),

ExawmpLE 8.7. Here we give representations for the functions in the previous example
in terms of hypergeometric functions:

Jor(x) =

1 %, % 64x
2F1( ; )
V1 + 18x — 272 17 (1 +18x - 27x%)?
1 %, % 64x>
= —2F1( ;—)
V1 — 6x — 3x2 1 "(1-6x—3x2)?
and

1 i 2 27x
(X)) = ——— F(S’ 3;—)
Joc(x) T+4x > U1 (1 +4x)

12
= —1 2F1(§’ 5'—27)(2 )
1-2x 1 7 (1-2x)3
Proor. The first set of identities may be proved by taking
__ p(=2p)
(1-p)1+2p)
in (4.9), (4.11) and (4.28). To prove the second set of identities, take x = p(1 —2p) in
(4.15), (4.16) and (4.31). O

Just as for Example 8.5, the identities in Example 8.6 can be given alternative proofs
using (4.26), (4.29) and (4.32) or by using (4.27), (4.30) and (4.33).

9. Applications

In this section, we will show how the transformation formulas in Theorem 3.1 can
be used to establish the equivalence of several of Ramanujan’s series for 1/7. In the
remainder of this section, we will use the binomial representation (2.2) of the related
hypergeometric functions, so that the resulting formulas will be consistent with the
data in [9, Tables 3-6].
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TueorEM 9.1. The following series identities are equivalent in the sense that any one
can be obtained from the others by using the transformation formulas in Theorem 3.1:

2 R
i (Zn)( n) ( %)(%)4 - 426?)@ % ,‘lr 9.2)

S e D) - £

n=0

and

In order to prove Theorem 9.1, it will be convenient to make use of the following
simple lemma.

Lemma 9.2. Let x, y and r be analytic functions of a complex variable p and suppose
that x(0) = y(0) = 0 and r(0) = 1. Suppose that a transformation formula of the form

(o]

Z an) X" =r i b(n)y" (9.4)

n=0 n=0

holds in a neighborhood of p = 0. Let A be an arbitrary complex number. Then

Za(n)(n + ) = Z b(n )( ey + ( g— + /lr)) ©.5)

n=0

Proor. Applying the differential operator x(d/dx) to (9.4) gives

(o8]

d
Z a(m)nx" = ey Z b(m)ny" + x— Z b(n)y". (9.6)
n=0
Taking a linear combination of (9.4) and (9.6) gives the required result. O

We are now ready for the proof of Theorem 9.1.

Proor oF THEOREM 9.1. By (3.2) and (3.11) in Theorem 3.1, the functions
_ p*(1 = p)°(1 = 4p)°(1 = 2p)*(1 +2p)°
(1 =2p +4p2)3(1 — 6p + 240p2 — 920p3 + 960p* — 96p3 + 64p°©)3’

_ p*( - p)(1 —4p)*(1 - 2p)*(1 +2p)
B (1 —4p +32p3 - 32p*)*

and

_(1=2p+4pH)'2(1 - 6p + 240p* — 920p* + 960p* — 96p° + 64p°)!/?
a (1-4p +32p3 —32pH
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satisfy the hypotheses of Lemma 9.2, where the coeflicients are given by
6n\(3n\(2 4n\(2n\*
a(n) = " and b(n) = "\ .
3nf\n )\ n 2nf\ n

=1(1+3V2-3V3)

Setting

gives
3 4
x= (—210) . y=(3)" and r= —298 V10.

The derivatives can be calculated by the chain rule and we find that

dy _s 6
dx|p=a/a1+3vi-3v3 7° 3
and d 22 5 32 % 53
d_;p:<1/4><1+3\@-3«f> ><7—>< x V5(20V3-21V2).

Substituting these values in (9.5) and taking A = 3/28 gives
i 6n\(3n\(2n ( 3 )( 1 )3”
n+ — || =
pry 3nf\n\n 28 /720
_ 150 3\ 1\*
=3 X V15 Z (2n)( n) (" 40)(%) '

This shows that the series evaluations (9.1) and (9.2) are equivalent.
To show that (9.2) is equivalent to (9.3), use (3.11) and (3.21) as motivation to

define
p*(1 = p)1 —4p)*(1 - 2p)*(1 + 2p)
(1-4p+32p3 - 32pH* ’
_—pd =2p)1 + 2p)*(1 - p)’
(1-4p)°
and
_(-4p+ 32p3 - 32p4)
- (1-4p)y
and take

4n\(2n\’ 2n\’
a(n) :( ”)( ”) and  b(n) =( ") .
2n)\ n n
Then compute the required derivatives, let p have the same value as above and put
A=13/40in (9.5). We omit the details, as they are similar to the above. O
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In order to explain why the particular transformation formulas (3.2), (3.11) and
(3.21) were used in the proof of Theorem 9.1, we use the classification of series, such
as (9.1)—(9.3), by modular forms. In [9, Theorem 2.1], it is shown that series such as
(9.1)—(9.3) can be classified according to three parameters:

(1) thelevel ¢;
(2) the degree N; and
(3) the nome g¢.

Tables of series for 1/x for various parameter values are given in [9, Tables 3-6]
and [1]. The relevant parameters corresponding to the series (9.1)—(9.3) are given
by

CN.g) =127, 2,967V and (4,2,-¢7"),

respectively. If the g-parameters are denoted by ¢, g, and g3, respectively, then
Qa=q, @=q and g =—qo,

where ¢ = ¢ V2. The relevant issue is that q1, g» and g3 are all integral powers of
a common value gy and, for g3, there is also a sign change. The values of ¢; and
q» suggest that quadratic and cubic transformation formulas be used, respectively,
while the value of g3 suggests a change of sign is involved. The corresponding
hypergeometric functions which have these properties, for the relevant levels, are given
by (3.2), (3.11) and (3.21).

The entries in [9, Tables 3—6] may be further analyzed by their g-values to obtain
similar relations. This leads to the following equivalence classes of Ramanujan-type
series for 1/m in Theorems 9.3-9.7.

THeEOREM 9.3. Ramanujan’s series (30) and (32) in [23], namely

& (2n) 31 5 _ 1ysn 6 .
Z( n) ("+ )(\/_20 - X~ (9.7)
w0 V! 270 + 485/ 2% 15+21V5 7
and 2 .
— (3n\(2n 41\ 1 53 1
,;(n)(n)(“ﬁ)ﬁ‘ 3 X (9.8)

are equivalent in the sense that one may be deduced from the other by using
transformation formulas in Theorem 3.1.

Proor. The clue is to observe that the series (9.7) and (9.8) correspond to the data
(L,N,g) = (4,15,e™V5) and (£,N,q) = (3,5, 2 VP),

respectively, in the classifications in [1, Table 3.9] and [9, Table 5]. The values of ¢
are related by

VIS = qg and e 27V = q% V)3,

where gy = ¢~
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Therefore, we seek a cubic transformation formula from the level-4 theory and a
quadratic transformation formula from the cubic theory. The relevant functions occur
in (3.20) and (3.16), respectively. The proof may be completed by applying the result
of Lemma 9.2 and copying the procedure in the proof of Theorem 9.1. We omit the
details, as they are similar, except to say that the value of p in this case is given by

p=18-4V3+3V5-2V15). o

The series (9.7) is notable for being the only one of Ramanujan’s 17 examples to
contain an irrational value for the power series variable; the other 16 series all involve
rational numbers.

In the remaining examples, we will be more brief.

TueoreM 9.4. The Ramanujan-type formulas for 1/m given by the following data in [9,
Tables 3—6] are equivalent:

(.N.q) = (1,3,e72 %), (1,27, -3, (3,9, ~ %), (4,3, V)
and (3,4, =%/ ‘5).
Proor. For the first four sets of parameter values, use (3.2), (3.8), (3.18) and (3.19)

and let p be the smallest positive root of

1y 12 1
(2p + —) - 120(2p + —) + 480(2p + —) -496 =0,
2p 2p 2p
so that p =~ 0.00431456.
The series corresponding to the last two sets of parameter values (3, 4, ™"/ ‘/5) and

4,3,e™" ‘/5) can be shown to be equivalent using (3.17) and (3.20) and using the value
p=1-13/2. o

TuEOREM 9.5. The Ramanujan-type formulas for 1/n given by the following data in [9,
Tables 3—6] are equivalent:

(6,N,q) = (1,4,¢74),(2,2,¢77),(2,9, "), (4,4, ™).
Proor. Use (3.4), (3.10), (3.14) and (3.23) and take

p =137 +3V3 - /72 +42v3) ~ 0.0412759. o

THEOREM 9.6. The Ramanujan-type formulas for 1/m given by the following data in [9,
Tables 3—6] are equivalent:

N = (17,6, (1,7, V), 2,7, - V), (4,7, V7).

Proor. Use (3.2), (3.7), (3.13) and (3.19) and let p be the smallest positive root of

2

1\ 13 1 1
(2p+—) —2044(2p+—) +15360(2p+—) —38416(2p+—)+31984:0,
2p 2p 2p 2p

so that p = 0.000245523. o
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TueEOREM 9.7. The Ramanujan-type formulas for 1/m given by the following data in [9,
Tables 3—6] are equivalent:

(6.N.q) = (2.3,e7V2) (3,2,e727V?F3),

Proor. Use (3.11) and (3.16) and take

p=10+ V3- V6). o

Finally, we notice that the identities in Theorems 3.1, 4.1 and 5.1 can be used
in designing AGM-type algorithms [7] for the effective computation of 7 and other
mathematical constants. The details of such applications can be found in [16, 19].
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