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1. The hook graph. Each irreducible representation [X] of the symmetric 
group Sn may be identified by a partition [X] of n into non-negative integral 
parts Xi > X2 > . . . \n > 0, of which the first X'j parts are >7, or by a right 
(Young) diagram also called [X], that contains X* nodes in its ith row and X̂ -
nodes in its jth column. An interchange of rows and columns in the diagram 
[X] converts it to the associated diagram [X'] belonging to the associated repre
sentation [X'] of the same degree/x. 

The node in the ith row and j th column of [X] is called its ij-node. It is called 
the corner of the ij right hook (7) that consists of this node and all nodes to the 
right of it or below it. The X* — j nodes on the right (in the ith row) are called 
the arm of the ij right hook, and the right end node is called the head. The 
\'j — i nodes below the ij node (in the j th column) are called the leg of the 
right hook, and the bottom node is called the foot. The total hook length htj is 

1.1 htJ = 1 + ( X , - j ) + ( X ' , - * ) . 

The hook graph H[\] belonging to [X] is an array of positive integers ob
tained by placing each of the n hook lengths htj at the corresponding ^j-node 
of the diagram [X]. The hook product H\ is the product of the n integers h^ 
in the hook graph. 

The ^j-node is called a g-node if and only if htj is divisible by q. I t is called a 
g-node of residue r, or simply a (g, r)-node, if the integers X* and X'; satisfy the 
congruences 
1.2 Xi — i + 1 = j — \'j = r (mod g), 1 < r < g. 

Clearly a (g, r)-node is also a g-node. 
In this paper we present several properties of the representation [X] that can 

be stated and proved more simply than heretofore by using the hook graph and 
related concepts. 

Following a preliminary lemma about the hook numbers associated with the 
nodes of any right hook, we prove in §2 that the degree f\ of the representation 
[X] is equal to the group order n\ divided by the hook product H\ if the diagram 
[X] is either a right diagram or a direct sum of disjoint right diagrams. We also 
characterize irreducible representations [X] of defect 0 (mod p) by the absence 
of multiples of p in the hook graph. 

In §3 we show that the simply constructed g-quotient diagram [\]q obtained 
by deleting all nodes of [X] except g-nodes is the same except for rearrangement 
of disjoint constituents as the star diagram of Robinson, Staal and others 
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(1 ; 8; 9; 10; 11 ; 12), and we give simple proofs of Staal's Theorem B concerning 
the removal of &g-hooks from [X]. The relationship of Littlewood's ^-quotient 
(5) to Robinson's star diagram has been discussed by Farahat (2). 

For each integer r from 1 to g the (g, r)-nodes of [X] (if such exist) are shown 
in §4 to form one of the disjoint constituents of the (rearranged) star diagram. 
From this follows a short proof of Staal's Theorem C. 

In §5 we give a short hook graph proof of Staal's Theorem A concerning the 
exponent of p in the degree of [X] and in §6 we describe a constructive method 
for determining the g-core from the hook graph without actually removing 
hooks. Finally, in §7 we show how the leg length of a removable hook is deter
mined from the hook-graph. 

2. The degree of the representation [X]. The s^-node is called a rim node of 
[X] if there is no node of [X] in the 5 + 1, t + 1 position. Counting along the 
rim from the head of the right hook with corner at the i/'-node, (located at the 
right of the ith row) to its foot at the bottom of the j th column, there are htj 

rim nodes forming what we call the ij skew or rim hook. Consider the two 
pieces of the ij rim hook obtained by cutting it between the rath and (ra + l)th 
node, counting from the head. If these nodes are in the same row, and a vertical 
cut is made between the tth and (t — l)th columns, the upper right part ends 
in a foot and is a rim hook of length hit, but the lower left part does not start 
with a head node and is not a rim hook. If, however, the two nodes are in the 
same column, and a horizontal cut is made between the (s — l)th and sth 
rows, the lower left part starts with a head node and forms a rim hook of length 
hsj, whereas the upper right part with htj — hsj nodes does not end in a foot 
and does not form a rim hook. As ra varies from 1 to hijy these lengths ra of the 
upper right parts assume as values either hit (t > j ) , or htj — hsj (s > i) but 
not both. Thus we establish the lemma 

LEMMA 1. If hit (j < t < \t) and hsj (i < s < \'j) are the htj integers in the 
ij-right hook of the hook graph iJ[X], then the integers hit and htj — hsj are distinct 
and form a permutation of the integers 1,2, . . . htj. 

It is clear from Lemma 1 that the product of all hook lengths in the ith row 
of H[\] is given by the formula 

2.1 Pi= (hnV./U ( A « - A . i ) . 
1 s>i 

Now the first column hook lengths h a = X* — i + X'i are precisely the 
numbers lt that appear in the Frobenius formula (3; 4; 6) for the degree f\ of 
[X], namely: 

2.2 Â = n\U7TvU(li-h)-
i \vij ' s>i 

This formula was discovered independently by A. Young (14). 
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Setting li = h a and substituting from 2.1 in 2.2 we obtain 

2.3 fx = n\U (1/P<). 
i 

The product of all the Pt is the complete hook product i7x. Thus we have 
proved our first main theorem. 

THEOREM 1. Let H\ be the product of the hook numbers htj in the hook graph of 
an irreducible representation [X] of the symmetric group Sn. Then the degree / x of 
[X] is given by the formula 
2.4 h = n\/Hi. 

Example 1. The irreducible representation [6,4,2] of 5*12 has the following 
right diagram [X] and hook graph H[\]. 

2.5 [X]: H[\]: 8 7 5 4 2 1 

. . . . 5 4 2 1 
2 1 

Its degree is computed as follows: 

o A f (12)! 12-11-10-9-6-3 n .5 ™ 
2.6 /[M.« -H—}- 5 - 4 . 2 . 1 . 2 . 1 * = n ' 3 = 2 6 7 3 -

COROLLARY 1. Let H\ be the product of the hook numbers htjin the hook graph 
of the reducible representation [X] of Sn that corresponds to a diagram consisting of 
a number of disjoint right diagrams having br nodes in the rth constituent. Then the 
degree of [X] is given by the same formula 2.4. 

Proof. The degree f\ is the number of standard orderings of the n nodes of 
the diagram such that the numbers increase from left to right within any row, 
and from top to bottom within any column (9). There are n\/U(brl) ways in 
which the numbers 1 to n can be assigned to the various constituents, and by 
Theorem 1 there are bT\/H\tT ways of ordering them within the rth constituent, 
if H\iT is the hook product for the rth constituent. Hence 

0 , n\ TT _W n- _ V:L 

r r 

where the hook product H\ for [X] is the product of the hook products of its 
constituents. 

Another simple consequence of Theorem 1 is the following known result 
about ^-hooks for any prime p. An ordinary irreducible representation of a 
group G is said to be of defect 0 (mod p) when its degree is divisible by the 
highest power of p that divides the group order (1 ). Such a representation is an 
indecomposable and irreducible modular component of the regular representa
tion and its character vanishes for ^-singular classes. For the symmetric group 
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Sn such representations of defect 0 are found by inspection of the hook graph as 
follows. 

COROLLARY 2. If p is any prime, an ordinary irreducible representation [X] is 
of defect 0 {mod p) if and only if its hook graph contains no multiple of p. 

In Example 1 above we see that [6,4,2] is of defect 0 (mod 3) and (mod 11). 
However it is of maximum defect for p = 2, 5, or 7. 

3. The hook graph of the g-quotient (or star) diagram. Given a diagram [X] 
whose nodes include b g-nodes, we define the g-quotient diagram [\]q to be the 
diagram of b nodes obtained by deleting all the nodes of [X] except the g-nodes. 

LEMMA 2. If the hook number of the ij-node in [X] is htj = kq, the hook number 
of the corresponding node in [\]q is k = hij/q. 

Proof. In Lemma 1 it was proved that each number from 1 to htj occurs 
exactly once among the integers hit{t > j) and htj — hsj, (s > i). Thus if 
htj = kq it follows that exactly k multiples of q appear among the numbers 
hn (l •> j) a n d kq — hsj (s > i). Hence exactly k of the hook numbers hit 

(t > j) and hsj (s > i) are divisible by g, and there are k different g-nodes in 
the ij right hook of [X]. Only these k nodes are retained in the corresponding 
right hook of [\]q, so the corresponding hook number is k. 

Thus we obtain the hook graph H[X]q of the g-quotient if we divide each 
hook number in H[\] by g and retain only the integers. Lemma 2 shows that 
our easily constructed g-quotient diagram is equivalent to the star diagram of 
Robinson and Staal whose existence is proved in Staal's Theorem B, which he 
stated as follows: 

STAAL'S THEOREM B. Given the right diagram X, and a positive integer q, there 
exists a diagram X* (called the ustar diagram" of X) such that there is a one-to-one 
correspondence between the kq-hooks of X and the k-hooks of X*. 

Staal's diagram X* and our diagram [\]q differ at most in the rearrangement 
of disjoint constituents, but the order of rows and columns within each con
stituent is the same for X* and [\]q. 

We next give a simpler proof of Staal's Theorem B, applied to [X]q and 
rephrased in our notation. 

STAAL'S THEOREM B'. If a k-hook is removed from [\]q, leaving [n], and if the 
corresponding kq-hook is removed from [X] leaving [X], then [\]q = [/*]. 

New Proof. We shall study the effect of the respective hook removals on the 
hook graphs of [X] and of [\]q. Let [X] be obtained from [X] by removing either 
the right &g-hook with corner at the ij-node or the corresponding ij rim hook. 
We may obtain H[X] from H[\] in three steps. 
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1. We delete from H[\] the kq hook numbers in the ij right hook. 
2. We diminish by kq each of the integers hsj (s < i) standing above htj 

and move this reduced j th column of H[\] past the \t—j columns of the hook 
arm to form the X t̂h column of H[\]. 

3. We diminish by kq each of the integers hu (t < j) standing to the left of 
hij and move this reduced ith row down past the X';- — i rows of the hook leg 
to form the X';th row of H[X], 

The effect of these three operations on the g-nodes of [X], which are the nodes 
of [X]ff, is to remove the k nodes belonging to the corresponding right &-hook 
of [\]q, to reduce by k the hook quotient numbers hit/q or hsj/q of g-nodes 
above or to the left of htj/q, and to move them past the arm or leg of the &-hook. 
Hence [X]q = [/*]. 

Example 2. To illustrate the effect of hook removal on the hook graph, we 
remove from iJ[7,6,5,3] a right 6-hook with corner at the 23 node. The six 
rim nodes are shown by dots at the right. Then we form the 2-quotient hook 
graph iJ[X]2 and remove the corresponding 3 hook. 

H[\] H[X] 

10 9 8 6 5 3 1 10 9 2 6 5 3 1 10 9 6 5 3 2 
8 7 6 4 3 1 2 1 6 5 2 1 . . 
6 5 4 2 1 6 5 2 1 3 2 . . . 
3 2 1 3 2 2 1 . 

H[\]2 H[\]2 

5 4 3 5 1 3 5 3 1 
4 3 2 1 3 1 
3 2 1 3 1 1 

1 1 1 

4. The disjoint constituents of the g-quotient (or star) diagram. It is clear 
from 1.2 that two g-nodes in the same row or the same column of [X] have the 
same residue r (mod g), where 1 < r < q. We shall call the ith row a (g, r)-row 
and the jth column a (g, r)-column if and only if i and j satisfy 1.2. The 
(q, r)-nodes of a right diagram of [X] (if any exist) are those in [X] which lie at 
intersections of (g, r)-rows and (g, r)-columns of [X], and they form a right 
diagram [\]q,r which is a disjoint constituent of [\]Q. As r varies from 1 to g we 
obtain at most g such constituents, but some may be vacuous. Thus we obtain 

THEOREM 3. The q-quotient diagram [\]q derived from a right diagram [X] is 
composed of at most q disjoint right diagrams, of which the rth is composed of the 
(g, r)-nodes of [X] if any exist. 

It is easily seen that one or more rows (or columns) of any of the disjoint 
constituents of the star diagram may be moved past any or all of the rows (or 
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columns) of a different constituent without affecting the hook numbers of this 
diagram or most of its other essential properties. However, among equivalent 
star diagrams of [X] the easiest from which to see the one-to-one correspondence 
of its fc-hooks with &g-hooks of [X] is the g-quotient diagram [\]q defined above 
in §3. 

Staal's Theorem C follows immediately from our Theorem 3. His ô's are our 
first row hook numbers hij, his X* our [\]q. 

STAAL'S THEOREM C. Gather the hi/s of [X] into classes which are congruent 
{mod q). For each such class of congruent hi/s form the diagram having these as 

first row hook numbers. The diagrams thus formed will be the constituents of the 
star diagram [\]q. 

New Proof. We see from 1.1 and 1.2 that 

4.1 hij = Xi — r (mod q) if and only if j — \'j = r (mod q). 

Hence the g-nodes in columns headed by hook numbers congruent to Xi — r 
are (g, r)-nodes, and they form the rth constituent of [\]q. If we form a new 
hook graph H[IJL] by retaining only those top hook numbers in H[\] that are 
congruent to Xi — r (mod g), then by Lemma 1 the column of H[fx] headed by 
hij will have in addition to the hook numbers of the j th column of H[\] those 
numbers hij — hit such that hij > hit but 

hij ?£ hit (mod q). 

No new g-nodes are present, so the g-quotient [n]q is equivalent to [X]^,r. 

THEOREM 4.1fp and g are any integers and [X] any diagram, the pq-quotient of 
[X] is the q-quotient of [\]p. 

Proof. This analogue of Robinson's theorem (10) for the star diagram is a 
trivial consequence of the fact stated in Lemma 2 that £g-nodes of [X] corre
spond to g-nodes of [\]p. 

Example 3. We illustrate Theorems 3 and 4 by showing the hook graphs 
H[\]q for [X] = [8,7,5,3,2] and g = 1, 2, 3, 4, 6. Residues (mod 12) given at the 
left should be reduced (mod q) to identify the various disjoint constituents. 
Dots are for spacing only. 

L g = 1 g = 2 g = 3 g = 4 g = 6 
8 12 1 1 9 7 6 4 3 1 6 . . . 3 2 4 . 3 . 2 . 1 3 . . . . 1 2 . . . 1 
6 10 9 7 5 4 2 1 5 . . . 2 1 . 3 
3 7 6 4 2 1 . 3 2 1 . 2 . . 1 . 1 

12 4 3 1 2 . 1 1 
10 2 1 1 

5. The ^-exponent in the degree. For any irreducible representation [X] 
and for any prime p, it is easy to determine from the hook graph the exponent 
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e(j\) of the highest power of p dividing the degree f\. In fact, equation 2.4 
shows immediately that 
5.1 e(fx) = e(nl) - e(Hx). 

A similar formula holds moreover, by Corollary 1, for the degree/x* of the 
reducible representation of Sb associated with the ^-quotient diagram [\]p, 
namely 
5.2 eifj*) = e(b\) - e(Hx,P). 

These facts make possible a simple proof of Robinson's version (1) of Naka-
yama's formula (7), given as Theorem A in Staal's paper (12). Other proofs of 
this result have recently been given by Nakayama and Osima (8) and Farahat 
(2). 

THEOREM A. If a denotes the number of nodes in the p-core of [X] then 

5.3 e(fx) = e(nl) - e(n - a)\ + e(fx*). 

Proof. Since n — a = bp, equations 5.1 and 5.2 enable us to rewrite 5.3 in 
the form 
5.4 e(Hx) - e(Hx,p) = e((bp)l) - e(b\). 

Each side of 5.4 reduces to b, since there are exactly b explicit factors in the 
indicated products H\ and (bp) ! that are divisible by p, and the quotients of 
these factors by p are the factors of H\tV and b\ respectively. 

6. Construction of the g-core. The g-core of [X] is the diagram [a] that 
remains after all g-hooks have been removed. Its partition numbers ak can be 
constructed from the hook numbers ha as follows: 

THEOREM 6. Let pt be the number of q-nodes in the ith row of [X], and let at 

be the number of nodes in the ith row of the q-core of [X]. Then the numbers hn — qPt 
are distinct non-negative integers that form a permutation of the integers 
ai — i + X'i, if we set ai = 0 for i > a\. The sign customarily attached to the 
q-core is the sign of this permutation. 

Proof. The effect on the hook graph of the removal of a &g-hook was de
scribed in the proof of Theorem B' (§3). The effect on the first column hook 
numbers h a of removing from [X] a g-hook whose corner is not in the first 
column, is simply to diminish one of the hnbyq and rearrange the order of rows. 
Let all such be removed from [X], beginning with the bottom rows and working 
up, so the only remaining g-nodes are a set of k contained in the first column. 
Their hook numbers are g, 2g, . . . kq, counting from the bottom. Reducing 
each of these by q is equivalent to deleting the number kq. The number of rows 
lost in removing the final &g-hook is the smaller of the two numbers kq and 
Aii — hu and this is equal to X'i — a\. If kq is the smaller, the first column 
hook numbers which are greater than kq are each reduced by X'i — a'i = kq 
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and become the hook numbers at — i + a\ of the g-core. If hn — hu = d < &g, 
the second column hook numbers hn — d (for hn 9^ kq and A*i > d) become 
the first column hook numbers at — i + <*'i of the g-core [«]. In each case the 
numbers ha — gfo are distinct and form a permutation of the integers 
at — i + X'i, and the row numbers <xt can be calculated. The sign attached to 
the combined permutation of rows is the factor by which the Young Sym-
metrizers Nt are altered in the reduction process, and this sign is customarily 
attached to the g-core. 

Example 4. Find the 3-core of [X] = [9,7,4,3,2]. 

H[\] ha — q&t cti—i+W a< <Xi — i-{-a'i H[a] 

13 12 10 8 6 5 4 2 1 7 7 7 - 4 = 3 4 4 2 1 
10 9 7 5 3 2 1 4 4 4 - 3 = 1 1 1 
6 5 3 1 0 2 2 - 2 = 0 
4 3 1 1 1 1 - 1 = 0 
2 1 2 0 0 - 0 = 0 

7. Leg lengths. In the computation of characters (9) it is the leg length 
rather than the class of a hook which is important. So far we have attached 
significance only to (g, r) -nodes and their alignment in the rows and columns 
of H[\], We state the following 

THEOREM 7. The leg length of the ij-hook in [X] is the number of missing 
integers less than htj and to the right of it in H[\], 

Proof. Since each such missing integer indicates one step down in the rim 
of [X], the total number of such steps down is the leg length in question. 

Nakayama studied the effect of interchanging the order of removing two 
successive hooks in some detail (7, I, §§3, 4). It will be sufficient if we consider 
only the "interlocking" case of an ij-hook and an s/-hook, such that X̂  > t, 
i > s, j < t. Applying the three steps of §3 it is evident that removing the 
ij-hook first shortens the leg length of the s£-hook by 1, while removing the 
st-hook first lengthens the leg length of the ij-hook by 1. This makes explicit 
the consideration of this same problem in (9, p. 289). If one hook is completely 
contained within the other the problem does not arise, and if the two hooks do 
not interlock then the leg lengths are unaffected. 
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