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This paper will truly be an introduction — a presentation and a 
discussion of the basic problems, to set the stage for detailed research 
results that will be reported by others. 

The problem of star distribution perpendicular to the galactic 
plane has one central theme, which can be played in two modes. The 
theme is the drop-off of star-density with z_, and the two modes are 
the general density profile and the stratification of populations. 
(This last phrase is a convenient one, but I should warn against taking 
it too literally. By "stratification" I mean a gradual change, rather 
than a sharp separation; and I want to emphasize even more strongly 
that the word "population" should be used in a general and abstract 
sense, rather than as a sharp separation into two, or five, or any other 
discrete number of components.) 

The density drop-off is a simple problem in principle; it is con
trolled by the velocity distribution of the stars and the force field 
that holds them to the plane. The interrelationships are conveniently 
described by the familiar "hydrodynamical" equation 

mibi | + *MM>I + 1 < n z > ! = -N | i . (1) 
3z | 3_w u 3z 

(The terms in the box have often been omitted. Although studies of the 
third integral have shown that these terms are not quite equal to zero, 
they can safely be ignored in the present discussion, because even at 
z^ = 2000 pc they produce a correction of only 20 per cent or so.) 

If the ( IIZ) terms are omitted, the hydrodynamical equation takes 
the much simpler form 

3(N<Z2>) _ 3V ( 2 ) 

3z 3z ' K J 
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Even so, this equation still has no straightforward solution, because 
(Z ) depends on £ in a way that is determined by the form of the Z-
velocity distribution. 

In one case, however, the solution of Eq. (2) becomes very simple. 
If the velocity distribution is Gaussian, then it can easily be shown 
that <Z > is independent of z^, and along a line of constant w the solu
tion is then 

N(z) = N exp (-AV/<Z2>) , (3) 

where AV is the increase of the potential over its minimum value, in 
the plane. Note the role of <Z > in scaling AV; it determines how 
strongly the change in potential will affect the density. Note also the 
simple power-law relationship between the densities of different stellar 
groups; if group B has a value of <Z > that is n. times as large as that 
of group A, its density changes are only the 1/n power of those of group 
A. It is this sensitive dependence of N(z) on < Z^ > that produces the 
stratification of stellar types. 

At the same time, this very behavior of Gaussian velocity distribu
tions should remind us how dangerous it can be to represent stellar 
density distributions directly by Equation (3). Few distributions in 
nature are truly Gaussian, and real stellar velocity distributions tend 
to have a tail that is much more extended than the meager tail of a 
Gaussian. This tail can be represented by adding a small percentage of 
stars that have one or more Gaussian velocity distributions with higher 
values of <Z^> . Although these contribute very little to the density 
at z = 0, at higher z they become dominant, and the overall N(z) looks 
quite different from one simple term of the form given by Eq. (3). 

This way of representing the relationship between velocities and 
densities was introduced by Oort (1932), in his pioneering discussion 
of motions perpendicular to the plane. It is an effective method of 
representation, because even though a family of Gaussians is not a 
mathematically complete basis set, a superposition of them does in fact 
represent the local distribution of Z velocities rather well. However, 
one cannot overemphasize the sensitivity of N(z) to small admixtures of 
high-velocity stars. A graphic example is the difference in the treat
ment of the same observational data by Oort (1960) and by Hill (1960). 
What Oort concluded was that the observed numbers of faint stars 
demanded the addition of a higher-velocity group that contributed only 
1% of the star density at z = 0; at higher z^, however, this group made 
a crucial difference. 

In the face of such sensitivity to the shape of the tail, it might 
seem hopeless to choose a reliable velocity distribution. The task is 
helped very much, however, by a few observations of velocity dispersions 
at appreciable distances from the galactic plane, where a great deal of 
segregation has already taken place and the high-velocity-dispersion 
component shows itself much more clearly. 
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Given the caution about the shape of the velocity distribution, we 
can proceed to examine the behavior of Gaussian groups in a more quanti
tative way. Since AV is simply fz K dz, where K is the acceleration 
in the z-direction, we can calculate AV directlv from the values of K 
given by Oort (1960). Furthermore, noting that 10_9 cm sec"2 pc = 0.3084 
(km/sec) , we can express the results in units of km/sec, in order to 
go quickly from velocity dispersions to density ratios. The numbers are 
given in Table 1. The last column can be interpreted as the velocity 
dispersion of a group whose density has dropped by a factor of ê  at the 
height z_ given in column 1. (Note, however, that the values in the 
last two lines of the table are at a z-level where Eq. (3) has lost some 
accuracy, because of the < IIZ> correction alluded to above, which would 
tend to raise the densities somewhat.) 

Table 1. Force Components and Potential Differences 

K AV (AV) 
1/2 

—9 —2 —9 —2 —1 
(pc) (10 cm sec ) (10 cm sec ) (km sec ) 

__ 

6.4 
12 
22 
43 
67 
85 

0 
100 
200 
400 
1000 
2000 
3000 

0.00 
2.50 
4.28 
6.17 
8.05 
8.93 
9.09 

0 
133 
476 
1544 
5932 
14536 
23552 

Thus a young population, with a root-mean-square Z-velocity disper
sion of 10 km/sec, should have a scale height of about 150 pc, whereas 
an older population with < 

z2>l/2 
= 20 km/sec should have a scale height 

of nearly 400 pc. Furthermore, at that level the density of the lower-
velocity population should have dropped by e^, or a factor of 70. 

These simple dynamical arguments have another interesting conse
quence that has not, as far as I know, been noted before: an excess 
hump of halo-star density in and around the disc. Since the Z-velocity 
dispersion of halo stars is only about 100 km/sec, the numbers in Table 
1 suggest that halo stars are 2 or 3 times as numerous in the galactic 
plane as they would be if the gravitational force of the disc were 
absent. This excess should be taken into account when we use local 
estimates of halo density to scale the densities in an overall halo 
model. Thus it appears that Schmidt's (1975) recent estimate of the 
total mass of the halo should be lowered even further. 

Since the question may occur to some of you, I should mention that 
"massive halos" are not an issue at all in the galactic-polar-cap 
problem that we are discussing here. The halo population on which 
Schmidt sets such a firm upper limit has no relation to the extended 
density distribution that has been suggested by Ostriker and Peebles 
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(1973) and by others. The conventional halo, which is the one that con
cerns us here, is reasonably well represented by an inverse-cube density 
distribution, _whereas the halo that has been postulated to explain the 
disturbingly flat rotation curves in spiral galaxies must have a much 
gentler drop-off — somewhere around inverse-square. Or, to look at the 
problem from the other direction, if our Galaxy has a "massive halo," 
its predominant mass must lie much father out, and we should expect 
vanishingly few of its objects to be found in the solar neighborhood. 

This whole dynamical discussion depends on our knowing the function 
K (z). But in fact, this function is of even greater interest for its 
own sake, and its determination i's one of the prime problems of high-
latitude studies. The slope of its initial rise tells us the spatial 
mass density in the solar neighborhood, and the value at which K levels 
off tells us the surface density. In principle the determination of 
K (z) is simple. We need only compare the spatial stellar density N(z) 
with the local distribution of velocity components <f>(Z) _n- Then with 
the aid of Eq. (1), or with the use that has been described for Eq. (3), 
or with some other way of applying the Liouville equation from which 
these equations are derived, K (z) can be found directly from these two 
functions. 

In practice, however, the determination of K has been an unending 
headache. Different studies have found quite different values of the 
local density, p ; and, worse, attempts to derive the form of K (z) have 
consistently produced a dip that implies the absurdity of a negative 
density somewhere. Obviously the problem is a lack of adequate observa
tional data. There are three ways in which this trouble may arise. 
First, the stellar group used may not be one to which the dynamical 
hypotheses apply. An example is the A stars, which might not be distrib
uted as smoothly as the theory assumes. Second, different parts of the 
data may refer to different subgroups within the sample studied. This 
is a particular danger among the K giants, which occupy the most inho-
mogeneous region of the whole HE. diagram. The relative proportion of 
Mil-type red giants to M67-type red giants varies by a large factor in 
the very z-range in which we need to do our study. Furthermore, these 
stars have different absolute magnitudes even though they are spectro-
scopically very similar. The third source of possible trouble is 
systematic errors in the data. Photometric errors are distressingly 
common, and spectral classes have their problems too. Note, for example, 
the suggestion by Oort (1960) that the spectral classifications with 
which he is dealing shift systematically at fainter magnitudes. 

As a result of these difficulties, we still have no reliable 
determination of K (z), and even the local volume density and surface 
density are rather uncertain. It has been a long journey through the 
wilderness; Professor Oort was given a glimpse of the promised land in 
1932, but we still have not yet entered it. 

Before leaving the area of dynamics I should mention one more con
sequence of the vertical separation of groups of different velocity 
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dispersion. This is a progressive change of mean transverse velocity 
with height above the plane. It results from the correlation between 
mean rotational velocity and velocity dispersion, which is described by 
the equation (cf. Oort 1965, Eq. [38]) 

circ 
- 0 < n" ><-

3 In v 
3 In w 

1 -
<e "> 

pec 

<n2> . 
2 

<n > 

l - (4) 

If we note that for nearly all stellar types < II > * 4 < Z >, then with 
reasonable values for various of its quantities Eq. (4) can be ap
proximated as 

9 . - < Z' 
circ •>/ Y (5) 

Thus at large z, as < Z > increases the solar motion should shift 
systematically. Whereas this effect is unlikely to be significant for 
nearby stars such as those studied by Murray and Sanduleak (1972), for 
more distant stars it can become important. 

Having talked about the behavior of stellar groups in general, I 
should now like to discuss a more specific question. When we look at 
the stars in a high-latitude field, what should we expect to see? More 
specifically, if we distinguish by magnitude and color, what stars 
dominate each part of the color-magnitude array? In answering this 
question I am fortunate to be able to draw on the calculations of a 
Berkeley student, Kate Brooks, who is modeling the star distribution in 
high latitudes. She does this by representing the distribution as a 
mixture of disc and halo populations, with a luminosity function and a 
density distribution for each, and by adjusting the parameters so that 
the computed numbers at each magnitude and color agree with the observed 
numbers. The model then gives a breakdown at each point in the color-
magnitude array, showing which types of stars are the major contributors. 
The procedure is similar to that followed by Luyten (1960), but the 
data are accurately measured colors and magnitudes, and the stellar 
population is broken down in detail. 

Using results kindly provided by Mrs. Brooks, I have prepared 
Figure 1, which is an attempt to show schematically what kinds of stars 
we see at the galactic pole. The figure does not extend brighter than 
12th magnitude, because the small fields that we are studying have too 
few brighter stars to be significant. At the faint end, however, I have 
extended it beyond the range of our own observations, in order to show 
what stars are registered by the new 4-meter telescopes on fine-grain 
emulsions. Note the diagonality of the diagram. At the top right are 
some subgiants (and there would be some red giants too, if the diagram 
went brighter). The main-sequence stars of the disc population dominate 
a broad strip across the middle of the figure. Note that in general at 
fainter apparent magnitudes we tend to see stars that are both less 
luminous and farther away. Then among the faint white stars the halo 
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Figure 1. The dominant stars at various colors and magnitudes, 
at the galactic poles. The numbers are only rough approximations; 
at each point there is a mixture of absolute magnitudes and 
distances. Also, the diagram should be thought of as more con
tinuously filled. 
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makes its appearance, first at the main-sequence turnoff and then on the 
main-sequence itself. Finally, among the bluer colors the white dwarfs 
of the disc take over. 

Some stellar types do not appear in the figure. The red giants of 
the halo are not dominant in any region; apparently they can be distin
guished only by methods more sophisticated than the simple sorting of 
colors and magnitudes. The halo main sequence barely shows up; the 
number of stars on its lower part appears to be a study reserved for 
the days of the Space Telescope, which should reach several magnitudes 
beyond the lower bound of this table. 

A striking characteristic of the data in the figure is how far away 
the stars are that we see. For most stellar types, counting and clas
sifying such faint stars is not a way of determining densities in our 
immediate neighborhood; the densities refer to far-away points. Take 
the halo population, for instance; we find out nothing about its local 
density but can only count up stars that are tens of kiloparsecs away. 
Even for the "local" M dwarfs, a survey such as this one relates pre
dominantly to stars that are several hundred parsecs away. To count up 
the M dwarfs at smaller distances we need surveys at the brighter 
magnitudes, over larger areas of the sky, such as the color-magnitude 
survey of Weistrop (1972a, 1976a) or the spectral survey of Sanduleak 
(1964, 1976). 

Consideration of these surveys brings us right back to the problem 
of systematic errors, however. The surveys of both Weistrop and 
Sanduleak claimed to find high space densities of M-dwarf stars, and 
the literature was then filled with a spate of less consequential papers 
that echoed this claim. It now seems clear, however, that there is no 
appreciable excess of M dwarfs over the numbers in Luyten's (1968) lumi
nosity function and that both Weistrop and Sanduleak had been led 
astray by errors in their photometric systems or scales (Faber et^ al. 
1976; Weistrop 1976a, 1976b). With wrong colors they had deduced wrong 
distances, which led to large errors in density. 

If there is a generalization to be drawn from this whole discussion 
of high-latitude problems, it is that the principles are easy but the 
practice is difficult. And if there is a moral in the whole story, it 
is that we will never build a sound understanding until we have sound 
and reliable observational data. 
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