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ABSTRACT. The interest in the stability of coronal structures derives from their observed lifetime 
(much longer than the relevant hydromagnetic timescale) coupled with their active behavior. This fact 
implies that these structures must be globally stable with respect to fast and destructive instabilities and, 
at the same time, must allow some local, non-disrupting, dissipative process to take place. In highly 
magnetized media as solar and stellar coronae a large number of plasma instabilities can occur. The present 
review will concentrate on those governed by the magnetohydrodynamic (MHD) equations with the 
inclusion of the effects of finite resistivity and viscosity and the use of an energy equation where radiation, 
mechanical heating and thermal conduction are considered. 

1. INTRODUCTION. 

The stability of the magnetic structures observed in the solar and stellar coronae has received a great 
deal of attention in the last decade, since observations have clearly shown that the magnetic field plays a 
fundamental role. In fact the geometric arrangement of coronal plasma is directly related to the structure of 
the magnetic field, which, in active regions, confines and collimates the emissive plasma in a myriad of 
loops and arcades (Vaiana and Rosner, 1978). These structures maintain their identity for a long time (in 
some examples more than a day) ( Foukal, 1976, Krieger, 1977) and on the other hand appear to be the 
site of high energy active phenomena , like the presence of extended heating, the recurrence of flares, the 
appearance and disappearance of prominences, the occurence of coronal mass ejections, etc. 

The dynamical behavior of coronal structures is not surprising, the tendency of a magnetized plasma 
to be unstable being well known (Bateman, 1978). The nature of the instability depends on the features of 
the equilibrium configuration and on the boundary conditions the perturbations must satisfy. The 
challenge in the last years has been to understand precisely the link between the nature, and therefore the 
effects and the timescales, of the instability and the physical conditions of the structure in which the 
instability evolves. In this paper we will concentrate on phenomena governed by the fluid equations 
neglecting the influence both of the microinstabilities and of most kinetic effects on the 
macroinstabilities. Of course this influence is important and can be invoked to explain a number of 
observed features; however within the MHD approximation we have to deal with an already difficult 
problem and, at the same time, we are able to describe the properties of the most dangerous and energetic 
instabilities, such as the ideal magnetic instability, the resistive instability, the Kelvin-Helmholtz 
instability and the thermal instability. 

We want to stress that each type of instability is driven by a different physical mechanism and 
therefore we can study separately the properties of each instability by considering conditions in which 
only one mechanism at the time is dominant. In reality this separation is quite artificial and the nature of 
the growing perturbation is governed by the timescales on which each driving mechanism acts. When the 
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timescales are comparable, the coupling between different types of instability produces the appearance of 
new features in the resulting growing perturbation. 

We believe it is worth to outline here that the instabilities which will be reviewed in the present 
paper have been extensively studied for laboratory purposes with the conclusion that they are quite 
sensitive to the particular regime in which the plasma is found. The operation of transferring results 
obtained for one particular regime to different ones is, generally speaking, unsafe. This is the reason why 
for coronal applications many original calculations have been made and only the properties of these 
"coronal instabilities" will be discussed. 

In the next section we will briefly summarize what is known on coronal instabilities and in the last 
section we will discuss the lines for future work. 

2. NATURE OF THE INSTABILITIES. 

We assume that the collisional magnetohydrodynamic theory is applicable, that the plasma radiates 
and is mechanically heated according to some known laws and that the only non-ideal effects which are 
important are finite constant and isotropic resistivity and shear viscosity and finite parallel thermal 
conduction. The dynamics of such a plasma is then described by the following set of equations: 

3p/8t + div(pv) = 0 1) 

p (3/3t + v. grad ) v = -grad p + (curlB)xB/4TT - pg + V div grad v 2) 

(3/3t + v.grad )(p/pY) = (y-1) P 1"Y (E H - ER + div (bKb gradT )) 3) 

3B/3t = curl ( vxB ) - (c2/4TT)T) div grad B 4) 

where p is the plasma density, p the pressure, v and B the velocity and magnetic field respectively, T the 
temperature, y the specific heat ratio. ER represents the losses per unit mass due to radiation, EH the 
heating and bKb the parallel to the magnetic field thermal conduction coefficient. Finally r\ is the 
resistivity and V the shear viscosity. 

It is easy to identify in Eqs 1-4) the terms which can be responsible for the the onset of an 
instability. 

The magnetic term in Eq 2) can drive an ideal magnetic instability due to the curvature of the 
magnetic lines. Generally speaking, all the cylindrical or toroidal pinches have the tendency to disrupt on 
the very short Alfven time scale. In the laboratory, stabilization is achieved by a combination of strong 
axial applied fields and close-fitting concentric conductors. Such conditions are unrealistic in modelling 
coronal plasmas, and it has been necessary to perform completely new calculations to study under which 
conditions realistic equilibrium configurations, when the influence of the photospheric boundary is taken 
into account, can be stable. 

The resistive term in Eq. 4) is generally very small with respect to the ideal convective term and 
therefore negligible everywhere except in the regions close to the zeroes of curl ( vxB ). When these 
zeroes are present in the structure and the ideal instabilities either are stabilized or evolve on time scales 
longer than the Alfven time, the resistive term leads to reconnection of the magnetic lines and consequent 
conversion of the magnetic energy into other forms of energy. 

The v.gradv term can originate a Kelvin-Helmholtz instability whose source lies in the energy stored 
in the kinetic energy of relative motion of the different layers when a sheared velocity field is present. The 
magnetic field line tension can in some cases play the role of the surface tension as stabilizing effect. On 
the other hand, in the presence of a magnetic field the possible interplay of magnetic and K.-H. 
instabilities can considerably change the nature of the growing perturbation with respect to the static or 
non-magnetized case. 

The gravitational term can be responsible for the onset of Rayleigh-Taylor instability and 
Kruskal-Schwarzschild instability. We will not be concerned with these kinds of processes in this paper, 
since, at least in the solar case, the gravitational scale length is bigger than the typical height of the 
coronal structures. 
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The balance between gains (EH) and losses (ER) can also be destabilizing if its temperature and 
density dependence are appropriate, namely when EH- ER is a monotonically increasing funtion of the 
temperature and therefore, for example, to a local decrease of the temperature corresponds a local decrease 
of EH- ER. A thermal instability develops when the thermal conduction, which tends to stabilize by 
smoothing the perturbation temperature gradient, is not effective in balancing the destabilizing term. 

Let us now review some of the most interesting results obtained recently in the study of the 
instabilities mentioned above. 

2a. Magnetic instabilities. As far as the ideal magnetic instabilities are concerned one has to choose a 
realistic equilibrium configuration and proper photospheric boundary conditions to mimic the effect of the 
much denser photosphere on the perturbations arising in corona. The coronal magnetic field is embedded 
in the high-inertia photospheric plasma, which effectively anchors the magnetic lines, producing the 
so-called line tying. The relatively long photospheric Alfven time is taken to mean that the medium 
below the boundary, which models the transition region between photosphere and corona, cannot move on 
the relevant coronal time scale. This circumstance, in turn, ties the magnetic field in the photosphere 
against perpendicular motions and maintains the continuity of the component of the magnetic field 
perpendicular to the boundary at the ends (Van Hoven et al. 1981, Velli et al. 1988a). As far as the 
equilibrium is concerned both magnetic arcades and loops are usually described in cylindrical geometry 
with the z-axis parallel to the photospheric surface (assumed planar), when modelling an arcade, and 
perpendicular to it in the case of a loop. Various authors have shown that ideal stability can be achieved 
for these cylindrical equilibria when line-tying is taken into account. 

In the case of an arcade stability is found when the field is force-free and all the mageneuc lines reach 
the photosphere, that is if the axis of the cylinder is in the photosphere (Cargill et al. 1986). When the 
field is not force free, radial pressure gradients can drive an interchange-type instability which has been 
found using a ballooning transformation with a large wavenumber perpendicular to the magnetic field 
(Hood 1986). 

A loop has been described as a cylindrical structure where currents are flowing, embedded in a much 
more extended potential field (Chiuderi et al. 1980). Radial pressure gradients can be present (Chiuderi and 
Einaudi 1981) as suggested by some of the Skylab EUV observations (Foukal 1978). The potential 
blanket and the pressure gradients improve the stability, which can be achieved only when line-tying is 
considered (Einaudi and Van Hoven 1981,1983). Raadu (1972) was the first to suggest the importance of 
the line-tying, while Hood and Priest (1979,1980) studied the constant shear field of Gold and Hoyle 
(1960). All these works have shown, using an energy principle, that a line-tied coronal loop goes 
unstable once a critical twist (or ratio of average poloidal to longitudinal flux) is exceeded. The critical 
twist depends on the length of the loop and on the kind of magnetic equilibrium adopted. Recently Velli et 
al. (1988b) have realized die importance of studying the growth rate and the spatial profile of the growing 
perturbations in order to determine the capacity of the small plasma resistivity to enhance instability 
producing reconnection of magnetic lines. As discussed above, resistive field reconnection involves a 
localized break-down of the frozen-in-field constraint of infinite conductivity MHD. In the infinite length 
or periodic cases this break-down occurs in narrow layers around the surfaces where mBQ/r+kBz=0 (Coppi 
et al. 1966), where a 9 and z dependence -exp(i(m9+kz)) of the perturbed quantities has been assumed. 
Line-tying however excludes a simple harmonic dependence in the axial direction. It has been suggested 
(Mok and Van Hoven 1982) that in this case only 0-independent (m=0) perturbations are resistively 
unstable in configurations where the field component Bz vanishes at some point. Mok and Van Hoven 
(1982) and Velli and Hood (1988) have found that the instability is localized in vicinity of such points and 
that line-tying does not influence its properties with respect to the infinite or periodic case. However also 
9-dependent perturbations can be resistively unstable, as Velli et al. (1988b) have shown for the resistive 
kink (m=l) by studying the behaviour of the operator B.grad on the ideal eigenfunction at marginal 
stability. They have found that the derivative along the magnetic field vanishes on the same magnetic 
surface as in the infinite case but only at the center of the cylinder and when an inversion of the axial 
component of the field is present. 

The properties of the m=l resistive instability have been extensively studied for laboratory purposes 
(Coppi et al. 1976, Ara et al. 1978, Finn and Manheimer 1982). We want to point out two results which 
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have important coronal implications. The first is that close to the ideal marginal stability the interplay of 
ideal and resistive effects markedly modifies the plasma behaviour (Batistoni et al. 1985) producing an 
instability which grows on a faster time scale than the well-known tearing mode. The second one concerns 
the effects of finite pressure which, even at very small values of the plasma p\ can either tranform the 
tearing mode into a more robust and faster growing interchange-type instability or can stabilize it, 
depending on the geometry of the equilibrium configuration (Valdettaro et al. 1988). 

2b. Kelvin-Helmholtz instability. As already remarked, this instability arises when the different 
layers of a stratified heterogeneous fluid are in relative horizontal motion. Its properties have been widely 
studied in the hydrodynamic framework (Chandrasekhar 1961), whereas the magnetic effects have been 
scarcely considered, only in the ideal limit and adopting elementary magnetic configurations. There have 
been some efforts to study analitically the properties of resistive instabilities in presence of a velocity 
field aligned withe the magnetic field (Hoffman 1975, Dobrowolny et al. 1983, Paris and Sy 1983). 
Recently Einaudi and Rubini (1986,1988), using a numerical approach, have found that the nature of the 
instability in presence of velocity and magnetic sheared fields is determined by the ratio R between the 
magnetic and the velocity shear scales and the ratio V between the amplitude of the velocity field and the 
Alfven velocity. Depending on the values of R and V an interplay between magnetic and fluid effects 
arises and dissipative processes as resistivity and viscosity can play different roles. In particular, resistivity 
can drive reconnection of magnetic lines even when the fluid effects are dominant on a time scale shorter 
than in the static case. Viscosity can enhance the growth rate of the perturbation, in contrast to its 
stabilizing effect on all other instabilities, when the sheared velocity field is subject to the so-called 
"cat's-eye" instability (Drazin and Reid 1981). In this case both reconnection of magnetic and stream lines 
occurs, leading to the formation of magnetic islands and small scale vortices. This instability has been 
used by Carbone et al. (1987) to explain some observed coronal features associated to solar surges. 

2c. Thermal instability. The possible occurence of thermal instabilities in coronal structures has been 
investigated by many authors since the pioneering paper by Field (1965), who found that isobaric 
perturbations grow provided the length of the isothermal structure L> 3x10 T ' / P with P the 
pressure and T the temperature. The driving mechanism of such instability is the form of the solar 
radiation function at high temperatures. The non-linear evolution leads to the formation of a thin 
prominence-like condensation (Oran et al. 1982). The results obtained in the isothermal one-dimensional 
case cannot be applied to the corona because die presence of the transition region has a dramatic influence 
on the stability for three reasons. First of all L is not a free parameter as in the isothermal case but is 
related to the pressure and the apex temperature. Secondly, the typical radiative time scales in the 
transition region are much shorter than those in the corona. Finally, the static and stationary solution of 
Eq. 3) reproduces the observed temperature profile provided the heating dominates the radiation in the 
corona while it is negligible in the transition region (Chiuderi et al 1981). As a result, the radiation drives 
an instability which mainly influences the transition region leading to the formation of low-lying cold 
loops, rather than prominence-like structures (Klimchuk et al 1987 and references therein). The 
quasi-isothermal coronal part can be destabilized only if the heating has an appropriate pressure and 
temperature dependence and in this case a linear growing perturbation similar to the isothermal one has 
been found by Demoulin and Einaudi (1988). 

The only magnetic effect considered in all these one-dimensional studies is the channelling of the 
heat flux along the magnetic lines. In a three-dimensional magnetic structure the thermal conduction can 
vanish in the same points as curl(vxB), namely where the perturbation propagation vector is 
perpendicular to the field. When this is the case, the growing perturbation is localized in the regions 
around these points (Chiuderi and Van Hoven 1979, Van Hoven et al. 1987), and a local decrease of the 
temperature can lead to an increase of the value of the resistivity and to a consequent accelaration of the 
reconnection process (Steinolfson and Van Hoven 1984). 

3. CONCLUSIONS. 
The above discussion on the nature of the various instabilities which can arise in a coronal plasma 

has clearly shown that the understanding of the evolution of the coronal structures is far from being 
satisfactory. The knowledge of which physical mechanisms can influence the growth of an instability, 
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and therefore can determine the dynamical behaviour of the coronal plasmas, has improved consistently in 
the last few years. The actual non-linear development of the relevant instability, however, is in many 
cases unclear because only highly idealized computations have been performed. In particular the choice of 
the initial equilibrium configurations, in which curvature, flows and localized currents effects should be 
included, has been determined by computational convenience rather than by realistic considerations. 
Moreover the boundary conditions adopted in very few cases have properly modelled the photospheric 
line-tying or the presence of nearby regions. Finally the thermal properties of coronal plasmas should be 
considered more in detail. 

The problem is that the observations are unable at the moment to provide direct details on the small 
scale structure of coronal features. Only a joint observational and theoretical effort can lead to a better 
insight on the dynamics of coronal structures through observations triggered by theoretical results on one 
hand and theoretical work establishing connections between unknown and observable quantities. 
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