
Rings with Central Idempotent or Nilpotent Elements

By M. P. DRAZIN

{Received 11th June, 1956.)

Introduction.

It is easy to see (cf. Theorem 1 below) that the centrality of all the
nilpotent elements of a given associative ring implies the centrality of
every idempotent element; and (Theorem 7) these two properties are in
fact equivalent in any regular ring. We establish in this note various
conditions, some necessary and some sufficient, for the centrality of
nilpotent or idempotent elements in the wider class of 7r-regular rings
(in Theorems 1, 2, 3 and 4 the rings in question are not even required to be
w-regular).

We discuss particularly the special case of a ring R (possibly with
operators) having minimal condition on (say) left ideals; such an R is
necessarily 77-regular (see [1]). It is well known that, if a given left ideal
A of R contains no non-zero idempotent, then A must be nilpotent; and
of course the converse of this is obvious (in any ring whatever). We
consider in our concluding section what can be said along these lines if
we replace the nilpotency of A by the weaker condition that R contains
a non-zero ^4-annihilator. For any non-zero left ideal A whose idem-
potent elements are all central (in A) we obtain the following analogue:
if A contains no element acting as a two-sided identity on A, then A contains
a two-sided A-annihilator (the converse again being trivial). This leads
at once to some simple sufficient conditions for the existence of one-sided"
A -annihilators.

Our arguments throughout are of a very straightforward and
elementary nature, but the results do nevertheless seem worth putting
on record. For brevity, we shall call a given associative ring (or algebra)
R a CN-ring whenever every nilpotent element of R is central, and a
CI-ring whenever every idempotent element of R is central; when we
speak of A as being a Cl-ideal of R, we shall mean that A is an ideal of R
and that, considered as a ring in its own right, A is itself a C/-ring. Finally,
given any two elements u, v of a ring, we shall denote their additive
commutator uv—vu by [u, v\.
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General results.
In this section we shall be concerned with results for rings not sub-

jected to any " finiteness restrictions ". We first formally establish the
result mentioned in the opening sentence of the Introduction; special
cases of this have previously been noted by Forsythe and McCoy ([7],
Lemma 1) and Herstein ([8], Lemma 4).

THEOREM 1. Every CN-ring is a Cl-ring.

Proof. Let v be any given element of a given associative ring R, let
e be any idempotent element of R, and define z = ev—eve. Then ze = 0,
and so z2 = ze(v—ve) = 0; thus, if R is a CN-ring, then z is central, and in
particular 0 = [e, z] = ez = z, i.e. we have ev = eve. Also, by a precisely
similar argument, ve = eve, and so ev = ve. Since v was arbitrary,
consequently e is central; but e was an arbitrary idempotent in R, and so
the result follows.

Certain other classes of C/-rings are described in Section 3 of [5].
Our next theorem is due to A. Rosenberg (private communication), and

concerns rings of a type of which several special cases have been considered
recently (see e.g. [5], [6], [8]).

THEOREM 2. / / , to each pair of elements x, y of a given ring R, there
corresponds an element a(x, y) of R such that \x—x2a(x, y), y\ = 0, then
R is a GN-ring.

Proof. Let At{x) denote the two-sided ideal of R generated by
xl (t = 1, 2, ...). I t clearly suffices to show that, given any x, yeR, there
are elements ht(x, y)sAt(x) satisfying [x—ht(x, y), y] = 0 (£=2 ,3 , . . . ) ;
we may of course take h2(x, y) = x2a(x, y), and we shall obtain the result
by induction, showing that, if ht(x, y) exists for a given t, then, on writing
ht(x> V) = >̂ w e m a y take ht+1(x, y) = h2a(h, y).

Of course [x—h, y] = 0, while, by our hypothesis on R,

[h-h2a(h,y),y]=0;

thus, by addition, [x—h2a(h, y), y] = 0, so, to set up our induction, we
need only show that h2a(h, y)eAt+1(x). And we in fact even have
h2a(h, y)&A2i(x). For, since heAt(x), we know that h2a(h, y) is a sum
of terms of the forms uxtvxiw, xtvxtw, ux2tw "with u, v, weR; any term of
the last type is obviously in A^x), so it now only remains to consider terms
of the form q = xtvxt, and, since [x1—(x?)2 a{xl, v), v] = 0, we have
q = (vs^-^-lx^aix*, v), v
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Lest Theorem 2 should appear a trifle special or artificial, we mention
here that the condition which it asserts to be sufficient for R to be a
GN-ving is, for a wide class of rings (including all finite-dimensional
algebras), in fact also necessary; this will appear in Theorem 5 below.
Our last result in this section, which dates back as far as Peirce (cf. also
[7], Lemma 2 and [8], Lemma 9), is only mildly relevant to the subject
in hand, but we include it now for completeness; we shall call an
idempotent element e of a ring R trivial (in R) if either e = 0 or e acts as a
two-sided identity on R.

THEOREM 3. In any directly irreducible ring, every central idempotent
is trivial.

Proof. Let e be any non-trivial central idempotent of a ring R, and
define

A = {x—ex\xzR\, B= {ey\ye R}.

Then obviously (i) A-{-B = R. Next, since e is central, (ii) each of A, B
is a two-sided ideal of R, and, since e is non-trivial, (iii) neither A nor B
is the zero ideal. Finally, if zsAf\B, say z = x—ex = ey, then

z = ey = e2y = ez = e(x—ex) = (e—e2)x = 0,

i.e. (iv) A and B have no non-zero element in common. Thus R is
directly reducible and the proof is complete.

Results for IT-regular rings.

We recall McCoy's definition [14]: an element a; of a ring R is called
Tr-regular in R if a positive integer s = s(x) and an element b = b(x) of R
exist satisfying xs = xs bxs. The ring R is itself called 77-regular if every
element of R is 7r-regular in R. The class of 7r-regular rings includes all
algebraic rings and algebras (see [6]), and also all rings with minimal
condition on left (or right) ideals. We now introduce a rather weaker
property, calling xeR semi-TT-regular in R if an integer s — s(x) and an
element g = g(x) of R exist satisfying either xs — xgxs or xs = xsgx; and,
as before, we call R semi-77-regular if every element of R is semi-7r-regular
in R. This definition is, clearly, again left-right symmetric; we note also
that semi-7r-regular rings share with w-regular rings the property of having
nil Jacobson radical (this being very easily seen by the same argument as
for the w-regular case).

We recall next that an element x of R is called strongly regular in R if
an element a — a(x) of R exists satisfying x = x2a, R being itself called
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strongly regular if every element of R is strongly regular in R. The
asymmetry of this definition is of course only apparent, by virtue of

LEMMA 1. / / , to each element x of a given ring R, there corresponds
an element a = a{x) of R such that x = x2a or x = ax2, then R is strongly
regular.

Proof. In fact x = x2 a = ax2 for each x. For, if we are given (say)
x — ax2, then (x—x2a)x2 = x2(x—ax2) = 0, so that, since each monomial
in the expansion of (x—x2a)2 begins with a factor x2, we have
(x—a;2a)3 = 0. But clearly R cannot contain any non-zero nilpotent
elements, and so we deduce that x = x2a, as required.

Our next theorem does not directly involve any questions of centrality, •
but we include it for the sake of its connexion with our later results.

THEOREM 4. Let R be any given semi-v-regular ring. Then the following
statements are equivalent:

(i) R is strongly regular;

(ii) R is a subdirect sum of division rings;

(iii) R contains no non-zero nilpotent elements.

Proof. That (i) implies (ii) is well known, and trivial in view of
Jacobson's structure theorem for semi-simple rings (see also [7] for an
elementary proof); and obviously (ii) implies (iii). Indeed, these two
implications hold independently of the semi-7r-regularity hypothesis.
Thus we need only show that (iii), together with semi-77-regularity, implies
(i); i.e., by Lemma 1 and the symmetry of semi-7r-regularity, we need
only show that, given x, gsR and a positive integer s such that Xs = Xsgx,
then we can, with the aid of (iii), construct a s R such that x = x2 a.

In fact we can take a = g. For if s ^ 2, then (with a suitable con-
ventional interpretation when s = 2) we have

(xs-1—xs~1gx)2 = (Xs"2—xs-1g)(xs—xsgx) = 0,

whence, by (iii), Xs"1 = Xs-1 gx, and consequently, by downward induction
on s, we find that x = xgx. Hence (x—x2g)x = x(x—xgx) = 0, so that
(x—x2g)2 = 0, and (iii) gives x = x2g, as required.

The equivalence of (i) with (iii) in any algebraic algebra or ring with
minimal condition on left ideals has been shown previously by Arens
and Kaplansky ([1], Theorem 3.3); however, since each of these
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hypotheses implies 7r-regularity (and hence semi-77-regularity), their result
is included in Theorem 4 above. It should be mentioned also that, at
least in its specialisation to 7T-regular rings, Theorem 4 is implicit in [6]
(cf. also [10], [11], Theorem 4 and [13], Theorem 5.5 (e)).

THEOREM 5. Let R be any given n-regular ring. Then the following
statements are equivalent:

(iv) to each xeR there corresponds a{x)&R such that x—x2a(x) is
central;

(v) to each pair x, yeR there corresponds a(x,y)zR such that
[x—x2a(x, y), y] = 0;

(vi) R is a CN-ring.

Further, each of these three statements is implied by any one of (i), (ii), (iii)
above, and, by Theorem 1, any one of the six statements implies that R is a
Gl-ring.

Proof. Since (iii) obviously implies (vi) and 77-regularity implies
semi-7T-regularity, we need only prove the equivalence of (iv), (v) and (vi).
Of these, (iv) implies (v) trivially, and (v) implies (vi) by Theorem 2, so
it will be enough to show that (vi) implies (iv).

Now, given (vi) and any x e R, say with xs = xs bx8, then
(x—xs+1b)xs = x(xs~xsbxs) = 0, while for a suitable deR, we may write
(x—xs+16)s = xs+xsd. Hence (x—xs+1 b)s+1 = 0, and so (vi) makes x—x8+1 b
central, and (iv) follows with a(x) = xs~1b.

COROLLARY. The property of being a n-regular CN-ring is preserved
under homomorphism.

It is not hard to see that, even under the weaker hypothesis of semi-
77-regularity, say with xs = Xs gx for a given x&R, (vi) implies that x—xgx
is central (so that Xs = xmgxn for every pair of positive integers m, n with
m-\-n = s-\-l), but it does not seem possible to deduce (iv) or (v) from
this.

The three conditions of Theorem 4 are of course (consider for example
the special case of nil rings) not implied by those of Theorem 5 for general
7r-regular rings, and neither need any of these six conditions hold in a given
7r-regular C/-ring. To conclude this section, we note also the following
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result (which is appropriately mentioned here, since every algebraic
algebra is certainly w-regular):

THEOREM 6. Let F be any given algebraically closed field of prime
characteristic p, and let R be any given algebraic Cl-algebra over F. Then,
for each xeR, we can find a corresponding positive integer r = r(x) such
that xv" is central.

Proof. Since R is algebraic, every element x of R generates a finite-
dimensional subalgebra, and, since F is algebraically closed, consequently
(by the theory of the classical canonical form of a matrix) we can express x
as the sum of a nilpotent element of R and a linear combination (over F)
of idempotents, say j ; = / + S « i c j . Then, since F has characteristic p
and the et are central, we have

P'e. ( r = i , 2 , . . . ) ,

and the theorem follows on taking r so large that fv' = 0.

We remark that, by a result of Kaplansky [9], the conclusion of
Theorem 6 in turn implies that the two-sided ideal B1 generated in R
by all commutators [u, v] must be nil; if R is even a CW-algebra, then of
course (c/. [6], Theorem 5.7 or [15], Lemma 3) R must actually be com-
mutative (i.e. Rt = 0).

Regular rings.
To round out the picture, we remind the reader that, independently

of any side condition, strong regularity of a ring always implies regularity
(i.e. the special case of vr-regularity in which each s(x) — l) : for, if
x = x2a, then x(x—xax) = (x—x2a)x = 0, so that (x—xax)2 = 0, and
consequently, if the element x—xax is also strongly regular, then x = xax.
In particular (as appeared in the course of the proof) semi-7r-regular rings
satisfying the conditions of Theorem 4 are in fact regular. We now prove

THEOREM 7. For any regular ring R, each of the six conditions
(i), ..., (vi) in Theorems 4 and 5 is equivalent to the statement that R is a
Cl-ring.

Proof. Since every regular ring is 7r-regular, and since each (except
the last) of the properties (i), ..., (vi) has already been shown to imply
its successor in any 77-regular ring, it follows from Theorem 1 that we
need only show" that the C/-property, together with regularity, implies (i).
Now, if x = xbx is any given regular element of R, then xb is idempotent
and hence central by the C/-property, whence x = x2 b, i.e. x is strongly
regular and the theorem follows.
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COROLLARY. / / R is a regular CI-ring, then so is every homomorphic
image of R.

Forsythe and McCoy [7] obtained the conclusion of Theorem 4 under the
stronger hypothesis that R is regular. They first proved the equivalence
of (i) and (iii) directly, and then that of (ii) and (iii); the first equivalence
is relatively trivial, while their method of proving the second (which used
the equivalence of (i) and (iii), besides also Theorem 3 above and Birkhoff's
structure theorem) can readily be extended to 77-regular rings. See also
[12].

[Added 15th March, 1957. It has come to the writer's attention that the
equivalence, in regular rings, of (i), (ii), (iii) with the C/-property (and also
with certain other properties not discussed here) was noted earlier by
M. C. WaddeU ("Properties of regular rings", Duke Math. J., 19 (1952),
623-627) ; however, he obtains no corresponding result for 77-regular rings.
We take this opportunity of remarking also that a result substantially better
than Theorem 2 above has recently been found by Y. Utumi: see
Lemma 1 of his paper " On |-rings ", Proceedings of the Japan Academy,
33 (1957), 63-66.]

Annihilators in rings with minimal condition.
THEOREM 8. Let R be a ring with minimal condition on left ideals,

and A any non-zero left Cl-ideal. Then A either contains a non-zero two-
sided A-annihilator or has a two-sided identity.

Proof. As is well known (see for example [2], Theorem 2. 6B) the
hypotheses imply the existence of an element e of A, and a nilpotent left
ideal M of R, such that

A=Ae+M, e2 = e, Me = 0

(where e = 0 if and only if A is nilpotent).
If M = 0, then A = Ae, and so e is non-zero and (being central in A)

acts as a two-sided identity in A.
If M =£ 0, then we can choose a positive integer m such that Mm ^ 0,

Mm+1 = 0. Then, for any non-zero y e Mm, we have (since e is central in
A and M < A)

Ay < (Ae+M) Mm = AeMm = AMm e = 0

and yA ^.Mm(Ae+M) = MmAe = MmeA = 0;

thus y is a two-sided ^4-annihilator.
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THEOREM 9. Let R be a ring with minimal condition on left ideals,
and A any proper left CI-ideal. Then (i) R contains a non-zero left
A-annihilator. If, further, R has a right identity 1, then (ii) R contains a
non-zero right A-annihilator z.

Proof, (i) If A = 0 then any non-zero element of R serves as an
^4-annihilator. Otherwise the conditions of Theorem 8 are satisfied
and so we may suppose that A contains a two-sided identity e. Since e
is in the proper left ideal A, we have Re ̂  RA ^.A<R, and so we can
find an element b of R not representable in the form b = ce with ceR.
Then b—be # 0 , while also, since e is an identity for A,

(b—be) A = (b-be)eA = 0;

thus b—be satisfies our requirements.
(ii) If A = 0, take z = 1. For A ^ 0, we again use Theorem 8. If

the first alternative in Theorem 8 holds, take this annihilator as z; other-
wise A has an identity e and we may take z = 1—e (this being non-zero
since Re<R = Rl).

In Theorem 8, if R is itself a C/-ring, then e is in the centre of R, and so
also is any right identity 1 of R, so that the annihilators constructed in
Theorem 9 (i) and (ii) are then both two-sided; more generally, the
A -annihilator z of (ii) will in any case be two-sided if 1 acts as a two-sided
identity on A. However, we cannot, even for commutative A, always
assert the existence of a right A -annihilator in R; to see this, consider
the (associative) ring R generated by elements x, y subject to the rules
x2 = x, xy = y, yx = y2 = 0, and take for A the subring (clearly in fact a
left ideal) generated by x.

There seem to be no easy generalisations of these results for arbitrary
left ideals A. For, even if we require A to be a proper two-sided ideal of
R, then A can nevertheless be without any one-sided identity (even in R)
and at the same time be without any one-sided annihilator (even in R).
As an example of this, consider the algebra R of all 4 x 4 triangular matrices,
over a field F, with a zero in the second diagonal place, and take for A the
ideal consisting of all members of R having a zero also in the third diagonal
place.

Also, of course, the minimal condition cannot be dropped, even for
commutative R; for example, the conclusions of Theorems 8 and 9 both
fail if R is the complete direct sum of an enumerable infinity of fields and
A is the restricted direct sum. However, it does seem worth mentioning
here a related result which holds without any assumptions on R (for an
analogous result about two-sided ideals, cf. [10], 70):
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THEOREM 10. Given any ring R and any left ideal A of R, then either
(i) R contains a non-zero left A-annihilator, or (ii) the centraliser C(A) of A
in R coincides with the centre Z of R.

Proof. Of course C(A) ^ Z, so that we have only to show that the
negation of (i) implies the opposite inclusion. Take any xeC{A) and
any aeA. Then, since A is a left ideal of R, yaeA for all yzR, so that

[x, y]a = x(ya)—y(xa) = (ya)x—y(xa) = y[a, x] = 0,

i.e. [x, y]A = 0 for all yeR; thus, if (i) is false, then [x, y~] = 0 for all
yeR, i.e. xeZ. Since x was an arbitrary element of C(A), this means
that C(A) ^.Z, as required.

Trivial though the results of this section are, they do not seem to have
been pointed out before. However, Baer [3] has noted the special case of
Theorem 8 in which R is commutative and A = R (cf. also [4], Lemma 7).
And the case of Theorem 9 in which R is a commutative finite-dimensional
algebra with an identity element has been obtained, in a quite different
way, by H. Schneider (unpublished).
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