On an Asymptotic Integral

By L. C. Hsv

(Received 6th June 1950.)

1. This note gives an asymptotic evaluation of an integral of the form

$$I_n = \int_a^b \left\{ f_n(x) \right\}^n g(x) \ dx, \tag{1}$$

as n tends to infinity, where $\{f_n(x)\}$ is a sequence of real-valued functions. The theorem to be established is a natural extension of B. Levi's generalised Laplace-Darboux theorem (1, 341-51); it gives a rule for evaluating a wider class of asymptotic integrals.

In what follows $(x, n) \to (\xi, \infty)$ denotes that x, n tend to ξ, ∞ respectively and independently. For instance, $\phi(x, n) \to 0$ as $(x, n) \to (\xi, \infty)$ means that for any given positive ϵ there exist positive numbers δ and N such that $|\phi(x, n)| < \epsilon$ whenever $|x - \xi| < \delta$ and n > N.

Theorem. Let $f_n(x)$ [n = 1, 2, 3, ...] and g(x) be real functions such that

- (A) g(x) and each $f_n(x)$ are integrable over (a, b);
- (B) there is a number A, independent of x and n, such that $|f_n(x)| < A$, |g(x)| < A;
- (C) $f_n(x)$ attains a positive absolute maximum at $x = \xi_n$;
- (D) for each positive number d, there is a positive number δ (depending on d but not on n) such that $|f_n(x)| \leq f_n(\xi_n) \delta$ whenever $|x \xi_n| \geq d$ and $a \leq x \leq b$;
- (E) as n tends to infinity, ξ_n tends to ξ , where $a < \xi < b$;
- (F) g(x) is continuous at $x = \xi$ with $g(\xi) \neq 0$;
- (G) there are positive constants h and k such that

$$\lim_{(x,n)\to(\xi_n,\infty)} |f_n(x)-f_n(\xi_n)| / |x-\xi_n|^h = k.$$
 (2)

Then for n large

$$I_n \sim (2/h) \Gamma (1/h) \{f_n(\xi_n)\}^n g(\xi) \{f_n(\xi_n)/nk\}^{1/h}.$$
 (3)

2. The essential step in the proof is to determine a suitable small interval containing the variable point $x = \xi_n$ and then let n tend to infinity in order to get the dominant asymptotic value. Write

$$f_n(x) - f_n(\xi_n) = -k \mid x - \xi_n \mid {}^h\{1 + R(x, \xi_n)\}$$
 (4)

so that by condition (G), $R(x, \xi_n) \rightarrow 0$ as $(x, n) \rightarrow (\xi, \infty)$. We now have

$$\log f_n(x) = \log f_n(\xi_n) + \log \{1 - k \mid x - \xi_n \mid {}^h \{f_n(\xi_n)\}^{-1} (1 + R)\}$$

$$= \log f_n(\xi_n) - k \mid x - \xi_n \mid {}^h \{f_n(\xi_n)\}^{-1} (1 + R + R'),$$
 (5)

say, where $R' = O(|x - \xi_n|^h)$ so that $R' \to 0$ as $(x, n) \to (\xi, \infty)$. Denote R + R' by $\theta(x, \xi_n)$. Then, given any small positive number ϵ , there are positive numbers Δ and M such that $|\theta| < \epsilon$ whenever $|x - \xi| < 2\Delta$ and n > M. We may take M so large that $|\xi - \xi_n| < \Delta$ whenever n > M. Thus $|x - \xi_n| < \Delta$ implies $|x - \xi_n| < 2\Delta$. We may also assume $a \le \xi_n - \Delta$, $\xi_n + \Delta \le b$ for n > M.

If we now use (5), if we make the change of variable

$$nk\{f_n(\xi_n)\}^{-1} \mid x - \xi_n \mid {}^h = t,$$
 (6)

and if we denote $\theta(x, \xi_n)$ by $\theta_1(t)$ for $\xi_n \leq x \leq \xi_n + \Delta$ and by $\theta_2(t)$, for $\xi_n - \Delta \leq x \leq \xi_n$, we obtain

$$J_{n} \equiv \int_{\xi_{n}-\Delta}^{\xi_{n}+\Delta} \left\{ \frac{f_{n}(x)}{f_{n}(\xi_{n})} \right\}^{n} \left\{ \frac{nk}{f_{n}(\xi_{n})} \right\}^{1/h} dx$$

$$= \left\{ \frac{nk}{f_{n}(\xi_{n})} \right\}^{1/h} \int_{\xi_{n}-\Delta}^{\xi_{n}+\Delta} \exp \left[-nk(1+\theta) \left\{ \int_{0}^{n} (\xi_{n}) \right\}^{-1} \mid x - \xi_{n} \mid h \right] dx$$

$$= \frac{1}{h} \int_{0}^{T} \left[e^{-t \left[1 + \theta_{1}(t) \right]} + e^{-t(1+\theta_{2}(t))} \right] t^{1/h-1} dt, \qquad (7)$$

where $T = nk \{f_n(\xi_n)\}^{-1} \Delta^h$.

Now suppose that ϵ and Δ are fixed. Then T, which is not less than $nk\Delta^h/R$, tends to infinity with n. Since $|\theta_1| < \epsilon$ and $|\theta_2| < \epsilon$, we see from (7) that

$$\frac{2}{h}\left(\frac{1}{1+\epsilon}\right)^{1/h}\int_0^{T(1+\epsilon)}e^{-u}u^{1/h-1}du \leq J_n \leq \frac{2}{h}\left(\frac{1}{1-\epsilon}\right)^{1/h}\int_0^{T(1-\epsilon)}e^{-u}u^{1/h-1}du.$$

If we now let n tend to infinity, we find that

$$\frac{2}{h}\left(\frac{1}{1+\epsilon}\right)^{1/h}\Gamma\left(\frac{1}{h}\right) \leq \underline{\lim} \ J_n \leq \overline{\lim} \ J_n \leq \frac{2}{h}\left(\frac{1}{1-\epsilon}\right)^{1/h}\Gamma\left(\frac{1}{h}\right). \tag{8}$$

¹ Here we use the fact that f_n (ξ_n) cannot tend to zero as n tends to infinity. This follows from condition (D).

Let us now consider the integral

$$J_n^* \equiv \int_{\xi_{n-\Delta}}^{\xi_{n+\Delta}} \left\{ \frac{f_n(x)}{f_n(\xi_n)} \right\}^n \left\{ \frac{nk}{f_n(\xi_n)} \right\}^{1/h} g(x) dx. \tag{9}$$

Since g(x) is continuous at $x = \xi$, we may assume that Δ is chosen so that ¹

$$g(\xi) (1 - \epsilon) \le g(x) \le g(\xi) (1 + \epsilon)$$

whenever $|x-\xi_n| < \Delta$. Thus from (8) and (9) we may infer that

$$\frac{2(1-\epsilon)}{h(1+\epsilon)^{1/h}}\Gamma\left(\frac{1}{h}\right)g(\xi) \leq \underline{\lim} J_n^* \leq \overline{\lim} J_n^* \leq \frac{2(1+\epsilon)}{h(1-\epsilon)^{1/h}}\Gamma\left(\frac{1}{h}\right)g(\xi). \tag{10}$$

On the other hand, by hypothesis (D), there is a positive number δ (independent of n) such that $|f_n(x)| \leq f_n(\xi_n) - \delta$ whenever $|x - \xi_n| \geq \Delta$ and $a \leq x \leq b$. Hence for these values of x

$$\left| \frac{f_n(x)}{f_n(\xi_n)} \right| \le \left| \frac{f_n(\xi_n) - \delta}{f_n(\xi_n)} \right| \le \left| 1 - \frac{\delta}{A} \right| = \rho$$

say, where $0 < \rho < 1$. It now follows that, with Δ fixed,

$$J_n^* * = \left(\int_a^{\xi_n - \Delta} + \int_{\xi_{n+\Delta}}^b \right) \left\{ \frac{f_n(x)}{f_n(\xi_n)} \right\}^n \left\{ \frac{nk}{f_n(\xi_n)} \right\}^{1/h} g(x) dx = O(\rho^n n^{1/h}) \to 0$$

as n tends to infinity. We may therefore replace J_n^* by $(J_n^* + J_n^{**})$ in equation (10). Since ϵ is arbitrary, and since $(J_n^* + J_n^{**})$ does not depend on ϵ , it now follows that

$$\lim_{n \to \infty} \left(J_n^* + J_n^{**} \right) = \frac{2}{h} \Gamma\left(\frac{1}{h}\right) g(\xi).$$

This is equivalent to (3), and our theorem is established.

3. Concrete examples are easily found for illustrating the use of the formula (3). A simple example is, for $n \to \infty$,

$$n^{1/s} \int_{-1/2}^{1/2} \left(1 + \frac{1}{n} - \left|x - \frac{1}{\sqrt{n}}\right|^s\right)^n \sin^{-1} \left(1 - \left|x\right|\right) dx \sim (1/s)\Gamma(1/s)\pi e$$

where s > 0 and $0 \le \sin^{-1} y \le \frac{\pi}{2}$ $(0 \le y \le 1)$. As consequences of our theorem we now mention two important cases as follows:

¹ There are slight changes here if $g(\xi)$ is negative; $g(\xi)$ is not zero by hypothesis (F).

I. Levi's case. If $f_n(x) = f(x)$, then $\xi_n = \xi$ and the equation (2) becomes

$$\lim_{x \to \xi} |f(x) - f(\xi)| / |x - \xi|^{h} = k.$$
 (2)

In this case we have

$$\int_{a}^{b} \left(f(x) \right)^{n} g(x) dx \sim \frac{2}{h} \Gamma \left(\frac{1}{h} \right) \left(f(\xi) \right)^{n} g(\xi) \left(\frac{f(\xi)}{nk} \right)^{1/h}. \tag{3}$$

II. Laplace-Darboux case. In the case of Levi, if f(x) is continuous together with its derivatives f'(x), f''(x) so that $f'(\xi) = 0$, $f''(\xi) < 0$, and (2)' is true for h = 2, $k = -\frac{1}{2}f''(\xi)$, then (3)' reduces to the classical asymptotic formula of Laplace and Darboux ([2], [3], [4]):

$$\int_{a}^{b} \left(f(x) \right)^{n} g(x) dx \sim \left(f(\xi) \right)^{n+1/2} g(\xi) \left(\frac{-2\pi}{nf''(\xi)} \right)^{1/2}. \tag{3}$$

4. Two remarks are worthy of mention. (i) In general the constants h and k may always be determined by means of the following equation

$$\lim_{n\to\infty} \lim_{x\to\xi_n} |f_n(x) - f_n(\xi_n)| / |x - \xi_n|^h = k.$$
 (2)*

For it is easily seen that $(2)^*$ is implied by (2), in view of (4). In the case when ξ_n is a constant, $(2)^*$ and (2)' are equivalent. (ii) If our hypothesis (F) is replaced by

 $(F)^*$ $g(x) \in L(a, b)$ and g(x) possesses limits on both sides of $x = \xi_n$ $(n = 1, 2, 3, \ldots)$,

then by almost the same treatment as used before we easily obtain

$$I_n \sim (1/h) (g(\xi_n -) + g(\xi_n +)) (f_n(\xi_n))^n (f_n(\xi_n)/nk)^{1/h} \Gamma(1/h).$$
 (3)*

REFERENCES.

- [1] Beppo Levi, Publ. Inst., Math. Univ. Nac. Litoral, 6 (1946).
- [2] P. S. Laplace, Oeuvres, t. 7, p. 89. Paris (1886).
- [3] G. Darboux, Jour. de Math. (3), 4 (1878).
- [4] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Bd. 1, s. 78 (1925).

King's College,

ABERDEEN.