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Abstract

We study the existence of extremal solutions for an infinite system of first-order discontinu-
ous functional differential equations in the Banach space of the bounded functions /^(M).
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1. Introduction

The study of functional differential equations covers, among others, ordinary differ-
ential equations, integro-differential equations and equations with maxima. Moreover
these types of equations appear when we use the reduction of order method for a
suitable scalar nth-order ordinary differential equation, [2, 4], which can obviously
be treated as a first-order system of finite equations. Following this idea, one can
consider differential functional systems with infinitely many equations, the number
of which is not necessarily countable. Such systems have been studied by several
different authors, see [7] and the references therein.

In this paper we study the solvability of an infinite system of functional differential
equations, with nonlinear functional boundary value conditions, in the Banach space
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of the bounded functions ^ ( M ) , where M is an arbitrary index set

I «'„(') = gv(t, u(t), u) for a.a. t e I := [t0, h], v e M,

uv(t0) = Bv(u(t0), u), v e M.

Our main result extends Theorem 3.1 of [3] to infinite systems and it also improves
[6] and Theorem 1.1 of [1]. The ideas contained in the proof of our main result are
related to those of [7].

2. Definitions and preliminaries

We say that a partially ordered set (poset) X is a lattice if supfxj, x2] and inf [x\, x2]
exist for all JCI , AT2 e X. A lattice X is complete when each nonempty subset Y c Xhas
its supremum and infimum in X. In particular, every complete lattice has a maximum
and a minimum.

In a poset X we define for each a,b e X, with a < b, the interval

[ a , b ] : = { x e X : a < x < b).

The following result is the well-known Tarski fixed point theorem (see [12]).

THEOREM 2.1. Every nondecreasing mapping G : X -> X on a complete lattice X
has a minimal and a maximal fixed point, x* and x* respectively. Moreover,

x* = min{;t e X : Gx < x} and x* = maxfx 6 X : x < Gx}.

Let M be an arbitrary index set. An element x := (xv)veM of RM is denoted by
x := (xv, xv) where xv € RMMv). If x, y e \RM we define the partial ordering

x < y if and only if xv < yv for all v e M.

We consider the Banach space

= JJC := (xv)veM G KM : ||JC|| := sup|jcw| < + o o | ,
I J

and for the interval / = [t0, tt] we define C(I, /^(Af)) as the Banach space of all
continuous functions u : I -» loo(M) with the norm ||w||0 = sup{||M(OII • t e I], and
we define the partial ordering, u < v if and only if u(t) < v(t) for all t e I.

The following fixed point theorem is essentially Theorem 4 of [8] (see also Re-
mark 6.3 in [8]).
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THEOREM 2.2. Leta,b e KM, with a < b, and f := (fv)veM • [a, b] -> RM fee
a function such that f(a) < a and b < f(b). Suppose that f satisfies the following
properties for each v e M and for each x e [a, b\.

(i) The function /„(•, xv) is u.s.c. on the right and l.s.c. on the left on [av, bv],
that is,

limsup fv(y, xv) < fv(xv,x
v) < liminf fv(y, xv).

j • - „ '

(ii) The function f is quasimonotone, that is, fv(xv, •) is nondecreasing on [av, b"].

Then the function f has a minimal fixed point, x* 6 [a, b], and a maximal fixed point,
x* 6 [a, b], and moreover they satisfy the properties

xt = min{;c € [a, b] : f(x) < x), (2.1)

x* = rnaxfx € [a, b] : x < f(x)}. (2.2)

REMARK 1. Theorem 2.2 extends to quasimonotone maps defined in arbitrary
product spaces some earlier fixed point theorems by Hu and Schmidt, [9, 11], for
quasimonotone maps defined in K" and sequence spaces, respectively.

To end this section we introduce the classical concept of a lower solution of the
scalar initial value problem

u'(t) = h(t,u(t)), for a.e. t e [t0, h]; u(t0) = A,

with h a Caratheodory function, and a function a 6 AC([t0, ti]), that is, the set of
the absolutely continuous functions on the interval [t0, t\], that satisfies the following
inequalities:

a'{t) < h(t, a(t)), for a.e. t € [t0, tt]; a(t0) < A.

The concept of an upper solution is given by reversing the previous inequalities.
A solution of such a problem will be a function that is both a lower and an upper
solution.

3. Main result

In this section we study the problem

I "'„(') = 8v(t, u(t), u) for a.a. t e / := [t0, tt], v e M,
«„(;„) = Bv(u(t0), u), v e M,

assuming that g := (gv)veM • 1 x /^(M) x C(7, lx(M)) -> /^(M) and B :=
(Bv)veM : loo(M) x C(I, /oo(M)) -+ loo(M) satisfy for each v e M the following list
of hypotheses which we will denote by
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(gO) For all u = (uv,u
v) e C(7,/^(M)) and all z € 05 the function t ->•

gv(t, z, uv(t), u) is Lebesgue measurable,
(gl) For a.a. t e / and for all x = (xv, x") e /ro(M) and u e C(I, l^M)) the

function gv(t,xv, •, u) is nondecreasing and

\imsup gv(t,y,xv,u) < gv(t,xv,x
v,u) < liminfgv(t, y,xv,u).

y->x- y-*xi

(g2) For a.a. t e I and for all x e loo(M) the function gv(t, x, •) is nondecreasing.
(g3) There exist p,q,r € L\(I) such that for a.a. t e I and for all x e loo(M) and

u € C(I, /^(M)) we have \\g(t, x, u)\\ < p(t)\\x\\ + q(t)\\u\\0 + r{t).
(g4) llplk. + \\q\\o < I-
(BO) For each x € l<x{M) the operator Bv{x, •) is nondecreasing.
(Bl) For all x = (xv, x

v) e loo(M) and u e C(I, /^(M)) the function Bv(xv, •, u)
is nondecreasing and

limsup Bv{y, xv,u) < Bv(xv, xv, u) < liminf Bv(y, xv, u).

(B2) There exist a, b e lco(M), with a < b, such that for all u e C(I, /^(Af))

a < B(a, u) and B(b, u) < b.

DEFINITION 1. We say that u = (uv)veM e C(I, L^M)) is a solution of Prob-
lem (3.1) if it satisfies uv e AC(I) for all v € M and

1Kb) = 8vb, u{t), u), for a.a. t e I, v e M,

uv(t0) = Bv(u(t0), u), v e M.

Now we are ready to present our main result.

THEOREM 3.1. Assume the list of hypotheses (#f) is satisfied. Then Problem (3.1)
has a minimal and a maximal solution in the set

Y = {ue C(I, LX(M)) : a < u(t0) < b}.

PROOF. We prove the existence of the maximal solution in Y since the existence of
the minimal solution is proved by dual arguments.

For each u e C(I, /^(M)) we define the operator

N(u) := the maximal fixed point in [a, b] of function B{-, u).

Operator TV is well defined by Hypotheses (Bl), (B2) and Theorem 2.2. Moreover,
from (BO) and (2.2) it follows easily that N is nondecreasing.
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Now, we define

C = \w: I ^ R:w € [-R, R], \w(s) - w(t)\ < I V r . j 6 /

and X = riveM £• Clearly X c C( / , /oo(AT)) and we consider for each v e M the
operator Gv : X —• C defined for each v = (vv, vv) € X as the maximal solution of
the scalar initial value problem

f z ' ( 0 = g"(t,z(r)), f o r a . a . r e / ,
l = Nv(v),

where the scalar function gv
v : I x IR -> K is defined for all (f, z) 6 / x D& as

^(*,z) = ^a,z,u1'(O.t').

CLAIM 1. Gv:X^-Cis well defined.

For each v e M and u = (vv, v") G X we consider the functions

and a ( 0 = - -0(0 for all ? e I. It is easy to verify that 0 ( 0 > / ? > - / ? > a(t)
for all f e / and that a and 0 are lower and upper solutions, respectively, for (3.3).
Moreover, by Hypotheses (gO), (gl) and (g3) the function g" satisfies Conditions 1-3
of [10, Theorem 2.4] and thus there exists the maximal solution, z*, of (3.3) in [a, 0],
which moreover satisfies

z* = max [z 6 [a, 0] : z\t) < gv
v(t, z(t)) a.e. / , z(r0) < Nv(v)}. (3.4)

Furthermore it is easy to check that any solution z of Problem (3.3) satisfies that
IU|| < R and therefore z € [a, 0] . Thus z* is the maximal solution of (3.3) (not only
in [a, 0]).

CLAIM 2. X is a complete lattice.

Since X = \\veM C it is enough to prove that C is a complete lattice. Given a
nonempty subset Y C C it is easy to prove that wt(t) := inf{u>(0 : w e Y} and
w*(t) := sup{tu(0 : w e Y] for all t e / , are the infimum and the supremum of Y
in C, respectively.

CLAIM 3. G := (Gv)v e M : X —> X is nondecreasing.
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By using Hypotheses (gl), (g2), the fact that N is nondecreasing and property (3.4),
it is easy to prove that Gv : X -> C is nondecreasing for all v e M.

By Claims 2 and 3, the Tarski fixed point theorem ensures that G has the maximal
fixed point, u* e X, which satisfies

u* = max{w e X :u < Gu). (3.5)

CLAIM 4. The maximal fixed point ofG, u*, is the maximal solution in Y of (3.1).

Clearly, u* is a solution in Y of (3.1). Let u be another solution in Y of (3.1). Then
it is easy to verify that u e X and u < Gu. Therefore from (3.5) it follows that u < u*
and thus u* is the maximal solution of Problem (3.1). •

COROLLARY 3.2. Assume Hypotheses (gO)-(g4), (BO), (Bl) and

(B2) lim sup l | g ( * ' M ) l 1 < 1, uniformly at u e C(I, l
||*||

Then (3.1) has a minimal and a maximal solution.

PROOF. Let
)limsup — = c < 1.

IM|->oo \\X\\

By choosing in the definition of lim sup the value of e = (1 — c)/2 > 0, we have
that there exists K > 0 such that for all ue C(I, loo(M)) and all d > 0, it holds that

c + 1
||fi(;c,u)|| < ||x|| +d for all x e KM such that ||JC|| > # .

Therefore, by taking <i > AT (1 — c)/2, we arrive at the fact that a = (av)veM

b = (bv)veM defined as

2d Id
av = — and bv =1 — c 1 — c

satisfy the properties imposed in Condition (B2).
Thus Theorem 3.1 ensures the existence of the extremal solutions, xt and x*, in the

set Y = {u e C(I, L^Af)) : a < u(t0) < b}.
Moreover, if u is any solution of Problem (3.1), in particular, u(t0) = B(u(tQ), u).

If ll«(fo)ll > K then, from the previous arguments, we have that

C ^ \\u{to)\\+d

and then ||«(fo)l| < 2d/{\ - c). Therefore, a < u(t0) < b and we have that u e Y
and thus x, < u < x*. Then xt and x* are the extremal solutions. •
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REMARK 2. If we define lower and upper solutions, a and /J, for (3.1) as in [5,
page 47] in the case of one equation, and we assume Hypotheses (gO)-(g2), (BO), (Bl)
and

(B) There exists h e L\(I) such that for all u e [a, 0]

\\g(t,x,u)\\ <h(t) fora.a. t e /andalla(r) < x <

we deduce from [7, Theorem 4.1] the existence of extremal solutions in the order
interval determined by the lower and the upper solutions.

REMARK 3. The example given in [1, Section 5], which is a modification of the
well-known example of Dieudonne, shows that Theorem 3.1 is not true, in the case
M = N, when we replace /<»(N) by co(N), the set of the sequences that converge to
zero.
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