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In this study, we experimentally investigate the stress field around a gradually contaminat-
ed bubble as it moves straight ahead in a dilute surfactant solution with an intermediate
Reynolds number (20 < Re < 220) and high Péclet number. Additionally, we investigate
the stress field around a falling sphere unaffected by surface contamination. A newly
developed polarisation measurement technique, highly sensitive to the stress field in the
vicinity of the bubble or the sphere, was employed in these experiments. We first validated
this method by measuring the flow around a solid sphere sedimenting in a quiescent liquid
at a terminal velocity. The measured stress field was compared with established numerical
results for Re = 120. A quantitative agreement with the numerical results validated this
technique for our purpose. The results demonstrated the ability to determine the boundary
layer. Subsequently we measured a bubble rising in a quiescent surfactant solution.
The drag force on the bubble, calculated from its rise velocity, was set to transiently
vary from that of a clean bubble to a solid sphere within the measurement area. With
the intermediate drag force between clean bubble and solid sphere, the stress field in the
vicinity of the bubble front was observed to be similar to that of a clean bubble, and the
structure near the rear was similar to that of a solid sphere. Between the front and rear of
the bubble, the phase retardation exhibited a discontinuity around the cap angle at which
the boundary conditions transitioned from no slip to slip, indicating an abrupt change in the
flow structure. A reconstruction of the axisymmetric stress field from the phase retardation
and azimuth obtained from polarisation measurements experimentally revealed that stress
spikes occur around the cap angle. The cap angle (stress jump position) shifted as the drag
on the bubble increased owing to surfactant accumulation on its surface. Remarkably, the
measured cap angle as a function of the normalised drag coefficient quantitatively agreed
with the numerical results at intermediate Re = 100 of Cuenot et al. (1997 J. Fluid Mech.
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339, 25–53), exhibiting only a slight deviation from the curve predicted by the stagnant
cap model at low Re (creeping flow) proposed by Sadhal & Johnson (1983 J. Fluid Mech.
126, 237–250).

Key words: bubble dynamics, Marangoni convection

1. Introduction
The rise velocity of a bubble in a surfactant solution can be reduced to half its velocity in
pure water (Magnaudet & Eames 2000; Takagi & Matsumoto 2011), which is the same as
that of a solid sphere. This behaviour can be traced back to mechanisms first elucidated by
Frumkin & Levich (1947) and Levich (1962). As bubbles rise at a high Péclet number Pe
(= dU/D, where d is the bubble diameter, U is the bubble velocity and D is the diffusion
coefficient), surfactants at the bubble’s surface move from the front to the rear owing to
surface advection. Consequently, a higher surfactant concentration occurs at the rear of
the bubble, creating a gradient of surface tension along the bubble’s surface. Unlike the
typical gas–liquid boundary conditions that have zero shear stress, here, the stress occurs
owing to the surface tension gradient, known as the Marangoni effect. This modifies the
flow around the bubble, increasing its drag. In many scenarios, even a minimal surfactant
contamination of the order of a few ppm can cause the drag force on the bubble to be
comparable to that of a rigid sphere, as reported by Harper (1972) and Clift, Grace &
Weber (1978).

The variables influencing the velocity of a bubble were studied by Bachhuber & Sanford
(1974), who observed that a bubble for Reynolds number Re (= ρdU/μ, where ρ is the
liquid density, μ is the dynamic velocity) < 40 in water begin its ascent with the velocity
of a sphere under a free-slip boundary condition, but as the bubble moved upwards, it
rises with the velocity of a solid sphere. This indicates that the surfactant concentration
on the bubble’s surface increases with distance travelled, resulting in an increase in drag.
Notably, Zhang & Finch (2001) showed that, at low surfactant concentrations, the distance
to reach the terminal velocity of a solid sphere can span several metres because of the slow
pace of adsorption and desorption of the surfactant.

The aforementioned mechanism is modelled in the so-called stagnant cap model (Savic
1953; Davis & Acrivos 1966; Harper 1982; Sadhal & Johnson 1983). In this model,
two boundary conditions are considered, separated by the cap angle θC (θC corresponds to
the leading edge of the stagnant region and is defined here from the front stagnant point):
zero shear stress in the bubble front up to θC and a no-slip condition afterwards. Sadhal &
Johnson (1983) formulated a drag equation as a function of cap angle in creeping flow,
demonstrating significant drag force variations within a specific angle range (60◦ < θC <

150◦). The flow structure in the vicinity of a bubble has been investigated primarily using
numerical analysis (e.g. Cuenot, Magnaudet & Spennato 1997; Takemura & Yabe 1999;
Ponoth & McLaughlin 2000; Dani et al. 2006, 2022; Pesci et al. 2018; Kentheswaran et al.
2022, 2023). Intriguingly, many studies reported that this drag increase as a function of
the cap angle remains consistent even at intermediate Reynolds numbers (Re), except for
the specific angle range where the slope is slightly steeper than that predicted by the model
(Cuenot et al. 1997).

The change in the boundary conditions owing to the surfactant has other important
effects in addition to its effect on the velocity of the bubble. Tagawa, Takagi & Matsumoto
(2014) experimentally investigated the effects of surfactants on the path instability of a
single bubble. They observed that when Re is fixed at 400, the bubble motion transitions
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from rectilinear to a helical spiral and further to a zigzag motion with an increase in the
drag coefficient, corresponding to increased surfactant concentration. This mechanism
is explained by changes in vorticity generation owing to altered boundary conditions
and vorticity stretching/tilting. Therefore, the extent and location of boundary condition
changes, and the effect of these changes on the flow field in the vicinity of an object,
should be clarified.

However, experimental observations on stress fields near a bubble/sphere moving in a
dilute surfactant solution are quite limited. The measurement of a flow field in the vicinity
of a bubble remains a significant challenge owing to the thin boundary layer on the bub-
ble’s surface. The classical visualisation technique, i.e. particle image velocimetry (PIV),
is particularly difficult because it uses micron-sized fluid tracers. Hosokawa et al. (2017)
successfully extracted the Marangoni effect of a settling droplet using spatio-temporal
filter velocimetry with boundary-fitted measurement. Their method connected the internal
and external flows of the droplet and enabled detailed analysis of interfacial stress transfer.
However, the direct visualisation of the Marangoni effect around a gas bubble remains
challenging, especially because internal flow tracking is not feasible. More importantly, to
locate the location of the cap angle, we would prefer to visualise the stress field. Although
fluid stresses can be estimated from PIV data, the obtained stress data are often noisy
because estimating stresses from PIV requires spatial derivatives of the velocity field.

In this study, we experimentally examined the stress field around a rising bubble in
a dilute surfactant solution using photoelastic measurement, a recently developed flow
visualisation method employing nano-sized rods (Nakamine et al. 2024). To validate this
technique, we first analysed the stress field around a solid sphere sinking in a quiescent
liquid with terminal velocity, comparing our results with well-established numerical
simulation. This comparison also served to characterise the stress field simulating a fully
contaminated bubble. Subsequently, we investigated a bubble rising rectilinearly in a
quiescent surfactant solution at intermediate Re (20 < Re < 220) and high Péclet numbers
Pe = O(103−105). By observing bubbles at various distances travelled, we characterised
the stress field near the bubble’s surface, where the boundary condition transitioned from
a clean to a contaminated state. The cap angle was then estimated from the experimental
result. Finally, we discuss the relevance of the cap angle in the stagnant cap model
and previously reported and previous numerical study by Cuenot et al. (1997).

2. Experimental and numerical methods

2.1. Experimental methods

2.1.1. Experimental set-up
We observed the flow structure around a bubble and a solid particle in a cellulose
nanocrystal (CNC) suspension that exhibits photoelasticity (Lane et al. 2022; Nakamine
et al. 2024; Worby et al. 2024). Flow birefringence occurs when non-spherical
nanoparticles align in a certain orientation under the effects of shear (Calabrese, Haward &
Shen 2021). By controlling the polarisation state before flow birefringence and measuring
the polarisation state after, we can determine the phase retardation Δ and azimuth φ.
According to the stress-optic law, Δ corresponds to the magnitude of the principal stress
difference, and φ to its orientation.

Figure 1 shows a schematic of the experimental set-up. Back light generated by a light
source (SOLIS-525C, Thorlabs) with a wavelength λ of 520 nm was circularly polarised
through a linear polariser and a quarter-wave plate. The circularly polarised light passed
through the flow around the object, resulting in the emission of elliptically polarised light
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Figure 1. The schematic of the experimental set-up. (a) Overview. (b) The schematic diagram of the
measurement principle.

with Δ and φ. A high-speed polarisation camera (CRYSTA PI-1P, Photron Ltd.) was
used to measure Δ and φ. The camera had linear polarisers whose angles differed by
45◦ at neighbouring pixels (Onuma & Otani 2014). Using the intensity distribution of the
four pixel set (superpixels), we derived the phase retardation and azimuth. Applying the
four-step phase-shifting method, we described Δ and φ using the intensities measured
through each linear polariser, denoted as I0, I45, I90 and I135 (Lane et al. 2022; Yokoyama
et al. 2023; Nakamine et al. 2024)

Δ = λ

2π
sin−1

√
(I90 − I0)2 + (I45 − I135)2

I/2
, (2.1)

φ = 1
2

tan−1 I90 − I0

I45 − I135
, (2.2)

where I is the sum of the four intensities, i.e. I0, I45, I90 and I135. The image resolution
for the phase retardation and azimuth images was 512 × 512 pixels. The camera captured
images at 2000 f.p.s. and 10–20 µm pix−1. A time-averaged values over 10 frames was
applied to all experimental data.

We used a CNC (Cellulose Lab Ltd.) suspension. A 0.5 wt % of CNC and 0.4 ppm of
Triton X-100 were mixed with ultrapure water using a magnetic stirrer and then sonicated
for 15 min using a homogeniser (UX-300, Mitsui Electric Co., Ltd). This treatment
increases the transparency of a suspension, and the suspension behaves as a Newtonian
fluid. This rheological uniformity enables direct comparison with Newtonian Direct
Numerical Simulation results. The viscosity of the CNC suspension μ was 1.7 + 0.1 mPa ·
s at 10 ◦C measured using a rheometer (MCR302, Anton Paar Co. Ltd.). The 0.5 wt % CNC
suspension is essentially Newtonian under the present conditions: at 10 ◦C the viscosity is
μ = 1.7 + 0.1 mPa s over the shear–rate range 20 � γ̇ � 1000 s−1. The highest shear rate
γ̇ ∼ 6U/D estimated from the bubble diameter and velocity observed in the experiment
is O(102), which is within the range of viscosity measurement, further supporting the
validity of the Newtonian approximation adopted in this study. The suspension exhibits
moderate light attenuation, with a noticeable decrease in optical transmittance for a single-
pass path length exceeding approximately 0.1 m. Therefore, the present implementation is
best suited for vessels with optical path lengths of O(0.1) m or less. The surface tension
of the CNC and Triton X-100 mixed suspension was measured using the pendant drop
method (Berry et al. 2015). The surface tension 5 s after droplet formation was found to
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be 74 ± 4 mN m–1, which agrees, within experimental uncertainty, with the commonly
reported value for pure water at 10◦C (74.23 ± 0.37 mN m−1; Vargaftik, Volkov & Voljak
1983).

The CNC suspension was filled into a vessel (90 mm × 90 mm × 450 mm, glass),
in which the effects of the wall on the flow structure around an object rising/falling
at the centre of the vessel could be neglected (Clift et al. 1978). A single bubble was
generated from the bottom of the vessel using a sound speaker (FF125K, Fostex) (Kusuno,
Yamamoto & Sanada 2019). The sound speaker was activated using an input signal via a
function generator (WF1974, NF Corp.) and an audio amplifier (AP20d, Fostex). The static
pressure at the outlet of the bubble generator was controlled using a pressure controller
(PACE 5000, Baker Hughes). The measurement height varied between 5 and 400 mm from
the outlet of the bubble generator. We observed a bubble rising in a rectilinear path within
the measurement range, indicating that the flow around the bubble was axisymmetric. The
Reynolds number was within the range of 20 < Re < 220.

To verify the performance of the polarisation measurement, we used a solid sphere
(1770 kg m−3, 6 mm in diameter, Plastic). The sphere was quietly dropped from the
surface of the suspension. We confirmed that no gas was adsorbed at the solid–liquid
interface. The camera was positioned in an area with a sphere falling distance of 120 mm,
which was sufficiently long to assume a steady-state condition to be reached at Re = 120.

2.1.2. Integrated photoelasticity
Considering a two-dimensional stress field of infinitesimal thickness dz around an object,
the phase retardation Δ, azimuth φ and stress σ are related by

Δ cos 2φ = C(σxx − σyy)dz, (2.3)

Δ sin 2φ = 2Cσxydz, (2.4)

where σxx, σyy and σxy are the stress components in the Cartesian coordinate system
shown in figure 1(b), and C is the material-specific constant. In Mohr’s circle terms,
Δ is the circle diameter, while φ gives the angular position of that point. Because
the isotropic pressure contribution cancels, Δ and φ isolate the viscous stresses. Here,
C was determined by fitting the numerical birefringence fields around a sphere to the
experimentally measured retardation profiles (see in § 3.1.1). Based on the proportionality
between the phase retardation and the principal stress difference, a value of C = 1.65 ×
10−5 Pa−1 provided the best agreement. This value is comparable to previously reported
values, such as C = 1.5 × 10−5 Pa−1 in Nakamine et al. (2024). Given that the rheological
and optical properties of CNC suspensions vary depending on preparation conditions,
we consider this agreement satisfactory and within an acceptable range for quantitative
birefringence analysis. Because we consider a two-dimensional stress field, the stress
component in the optical axis direction, i.e. z-direction, does not affect the photoelastic
measurement results. However, our experimental results for the phase retardation and
azimuth were three-dimensional stress fields in which the fluid stress field was integrated
along the optical path. Here, we adopted the method of integrated photoelasticity (Ramesh
2000), where the stress field is sliced into a collection of virtual thin plates, which are
sufficiently thin to be assumed as a two-dimensional stress fields (figure 1b). In this
case, the polarisation state through the three-dimensional stress field can be calculated
by multiplying the Stokes parameter S by the Mueller matrix X(i) corresponding to each
plate

S′ = X(Aθ )X(N) . . . X(i) . . . .X(2)X(1)X( Q45)X(P0)S, (2.5)
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where X(i) is the number of the plate from which the fluid stress field is sliced (including
the linear polariser X(P0), quarter-wave plate X( Q45) and oriented analyser X(Aθ )) and is
expressed in terms of phase retardation and azimuth (Nakamine et al. 2024)

X(i) =

⎡
⎢⎢⎣

1 0 0 0
0 1 − (1 − cos Δ(i)) sin2 2φ(i) (1 − cos Δ(i)) sin 2φ(i) cos 2φ(i) − sin Δ(i) sin 2φ(i)

0 (1 − cos Δ(i)) sin 2φ(i) cos 2φ(i) 1 − (1 − cos Δ(i)) cos2 2φ(i) sin Δ(i) cos 2φ(i)

0 sin Δ(i) sin 2φ(i) − sin Δ(i) cos 2φ(i) cos Δ(i)

⎤
⎥⎥⎦ .

(2.6)
The Mueller matrices X(i) . . . X(N) are calculated using (2.3), (2.4) and (2.6), based on
stress field obtained from the numerical results explained in § 2.2. Because the numerical
results are velocity–pressure fields, viscous stresses are obtained from the velocity fields
and then transformed into integrated phase retardation and azimuth using the Stokes
parameters and Mueller matrices. Finally, using (2.5), we can obtain the integrated
phase retardation and azimuth, which can be directly compared with experimental results
(for more details, see Yokoyama et al. 2023).

2.1.3. Surfactant effects
In aqueous surfactant solutions, the drag coefficient of the bubble changes from that
with a free-slip condition to that of a no-slip condition (Cuenot et al. 1997). At high
Péclet numbers and concentrations below the critical micelle concentration (CMC),
surfactants on the surface are transported towards the rear of the rising bubble, resulting
in a concentration gradient along the surface. Consequently, the surface tension gradient
induces the shear stress.

In this study, Triton X-100 was used, and we set the bulk concentration C to 0.4 ppm
(7 ×10−4 mol m−3). Because the concentration in this study was much smaller than the
CMC of Triton X-100 (0.23 mol m−3), micelles did not form. Furthermore, when the
Péclet number is of the order of 103 or higher, advection occurs on a much shorter time
scale than diffusion. Under such conditions, the sudden change in surfactant concentration
on the surface, or stress jump, is determined by the advection of surfactant and the kinetic
balance of adsorption and desorption.

Adsorption/desorption models of interfaces have been proposed previously (Levich
1962; Lin, McKeigue & Maldarelli 1990). Following Langmuir adsorption kinetics, the
surfactant exchange js can be expressed by the following equation:

js = kaCs(Γ∞ − Γ ) − kdΓ, (2.7)

where Cs is the sublayer concentration, Γ∞ is the maximum adsorbed surface
concentration, Γ is the surface concentration, ka is the adsorption constant and kd is the
desorption constant. For Triton X-100, Γ∞ = 2.9 × 10−6 mol m−2, ka = 50 m3 (mol s)−1

and kd = 3.3 × 10−2 s−1 (Lin et al. 1990). The equilibrium interfacial concentration Γmax
at js = 0 is

Γmax = kaCs

kaCs + kd
Γ∞. (2.8)

We estimated that Γmax/Γ∞ is 0.52, it indicates that the interface is not saturated, and
Marangoni effects are expected to remain active under the current conditions. For initially
clean interfaces (Γ = 0), the equilibrium surface concentration can be scaled using the
following equation:

Γmax =
∫ teq

0
js(t)dt ∼ kaCsΓ∞teq , (2.9)
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where teq is the time required to reach the equilibrium concentration. From (2.8) and (2.9),
the order of teq is (kaCs + kd)−1. For a bubble rise velocity of 260 mm s−1 with a radius
of 0.73 mm, the distance required to reach equilibrium is zeq ∼ teqU ∼ 1 m. Therefore,
we can infer that the velocity decreases gradually in the measurement region used in this
study. Note that, in this study, the time-averaged value over 10 frames (5 ms) was used.
Because the distance travelled by the bubble during this period was O(10−4) m, which was
sufficiently short compared with the characteristic distance O(1) m over which interfacial
adsorption varies, the effect of averaging was not considered to be significant.

Furthermore, we evaluated whether the present experimental conditions satisfy the
criteria for the stagnant cap regime, based on the theoretical framework presented in
Palaparthi, Papageorgiou & Maldarelli (2006). In this model, the validity of the stagnant
cap regime can be assessed by comparing the time scales of adsorption and diffusion
with that of surface convection using the dimensionless numbers Bi(1 + k), where Bi =
kd R/U is the Biot number and k = kaC/kd is the non-dimensional bulk concentration.
Substituting the parameters used in this study, we obtain Bi(1 + k) � 2 × 10−4. This value
is much smaller than unity, confirming that the surfactant transport is dominated by surface
convection rather than adsorption or bulk diffusion. Therefore, the present system is indeed
within the stagnant cap regime.

2.2. Numerical methods
A numerical simulation of the flow around the solid sphere was performed using the
open source code Basilisk (Popinet 2015) to validate the phase retardation and azimuth
obtained from the experimental results, which corresponded with the fluid stress field.
A flow around a fixed sphere with uniform inflow was computed. The equations of motion
and divergence-free conditions are expressed as

∂u
∂t

+ ∇ · (uu) = 1
ρ

(−∇ p + ∇ · 2μD) , (2.10)

∇ · u = 0 (2.11)

where D = (∇u + (∇u)T)/2 is the strain-rate tensor. The sphere was described using
an embedded boundary method. For the solid sphere, the boundary condition was no
slip. The grid size near the interface was 1/128 of the diameter, which was sufficient
to resolve the boundary layer, of the order of O(Re−0.5) in thickness (e.g. Lamb 1945).
The computational domain was 40 times larger than the diameter. The effect of boundary
conditions at the wall of the computational domain could be neglected. The length of
the standing eddy at Re = 100 was determined to be 0.82d with a separation angle of
128◦, which agreed with previous studies (Pruppacher, Le Clair & Hamielec 1970; Clift
et al. 1978; Magnaudet, Rivero & Fabre 1995), thus validating the numerical results. In
addition, at very low Reynolds number Re = 0.1, the computed drag coefficient is 249
(with pressure and viscous contributions of 81.0 and 168, respectively), which agrees well
with theoretical and numerical results in the Stokes regime. This supports the validity of
our numerical results also in the creeping-flow regime.

3. Results and discussion

3.1. Flow around a solid sphere

3.1.1. Measurement validation: stress field around a solid sphere at Re = 120
In this subsection, we validate the photoelastic measurement technique by comparing
experimental results with established numerical simulations. This comparison was
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azimuth. (c) Numerical phase retardation. (d) Numerical azimuth. (e) Phase retardation near the surface.
(f ) Azimuth near the surface. The dashed line of (a) is the region of r = 1.05R to 1.30R.

conducted both qualitatively and quantitatively to demonstrate the method’s accuracy and
reliability in capturing stress fields around bluff bodies moving through a quiescent liquid.
Specifically, we focused on the flow around a solid sphere at Re = 120, representing an
intermediate Re regime similar to that of bubbles.

Figures 2(a) and 2(b) show the experimental results for phase retardation and azimuth
fields around a solid sphere falling in a CNC suspension at Re = 120. The white region
corresponds to the sphere itself. The phase retardation, which is proportional to the
principal stress difference, and the azimuth, which reflects the stress component alignment,
were observed during the motion of the sphere.

Figures 2(c) and 2(d) present the corresponding numerical simulations for the same
system. A direct comparison revealed reasonable agreement between the experimental and
numerical results, indicating the accuracy and reliability of the polarisation technique.
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This validation highlighted the potential of this method in capturing stress fields
quantitatively.

Figures 2(e) and 2(f ) depict detailed phase retardation and azimuth profiles in the
near-surface region, specifically from r = 1.05R to 1.30R. Remarkably, the experimental
measurements exhibited excellent agreement with numerical results within this range for
20◦ < θ < 160◦, confirming the quantitative accuracy of the stress-optic law as applied
through polarisation techniques. This agreement also demonstrated the capability of this
method to accurately resolve stress fields in the boundary layer, whose thickness was
approximately δ/R ∼ √

1/Re ∼ O(10−1). The ability to resolve stress fields in this region
supports analysis of flow behaviour around the sphere, including detailed discussions on
the boundary layer dynamics and wake structures, as discussed in the following sections.

In areas close to the stagnation points (both front and rear, i.e. θ ∼ 0◦ and 180◦),
experimental azimuth measurements exhibited larger errors. This discrepancy resulted
primarily from two factors: (i) the azimuth angle shifted sharply from 180◦ to 0◦ across
the symmetry axis, where shear stress changed sign, and (ii) the phase retardation in
these regions was minimal, resulting in reduced measurement accuracy. In addition, data
acquisition techniques, particularly at the interface (r < 1.05R), were critical for further
reducing errors by noise and data resolution near the interface owing to pixel shadowing
and fluctuations.

Despite the inherent challenges, the polarisation technique demonstrated its capability
to capture key features of the stress field. These results established its utility for analysing
particle-laden flows, including the flow around spheres and bubbles examined in this
study. Furthermore, the findings suggest the potential to extend the method to more
complex multiphase and non-Newtonian flow systems, subject to further investigation and
refinement.

3.1.2. Physical insights into the stress field around a sphere
In this section, we explore the physical characteristics of the stress field around a solid
sphere, based on the experimental validation from the previous section (§ 3.1.1). Figure 3
provides a schematic and three-dimensional illustration of the flow structure around the
sphere at Re = 120, highlighting key features such as the boundary layer, wake and
standing eddy formation. To deepen our understanding, figure 4 systematically presents
stress fields at various Re, including two limiting cases: Stokes and potential flows. This
comparison enables us to explore the evolution of the stress field across different regimes,
from low to intermediate Re and potential flow limits.

To enhance readability and understanding, we first examine the stress fields across
different Re using figure 4. For the potential solution, the phase retardation decreases
with increasing distance from the sphere’s surface and exhibits a slight dependence on the
angular coordinate, θ . In contrast, the azimuth profile strongly depends on θ rather than on
the radial distance, r , aligning with the potential flow velocity distributions, ur = U (1 −
R3/r3) cos θ and uθ = −U (1 + R3/2r3) sin θ . In Stokes flow, where the velocities in the
fluid are ur = U (1 + R3/2r3 − 3R/2r) cos θ and uθ = −U (1 − R3/4r3 + 3R/4r) sin θ ,
the phase retardation also decreases with increasing distance, but the azimuth is influenced
by both θ and r , resulting in a profile that clearly deviates from the potential solution. The
phase and azimuth profiles in Stokes flow align well with behaviour observed in the low
Re regime (Re � 1). At higher Re (10 � Re), a boundary layer develops around the sphere,
and the azimuth profile in the outer flow begins to resemble that of the potential solution.
At intermediate Re (10, 100), the flow structure transitions from a viscous-dominated
regime to an inertial-dominated regime, with noticeable deviations from symmetry in the
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(∂uy/∂y ∼ 0)

(∂ut/∂n ∼ 0)

ω ∼ 0

(b)

(c ii)

(a) (b)

(a)

(c i)

(∂uy/∂ x ∼ 0)

Figure 3. (a) Schematic of the flow field around a solid sphere at Re = 120. Key features of the flow are
labelled: (a) mushroom-shaped region of vanishing vorticity (ω ∼ 0), (b) region where the normal stress
gradient is negligible (∂uy/∂x ∼ 0) and (c) regions in the wake where (c i) the tangential stress gradient at
the surface vanishes (∂ut/∂n ∼ 0) and (c ii) the normal stress gradient is nearly zero (∂uy/∂y ∼ 0). (b) Three-
dimensional visualisation of the flow structure around the sphere, showing the boundary layer, wake and
standing eddy formation. Experimental results related to this flow field are shown in figure 2.

phase retardation fields. These trends provide a framework for understanding the specific
characteristics of the flow at Re = 120, which are discussed in detail in the following
paragraphs.

The flow field at Re = 120 is depicted in figure 3, highlighting key regions of interest:

(a) the mushroom-shaped phase retardation at the front of the sphere, observed despite
not being the area of maximum stress, with negligible vorticity (ω ∼ 0);

(b) the boundary layer, extending until the normal stress gradient becomes minimal
(∂uy/∂x ∼ 0); and (c i) and (c ii), corresponding to regions in the wake in which
tangential and normal stress gradients vanish. In the following, we discuss the distinct
characteristics of each region.

In the region shown in figure 3(a), which corresponds to the area in front of the sphere
and outside the boundary layer, the flow exhibits characteristics of potential flow, with
negligible vorticity (ω ∼ 0). The azimuth profile shown in figure 2(b–d) aligns with the
theoretical potential flow solution, and the phase retardation decreases smoothly with
distance from the sphere. However, this alone does not explain the mushroom-shaped
phase retardation pattern observed at Re = 120, which requires consideration of the
combined effects of potential flow and the boundary layer.

In the outer region (figure 3a), the flow follows potential flow behaviour, characterised
by negligible vorticity and a stress distribution primarily dependent on the angular
coordinate, θ , rather than the radial distance, r . This corresponds with the velocity
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Figure 4. Numerical results of flow around a solid sphere for various Reynolds numbers (Re = 0.1, 1, 10, 100)
and analytical results for two limiting cases (Stokes flow and potential flow). (a) Phase retardation Δ and (b)
azimuth φ distribution. These results illustrate the evolution of stress fields and their dependence on Re and
flow regimes.

distribution predicted for potential flow, where phase retardation decreases gradually with
increasing distance from the sphere, setting a baseline for the retardation profile in the
outer flow region.

Closer to the sphere, within the boundary layer, the no-slip condition at the solid surface
causes the velocity to sharply drop to zero, creating steep velocity gradients and significant
vorticity. This leads to a pronounced increase in phase retardation near the sphere’s
surface. At the boundary layer’s edge, where the transition to potential flow occurs, the
velocity gradient reverses, reducing viscous stress and causing the phase retardation to
drop abruptly. This sharp transition at the boundary layer edge significantly contributes to
the mushroom-shaped retardation pattern.

Thus, the combined effects of smooth potential flow behaviour in the outer region
and the steep velocity gradients within the boundary layer result in the formation of the
mushroom-shaped phase retardation at Re = 120. The distinct drop in retardation at the
boundary layer edge reveals the interplay between these two flow regimes, highlighting
the unique structure of the stress field around the sphere at intermediate Re.

In the region shown in figure 3(b), the boundary layer forms as a result of the
no-slip condition at the sphere’s surface. Within this region, phase retardation increases
significantly owing to steep velocity gradients near the surface, whereas the azimuth
profile reflects the orientation of the stress components induced by these gradients. A large
phase retardation, indicating high stress, is observed from the front stagnation point to the
equator of the sphere. In this region, the azimuth remains relatively constant, with values
ranging from 135◦ to 180◦ on the left side of the sphere and 0◦ to 45◦ on the right side.
This distinction in the azimuth profile highlights the difference in flow structure between
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the near-solid region and the surrounding flow, marking the boundary layer as a region
dominated by vorticity (or viscous stress).

At the boundary layer’s edge, phase retardation decreases sharply, eventually becoming
nearly zero as the transition to potential flow occurs. This transition is accompanied by a
reversal in the velocity gradient, which reduces the viscous stress. The azimuth profile
further illustrates this transition, with azimuth values of approximately 135◦ near the
solid surface and 45◦ immediately outside the boundary layer. This trend is particularly
pronounced at higher Re, where the thinner boundary layer sharpens the velocity gradient
and stress distribution, emphasising the difference between the near-solid and outer flow
regions.

In figure 3(b,c), areas of significant phase retardation do not extend to the rear
stagnation point but instead spread downstream, forming the wake. Similarly, regions
with characteristic azimuth extend into the wake. Near the rear stagnation point, phase
retardation is minimal, and the azimuth is 180◦ (or 0◦). However, as the distance from the
rear stagnation point increases (approximately 0.25d from the solid surface), the azimuth
transitions to 90◦. The region where the azimuth remains 180◦ represents part of the
standing eddy but does not encompass its entire structure.

Overall, the unique interplay between the steep velocity gradients in the boundary layer
and the transition to potential flow at the boundary layer edge contributes to the observed
stress field characteristics. The phase retardation and azimuth profiles, particularly their
transitions, reflect the underlying flow physics, emphasising the role of vorticity and
velocity gradient reversals in defining the boundary layer and wake structure.

In the region shown in figures 3(c i) and 3(c ii), the wake exhibits minimal phase
retardation, with the azimuth transitioning from 180◦ near the rear stagnation point to
90◦ further downstream. These regions highlight the formation of a standing eddy, whose
size and intensity are determined by the Re, as depicted in figure 4. The stress gradients
in this wake region reflect the transition from the recirculating flow behind the sphere to
the external flow. Note that determining the presence and size of the standing eddy purely
from phase retardation measurements is challenging because the retardation values in this
region are small, as shown in figures 2 and 4. Instead, the azimuth profile provides more
reliable insights into the structure of the standing eddy.

First, consider the separation point on the solid surface (figure 3c i), where tangential
stress becomes approximately zero as the velocity gradient reverses before and after
separation. In the presence of a standing eddy, the azimuth increases with θ . Next, in the
standing eddy region along the symmetry axis (figure 3c ii), the azimuth transitions from
180◦ near the rear stagnation point to 90◦ further downstream. The distance from the solid
surface to this azimuth transition point is approximately 0.24d, which does not represent
the full length of the standing eddy (approximately 0.94d at Re = 120). This transition
corresponds to the condition ∂uy/∂y = 0 in the (x, y) coordinate system, indicating the
location of maximum velocity within the standing eddy. If no standing eddy is present,
then ∂uy/∂y < 0 behind the object, suggesting that the azimuth profile can be used to
infer the presence or absence of a standing eddy.

These results suggest that the narrow region between the separation point (c i) and the
maximum velocity point in the standing eddy (c ii) is critical for understanding the stress
profile in the wake. This region provides valuable insights into the interplay between
recirculating flow and the transition to the external flow.

As demonstrated above, analysing the phase retardation and azimuth provides valuable
insights into distinguishing critical flow regions, such as the boundary layer and wake, and
understanding their underlying structures. These measurements enable us to link stress
distributions with the flow dynamics, revealing the intricate interplay between viscous
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Figure 5. Drag coefficient of the bubble for various rising heights. The colours show the bubble sizes in
each experiment. Closed symbols represent experiments conducted in the presence of surfactants, while open
symbols indicate those performed in surfactant-free solutions. (i)–(iv) Correspond to figure 6.

and inertial effects. While pressure visualisation remains a challenge for future studies,
the square of the phase retardation correlates with viscous energy dissipation, offering a
potential pathway to relate stress field measurements to pressure drop and overall flow
behaviour.

3.2. Flow around a contaminated bubble

3.2.1. Surfactant-induced stress variation around a contaminated bubble
We observed an evolution in the drag coefficient of bubbles rising in a surfactant solution
(ultrapure water + CNC 0.5 wt % + Triton X-100 0.4 ppm). Figure 5 shows the drag
coefficient ratio for various heights (h = 5, 20, 50, 100, 200, 300 and 400 mm), with
the bubble radius in the range 0.35 < R < 0.8 mm. The drag coefficient ratio C∗

D is
expressed as

C∗
D = CD − CDb

CDs − CDb

, (3.1)

where CDb = 16/Re(16 + 3.315Re0.5 + 3Re)/(16 + 3.315Re0.5 + Re) is the drag coeffi-
cient of the spherical clean bubble (Mei, Klausner & Lawrence 1994), and CDs =
24/Re(1 + 0.27Re)0.43 + 0.47[1 − exp (−0.04Re0.38)] is the drag coefficient of a solid
sphere (Cheng 2009). The reason for selecting spherical bubbles was that the bubble
aspect ratio χ is less than 1.25 and almost less than 1.05 (see Appendix B for shape
of gradually contaminated bubble). In fact, the Eötvös number Eo = ρgd2/σ in the
present experiments was less than 0.32, indicating that deformation was sufficiently
small. This, combined with the fact that the Reynolds number range of this study was
in the intermediate regime, allowed for an accurate evaluation of the drag coefficient. As
various drag coefficient models are available for solid spheres (Goossens 2019), we had
to choose our model carefully. In the low Re region, Re ∼ 20 for the smallest bubble in
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this study, a discrepancy of up to 6 % was observed between the models. In this study,
the model proposed by Cheng (2009) was used as the drag coefficient model closest to
the previous numerical results (Magnaudet et al. 1995) for Re = 20. The drag coefficient
in the experiment was estimated based on the force balance described by the equation of
motion (Magnaudet & Eames 2000)

ρGV
dU
dt

= Fb + Fd + Fa, (3.2)

where Fb = −ρV g is the buoyancy force, Fd = −(1/2)πρCD R2U |U | is the drag force
and Fa = −CMρV dU/dt is the added mass force. Since the mass of the bubble is
negligible compared with that of the surrounding liquid, the added mass term effectively
represents the inertial response of the system. When accounting for bubble deformation,
the added mass coefficient CM was determined using a linear interpolation model
CM = 0.62χ − 0.12 (Klaseboer et al. 2001). Note that the size of the bubble was controlled
in the experimental set-up, but the camera was at fixed position and thus all results were
for different individual bubbles. In the early stage of bubble displacement (h = 5 mm),
the drag coefficient of the bubbles in the CNC suspension was close to that of clean
bubbles (C∗

D = 0), but it deviated slightly. For bubbles that travelled a longer distance,
the drag force increased around a height of h ∼ 300 mm, and the drag coefficient for all
bubbles was closer to that of a solid sphere (C∗

D = 1). We argue that the bubbles became
progressively more contaminated and the transition of the boundary conditions occurred
owing to the Marangoni effect. The drag coefficient of some contaminated bubbles was
even higher than that of solids. This overshoot has been also observed in numerical results
(Cuenot et al. 1997; Kentheswaran et al. 2023). We emphasise that the primary cause of
the observed drag increase is the presence of Triton X-100. Although it has been reported
that certain tracer materials can exhibit weak surface activity and reduce bubble velocity
(e.g. Weiner et al. 2019), such effects are generally limited in strength and occur only under
specific conditions. In contrast, Triton X-100 is a well-known surfactant with established
surface activity and a slow desorption dynamics, which lead to progressive interfacial
immobilisation as the bubble rises. In our experiments, we confirmed that Triton X-100
substantially reduces interfacial mobility after a rise distance of approximately 300 mm.
By comparison, the effect of CNC particles on the interface is significantly weaker. While
CNC can adsorb at the interface to a certain extent, its surface activity is lower and
their influence on interfacial mobility develops more gradually. This limited interfacial
activity is consistent with the surface tension measurements presented in Appendix C,
which show negligible differences between Triton X-100 solutions with and without CNC.
This distinction is quantitatively supported by our measurements: the dimensionless drag
coefficient C∗

D reaches values of 0.2−0.4 at a rise height of h = 50 mm in Triton X-100
solutions, whereas similar values are observed only at h = 300 mm in CNC suspensions.
This sixfold difference in rise distance indicates that the interfacial immobilisation caused
by CNC is substantially less pronounced under the same conditions. We acknowledge
that CNC particles may introduce minor quantitative changes in parameters such as the
drag coefficient or surface stress. However, the essential features reported in this study –
particularly the abrupt transition in interfacial stress – remain clearly observable across
all tested conditions. Therefore, we conclude that the central findings of this work are
robust and not significantly influenced by the limited interfacial effects associated with
CNC particles.

Let us examine the flow structure around the bubble at every height (h = 5, 50, 100 and
400 mm). Figure 6(i–iv) show the polarisation measurement results around the bubble
with a diameter of 0.59 ± 0.01 mm at heights of h = 5, 50, 100 and 400 mm, respectively,
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Re Eo C∗
D χ

(i) 128 0.19 0.13 1.14
(ii) 102 0.20 0.45 1.07
(iii) 71 0.18 0.84 1.05
(iv) 76 0.20 0.95 1.04

Table 1. Experimental conditions for the gradually contaminated bubble case. (i)–(iv) Correspond to figure 6.
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Figure 6. Retardation (a) and azimuth (b) field around the bubble, whose radius was 0.59 ± 0.01 mm, at
(i) CD = 0.39 (h = 5 mm), (ii) CD = 0.69 (h = 50 mm), (iii) CD = 1.18 (h = 100 mm), (iv) CD = 1.22
(h = 400 mm). The position at which retardation jump occurred is indicated by a dashed circle. The value of
CD and h are also indicated in figure 5.

where the results are time averaged (5 ms, 10 frames). The conditions corresponding to
each panel (i)–(iv) are summarised in table 1. Note that the averaging time was much
shorter than the transient accumulation of the surfactant and much shorter than the bubble
velocity change, as discussed in § 2.1.3. The phase retardation and azimuth near the bubble
(r = 1.05R) are shown in figures 7(a) and 7(b).

A bubble at h = 5 mm (figure 6i) behaved similarly to a clean bubble. First, for a nearly
clean bubble (for more detail see figure 7a), the largest phase retardation was observed
at the front stagnant point in the entire field. This indicated a completely different flow
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Figure 7. (a) Phase retardation near the bubble’s surface (r = 1.05R). (b) Azimuth. The results for CD = 0.39,
0.69, 1.18 and 1.22 correspond to those for figure 6(i–iv), respectively. The dashed circles indicate retardation
jumps.

structure from the solid case, which had the largest phase retardation around the equator.
The phase retardation was very small at the side of the bubble. We observed that this
was because the boundary condition was a free-slip condition. Slightly further from the
rear stagnant point (θ ∼ 150◦), a large phase retardation was observed. This region was
certainly a wake region, but the phase retardation was larger than in the solid-sphere
case. Figure 6(i) shows that little azimuth change occurred in the radial direction, which
was not observed in the solid sphere in figure 2. In addition, the azimuth around the
bubble exhibited near fore–aft symmetry, similar to a potential flow, indicating that the
vorticity generated at the surface was small. This indicated that the bubble’s surface largely
maintained a free-slip condition, which resulted in a small deviation from the potential
flow owing to insufficient vorticity generation. However, the azimuth deviated from the
potential in the vicinity of the rear part indicated by the blue dashed circle. Therefore, the
reason for the deviation from the potential flow was considered to be a transition from
free slip to no slip in the flow structure owing to contamination in the vicinity of the rear
part. This could be observed more clearly as the rise height increased with accumulating
surfactants on the bubble’s surface.

The bubble at h = 50 mm (figure 6ii) was expected to be at intermediate contamination
based on its drag coefficient. Because its rise velocity was smaller than that of the clean
bubble, the magnitude of the phase retardation around the bubble at h = 50 mm was
smaller than that of the clean bubble because the phase retardation was proportional to
the velocity in a similar flow, as can be observed from (2.3) and (2.4). Nevertheless, in
the front part of the bubble, both phase retardation and azimuth exhibited the same trend
as that of a clean bubble. Note that, in the region θ ∼ 105◦, a jump occurred in the phase
retardation and azimuth near the bubble’s surface, indicating that the boundary conditions
have transitioned. The jump in φ signifies that, in the Cartesian frame, the ratio between the
in-plane normal stress (σxx − σyy) and the shear stress σxy changes abruptly. Assuming that
the flow upstream of the bubble resembles a clean interface, where the normal component
dominates, the sudden appearance of the jump implies an increase in the shear component
at this polar angle, i.e. the interfacial condition locally shifts toward a no-slip condition.
The phase retardation and azimuth in the region below the jump were similar to those of
the solid sphere, except the non-zero phase retardation at the rear stagnant point. At the
rear of the bubble, we estimated that detachment occurred because φ increased with the
increase in θ .
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The bubble at h = 100 mm (figure 6iii) had a drag coefficient similar to a solid
sphere and could be assumed to be a ‘fully contaminated’ bubble from the drag
coefficient perspective. The magnitude of the phase retardation was even smaller than for
h = 50 mm owing to the velocity reduction. Now, in the region θ ∼ 70◦, the phase
retardation and azimuth changed drastically, i.e. a jump occurred near the bubble’s surface.
The boundary condition was the no-slip condition in a larger area than the bubble at h =
50 mm because of the accumulated contamination, although the bubble was not a fully
contaminated one from the flow structure perspective. When the contamination advanced
to this stage, the boundary condition for 0◦ � θ � 70◦ was similar to that of the clean
bubble in the front, and that for 70◦ � θ � 180◦ was close to that of the solid sphere in
the rear. Unlike the h = 50 mm bubble, the phase retardation at the rear stagnation point
was zero. The fact that the drag coefficient agreed with that of the solid sphere although
the entire flow field did not match that of the solid sphere can be attributed to the manner
in which normal and shear stress contributions offset each other. Specifically, although
the local normal stress around θ ∼ 70◦ differed from that of a fully no-slip sphere, the
front region (0◦ � θ � 70◦) retained a free-slip boundary condition, which balanced out
this difference such that the overall normal force remained comparable to that of the
solid sphere. For the shear stress, its contribution to drag was weighted by sin θ . Because
sin θ was small in the front part, the difference between free-slip and no-slip conditions
had only a minor effect on the total shear contribution. Consequently, although the local
flow field deviated from the fully no-slip cases, the integrated normal and shear stresses
produced nearly the same drag coefficient as that of a solid sphere, as indicated by previous
numerical studies (e.g. Cuenot et al. 1997).

The bubble at h = 400 mm (figure 6iv) was the most contaminated bubble in this study.
Compared with the bubble at h = 100 mm, the boundary condition transition occurred
more forward (θ ∼ 40◦). The evolution of the angle where the jump in the boundary
condition occurred 30◦ ahead of the bubble of h = 100 mm, although the rising trajectory
was four times longer. This indicated that a very long time was required for the front part
to become a no-slip condition.

The polarisation measurement experiments described in this section showed that, as
the rising distance of the bubbles increased, the transition from the free-slip to no-slip
condition (flow around a clean bubble to flow around a solid sphere) occurred in sequence
from the rear of the bubbles. The point at which the boundary conditions transitioned
appeared as a jump in the phase retardation and azimuth.

At the point where the boundary condition shifts from free slip to no slip, a very strong
vorticity (shear stress) must be generated at the surface to satisfy the continuity equation
(Cuenot et al. 1997).

Here, we reconstructed the normalised viscous shear stress σnt and normal stress
σnn near the surface from the retardation and azimuth results (see Appendix A for
axisymmetric reconstruction method). Note that the stress components are modified to
the (r , θ ) coordinates along the surface from (x , y) coordinate system. Figure 8(a) shows
that a local large shear stress acted on the point where the stress jumped at each height.
In the front, θ ∼ 0◦, artificial stress oscillation occurred owing to reconstruction using the
fluctuating azimuth. In the front part, excepting the artificial fluctuation region, a similar
flow field was established irrespective of the bubble height. Figure 8(b) shows that the
normal stress component also exhibited the spikes. This was due to the no-slip behaviour
that caused the velocity to suddenly drop to zero. In the free-slip condition, the shear stress
was zero and the vorticity was O(1) at the surface; therefore, such a large shear stress near
the surface did not occur in a clean bubble. Therefore, this revealed that the shear stress
(or the vorticity proportional to it) was caused by the Marangoni stress (Atasi et al. 2023).
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Figure 8. (a) Normalised viscous shear stress and (b) normalised normal stress near the bubble’s surface
(r = 1.05 R). Stresses are normalised by μU/2R. For conditions see figure 6.

This local shear stress indicated the localised generation of a surface tension gradient (or
surfactant concentration gradient), and we inferred that a small amount of surfactant was
present in the forward part from the jump point. Nevertheless, a small shear stress was
still acting on the front part of the bubble, and the possibility of the effect of surfactant
adsorption during advection could not be ruled out.

3.2.2. Measured cap angle comparison with the stagnant cap model and numerical
simulations

In this section, we compare the measured cap angle with both the stagnant cap model
(Sadhal & Johnson 1983) and the numerical results from Cuenot et al. (1997). The stagnant
cap model, which was often used for comparative verification of previous numerical
analyses, has not been compared with experimental results. Using the stagnant cap model,
we can describe C∗

D as a function of θC (see (53) of Sadhal & Johnson 1983)

C∗
D(θC ) = 1

2π

[
2(π − θC ) + sin θC + sin 2θC − 1

3
sin 3θC

]
. (3.3)

Figure 9 shows the relationship between the normalised drag coefficient and cap angle.
The experimental results for various bubble sizes exhibited reasonable agreement with
the model overall. This result strongly confirmed that the phase retardation and azimuthal
jumps in the experiment corresponded to the shift of the boundary condition from free slip
to no slip. However, two discrepancies were observed. The first was that the experimental
drag at 140◦ < θC was larger than the theory. This was because the bubble had a spheroidal
shape and the drag was larger than that of spherical shape (Blanco & Magnaudet 1995;
Sanada et al. 2008). The second was that the slope of the experimental drag was slightly
steeper than the theory near the equator (θC ∼ 90◦). A similar trend was observed in the nu-
merical analyses performed at a finite Re of 100 (Cuenot et al. 1997; Dani et al. 2022), indi-
cating that the drag transition is more sensitive than for the creeping flow. To the best of the
authors’ knowledge, this is the first experimental result that is consistent with previous nu-
merical studies of the flow structure around bubbles in surfactant solutions with finite Re.

Note that, although the drag coefficient of an apparently contaminated bubble
approaches that of a solid sphere, the flow field differs, particularly for θC < 60◦. Drag
contributions primarily result from shear stress in the range 45◦ < θC < 135◦ and normal
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Figure 9. Comparison of drag coefficient ratios of experimental results and stagnant cap model: ——, stagnant
cap model (Sadhal & Johnson 1983); •, experimental results (cap angle is obtained from phase retardation
jump); ∗, numerical results (Cuenot et al. 1997). (i)–(iv) Correspond to figure 6.

stress elsewhere. As shown in figure 8, viscous normal stress may counterbalance shear
stress and the pressure gradient, even when the bubble front remains clean. While this flow
field difference likely has a slight impact on the drag coefficient, it can influence other
phenomena, such as bubble path instability (Tagawa et al. 2014; Pesci et al. 2018; Farsoiya
et al. 2024), lift reversal (Fukuta, Takagi & Matsumoto 2008; Hayashi & Tomiyama 2018)
and stability of multi-bubbles (Harper 2008; Atasi et al. 2023).

3.2.3. Maximum shear stress in the vicinity of the bubble
In this section, we examine how the drag coefficient CD correlates with the maximum
vorticity near the bubble’s surface. As discussed in recent numerical investigations (Atasi
et al. 2023; Hayashi et al. 2025), the maximum vorticity generated at the interface
of contaminated bubbles is an important factor that determines the bubble dynamics
such as drag and lift. For a clean spherical bubble, Legendre (2007) showed that
the drag coefficient scales with the maximum vorticity ωb

max as CDRe = 16ωb
max. This

gives CDRe = 16 for Hadamard–Rybczynski solution (ωb
max = 1) and CDRe = 48 for the

potential solution (ωb
max = 3). For a solid sphere, Hayashi et al. (2025) reported a linear

relationship CDRe = 11ωs
max + 7.5, where ωs

max = 3/2(1 + 16/11Re0.687). In the case of
contaminated bubble, such relationships hold when diffusion dominates. However, under
inertia-dominant conditions, a consistent scaling of CDRe with maximum vorticity has
not yet been established. These existing relations are based on numerical results; in this
section, we re-examine them experimentally.

Can vorticity nevertheless be estimated from polarisation measurements? The shear
stress in the vicinity of the spherical bubble is given by μ(∂ut/∂r − ut/R), whereas
the vorticity is (∂ut/∂r + ut/R). For a free-slip condition, the shear stress is zero and
we obtain ω = 2ut/R, but ut is unknown in our experiments. In contrast, for a no-slip
condition, the vorticity is ω = ∂ut/∂r which is directly proportional fo the shear stress.
Assuming that the dominant contribution to the local vorticity arises from the tangential
velocity gradient near the no-slip region, the maximum normalised shear stress obtained
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Figure 10. Maximum shear stress in the vicinity of the contaminated bubble (r = 1.05R) and CDRe; ©,
experimental results; - -, maximum vorticity for the solid sphere proposed by Hayashi et al. (2025).

via birefringence can be considered an approximate indicator of the local vorticity.
However, since the measurement is taken in the vicinity of the bubble (r = 1.05R), and
not on the surface, the result is still an approximation and requires careful interpretation.

The product CDRe was plotted against the maximum normalised shear stress −σmax
nt , as

shown in figure 10. It shows that higher shear stress corresponds to the vorticity correlating
with higher drag, consistent with numerical predictions. However, the experimental
vorticity tends to lie above the linear predicted trend (CDRe − 7.5)/11 for a solid sphere.
This deviation supports the numerical findings (Hayashi et al. 2025), and no generalised
relationship between maximum vorticity and drag coefficient is identified in the present
experiments.

The discrepancy from previously established CDRe − ω relationships for clean bubbles
and a solid sphere is likely attributable to localised spikes in the shear stress profile of
a partially contaminated bubble. Interestingly, as the contamination level increases and
the boundary condition approaches that of a solid sphere (C∗

D → 1), the maximum shear
stress tends to align with the solid-sphere prediction. In contrast, bubble with lower C∗

D
often exhibit much higher maximum shear stress. Returning to figure 8, at h = 400 mm,
the tangential shear stress profile becomes smooth, where θC is approximately 40◦, and no
sharp spike is observed. The corresponding maximum shear stress is comparable to that of
a solid sphere. On the other hand, for bubble with lower contamination levels (i.e. smaller
C∗

D), sharp spikes appear. In some cases, the maximum shear stress exceeds that of a
more contaminated bubble, even though the C∗

D is smaller. These observations suggest
that lower contaminated bubble may exhibit stronger vorticity generation than would be
expected based on a solid-sphere model. It may be possible to correct the overestimation
of local vorticity using the vorticity distribution of solid spheres at the cap angle, but such
a correction requires a dedicated flow model around a solid sphere.
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4. Conclusion
We experimentally determined the stress field of the flow around a bubble rising in a dilute
surfactant solution using a newly developed unsteady polarisation measurement method.
We first validated our method by measuring the flow around a solid sphere falling at
terminal velocity in a quiescent solution without a surfactant effect. The measurements and
numerical results were in quantitative agreement, confirming that the photoelastic method
was successful in measuring the stress around the sphere. The stress field around the solid
sphere revealed distinct regions, including the outer potential flow region, boundary layer
and wake. Interestingly, the mushroom-shaped phase retardation observed at the front of
the sphere was attributed to the interplay between potential flow characteristics and the
boundary layer dynamics. These features, combined with azimuth profiles reflecting stress
orientations, provided a detailed understanding of the stress distribution around the sphere
and the mechanisms underlying flow structures at intermediate Reynolds numbers.

We then measured the flow around a bubble rising in a quiescent surfactant solution
with a high Péclet number and intermediate Reynolds number. The results showed that
the flow structure near the front of the bubble resembled that of a clean bubble, whereas
the rear flow was similar to that of a solid sphere. However, the stress field in front of the
bubble differed even when the drag coefficient was nearly the same, particularly when the
cap angle was less than 60◦. Additionally, when the drag coefficient deviated from that of
a solid sphere, slight differences in the rear stress field were observed. Sudden jumps in
phase retardation and azimuth, indicated by the cap angle, were detected between the front
and rear of the bubble. These jumps evolved with increasing distance travelled, reflecting
the time-dependent adsorption of surfactants. By reconstructing the stress field under
axisymmetric assumptions, we experimentally demonstrated the presence of localised
stresses acting in the phase retardation jump region. The measured cap angle as a function
of the normalised drag coefficient had reasonable agreement with the predictions of the
stagnant cap model proposed by Sadhal & Johnson (1983) and quantitatively aligned with
numerical results at intermediate Reynolds numbers by Cuenot et al. (1997), marking the
first experimental confirmation of previous numerical studies on flow structures in the
vicinity of a bubble in a dilute surfactant solution at finite Reynolds numbers.

As a future prospect, the method employed in this study may create new opportunities
for revealing the stress field in a wide range of dispersion flows. The observed evolution
of the cap angle along the rise distance in the present study may offer an opportunity to
validate theoretical models of surfactant transport that incorporate adsorption kinetics as
the rate-limiting step (He, Maldarelli & Dagan 1991). Although only a simple system was
used in this study, various systems exist in the bubble dynamics, such as multi-bubbles
and bubble motion in non-Newtonian fluids. For low Péclet number conditions and mixed
surfactants, the boundary conditions become half-slip, in which both the shear stress and
the tangential velocity are non-zero. In addition, as the amount of vorticity generation
increases under slip conditions, unstable behaviour is caused by vorticity evacuation
and accumulation generated at the surface. Moreover, lift reversal (Fukuta et al. 2008;
Hayashi & Tomiyama 2018) and bubble train stabilisation (Liger-Belair et al. 2000; Harper
2008; Atasi et al. 2023) are caused by vorticity stretching/tilting, respectively; both are
organised by the maximum vorticity (Magnaudet & Mougin 2007; Yang & Prosperetti
2007; Cano-Lozano et al. 2016). Polymer stretching generates a negative wake behind
a bubble (Zenit & Feng 2018). Furthermore, since the present measurement captures
the stress field in the bulk fluid near the interface, and not the interfacial stress itself,
the technique may remain applicable even in the presence of additional interfacial stress
components such as interfacial viscosity (Singh & Narsimhan 2022; Herrada et al. 2022).
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Therefore, the extension of the results of this study to viscous stress, boundary layer and
wake regions will contribute to the elucidation of the detailed physical mechanism of these
phenomena, as well as in complex flows.
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Appendix A. Axisymmetric reconstruction
In this section, we introduce the axisymmetric reconstruction procedure from the
integrated phase retardation and azimuth to normal/shear stress. Axisymmetric
reconstruction has been conventionally used for transparent solids (Aben, Ainola &
Errapart 2010; Yokoyama et al. 2023). Inverse Abel transform and onion-peeling methods
have been used for the reconstruction, and we adopted the onion-peeling method based
on them. For axisymmetric reconstruction, we must first transform the stresses in the
Cartesian coordinate system to the cylindrical coordinate system (r, y, Θ), assuming a
steady-state condition, as follows:

σxy = σry cos Θ, (A1)

σxx − σyy = σrr cos2 Θ + σΘΘ sin2 Θ − σyy. (A2)

From (2.4), with the phase retardation and azimuth obtained from the polarisation
measurement, the shear stress is independent of the other stress components, indicating
that it can be estimated by a procedure similar to that previously used in the analysis of
solids

Δ sin 2φ = 2C
∫

σry cos Θdz. (A3)

In contrast, normal stress cannot be estimated in the same manner as for solids. In the
steady state of a solid, the derivation is based on the equilibrium equation ∇ · σ = 0,
i.e. the shear and normal stresses are balanced, whereas no such limitations exist in a
fluid owing to advection (∇ · σ = ρ∇ · (uu)). Therefore, we use the relation between
the continuity equation and axisymmetric stresses assuming a Newtonian fluid. We
treat only the viscous stresses neglecting pressure because the pressure cancels out
in (A2). Assuming a Newtonian fluid, the continuity equation yields σvis

rr + σvis
ΘΘ +

σvis
yy = 2μ(∂ur/∂r + ur/r + ∂uy/∂y) = 0, where the subscript denotes the viscous stress

component. Additionally, the axisymmetric stress relation σvis
rr = ∂(rσvis

ΘΘ)/∂r , from (2.3)
and (A1), the relation between Δ, φ and σvis

ΘΘ becomes

Δ cos 2φ = C
∫

3σvis
ΘΘ + r(1 + cos2 Θ)

∂σvis
ΘΘ

∂r
dz. (A4)

When the Θ component is known, the other normal stress components are also uniquely
determined. Once the full stress tensor σ is reconstructed, it can be projected onto the local
interface direction to obtain interfacial components. Specifically, the normal and tangential
surface stress are given by σnn = nTσ n and σnt = nTσ t , where n and t are the unit normal
and tangential vectors to the bubble’s surface, respectively.
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Figure 11. Stress near the solid sphere’s surface (r = 1.05 R);——, stress obtained from the velocity; ©,
stress obtained from the phase retardation and azimuth. For conditions see figure 2.

We performed tests on numerical data (figure 2) to validate our reconstruction method.
Figure 11 shows the stress fields obtained from the velocity and phase retardation and
azimuth fields using the onion-peeling method. The stresses in the far from the symmetry
axis were calculated as 0. The figure shows that the stress fields obtained from the velocity
and phase and azimuth were consistent over a wide range. Therefore, we conclude that this
reconstruction method is applicable. Note that the values near the axis of symmetry and
near the interface cannot be guaranteed owing to the orientation fluctuation as discussed
in § 3.1.1.

Appendix B. Aspect ratio of gradually contaminated bubble
The deformation of the bubbles was further analysed by comparing the experimentally
measured aspect ratios with theoretical predictions. We employed the correlation proposed
by (Kentheswaran et al. 2023), which accounts for the effect of interfacial contamination
via the drag coefficient ratio C∗

D(Re, Eo), in addition to Re and Eo

χcont = (1 − α)χ solid + αχclean, (B1)

χclean(Re, Eo) =
(

1 + 0.016Eo1.12Re
)0.388

, (B2)

χ solid(Re, Eo) =
(

1 + 0.024Eo1.17Re0.44
)0.57

, (B3)

α =
(

1 − C∗
D(Re, χ)2.5

)5
, (B4)

C∗
D(Re, χ) = CD − Cclean

D (Re, χ)

Csolid
D (Re, χ) − Cclean

D (Re, χ)
, (B5)

Cclean
D (Re, χ) = 16

Re

(
1 + 0.25Re0.32χ1.9), (B6)

Csolid
D (Re, χ) = 24

Re

(
1 + 0.17Re0.687χ0.48). (B7)

Here, χclean was proposed by Aoyama et al. (2016), χ solid was proposed by Aoyama
et al. (2018), empirical correlation for Cclean

D was developed by Chen et al. (2019) and
that for Csolid

D was given by Kentheswaran et al. (2023) as a modified version of the
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Figure 12. Comparison between the predicted aspect ratio χ p and the experimentally measured aspect ratio
χe. The diagonal line indicates perfect agreement. The predicted values are based on the correlation proposed
by Kentheswaran et al. (2023), incorporating drag coefficient ratios and empirical aspect ratio models from
Aoyama et al. (2016), Aoyama et al. (2018) and Chen et al. (2019).

model proposed by Aoyama et al. (2018). Figure 12 shows the comparison between the
predicted aspect ratio χ p and the experimentally measured aspect ratio χe, categorised
into contaminated bubble, solid particle and clean bubble. Although the measured aspect
ratios lie within a relatively narrow range (χe < 1.25), the predicted trends for χcont

are consistent with the experimental data: the deformation of bubbles decreases (i.e. the
aspect ratio approaches unity) as the contamination increases. However, in the nearly
spherical regime (χe < 1.05), the model tends to underpredict the aspect ratio, suggesting
a limitation in accuracy for weakly deformed bubbles. These results support the notion
that surface contamination leads to reduced bubble deformation, while also indicating that
further refinement of the model may be necessary in the low-deformation limit.

As a side note, while Kentheswaran et al. (2023) provide a deformation-dependent drag
coefficient ratio model using the Chen et al. (2019) model for clean bubble, we found
that applying their model at an aspect ratio of unity yields a drag coefficient nearly 10 %
different from the value given by Mei et al. (1994). This discrepancy likely stems from the
intermediate Reynolds number regime in which the model was developed. Consequently,
while the model considered aspect ratio does not fully capture C∗

D ∼ 0 for nearly spherical
bubbles (cap angles near 0◦), it still offers a more realistic estimate than assuming a
perfectly spherical shape. It should also be noted that using a drag coefficient model for
solid spheres (Kentheswaran et al. 2023) that explicitly accounts for aspect ratio tends
to overestimate the drag by approximately 5 % when applied at an aspect ratio of 1,
compared with the Cheng (2009) model. When translated into C∗

D , this leads to a reduction
of approximately 0.07, which should be taken into consideration when interpreting the
results. In our study, since the observed aspect ratios remain below 1.25, we chose to base
our drag analysis on the spherical approximation. This approach ensures consistency with
drag correlations in the near-spherical regime, where deviations from unity aspect ratio
are minor.
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Figure 13. Effect of Triton X-100 concentration on surface tension with and without CNC.

Appendix C. Effect of Triton X-100 concentration on surface tension with
and without CNC
This section presents surface tension measurements of aqueous Triton X-100 solutions
with and without CNC. Figure 13 shows the surface tension values as a function of Triton
X-100 concentration. The measurements were conducted using the pendant drop method
(Berry et al. 2015), and the surface tension was recorded 5 seconds after droplet formation.
At low concentrations, both w/ CNC and w/o CNC solutions exhibit surface tension
values close to that of pure water (74 mN m−1). This suggests that, at the concentrations
used in the main experiments, the contribution of CNC to surface tension is negligible.
Furthermore, the surface tension curves of the two solutions nearly overlap over the entire
concentration range tested, indicating that CNC does not significantly affect the adsorption
behaviour of Triton X-100 under these conditions.

However, at much higher CNC concentrations, CNC may strongly influence the surface
tension and modify the Marangoni effect. Indeed, a slight reduction in bubble rise velocity,
reminiscent of Marangoni-like effects, was observed. This phenomenon merits further
investigation in future studies.
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