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Abstract

We consider two classes of irreducible Markovian arrival processes specified by
the matrices C and D: the Markov-modulated Poisson process (MMPP) and the
Markov-switched Poisson process (MSPP). The former exhibits a diagonal matrix D
while the latter exhibits a diagonal matrix C. For these two classes we consider the
following four statements: (I) the counting process is overdispersed; (II) the hazard rate
of the event-stationary interarrival time is nonincreasing; (III) the squared coefficient
of variation of the event-stationary process is greater than or equal to one; (IV) there
is a stochastic order showing that the time-stationary interarrival time dominates the
event-stationary interarrival time. For general MSPPs and order two MMPPs, we show
that (I)–(IV) hold. Then for general MMPPs, it is easy to establish (I), while (II) is
shown to be false by a counter-example. For general simple point processes, (III) follows
from (IV). For MMPPs, we conjecture that (IV) and thus (III) hold. We also carry out
some numerical experiments that fail to disprove this conjecture. Importantly, modelling
folklore has often treated MMPPs as “bursty”, and implicitly assumed that (III) holds.
However, to the best of our knowledge, proving this is still an open problem.
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1. Introduction

Point processes on the line, generated by transitions of continuous-time Markov chains
(CTMCs), have been studied intensely by the applied probability community over
the past few decades under the umbrella of matrix analytic methods (MAM) [19].
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These have been applied to teletraffic [1], business networks [17], social operations
research [29] and biological systems [25]. The typical model referred to as the
Markovian arrival process (MAP) is comprised of a finite-state irreducible CTMC,
which generates events at selected instances of state change or according to Poisson
processes modulated by the CTMC. MAPs are dense in the class of point processes
so that they can essentially approximate any point process [5]. Yet, at the same time,
they are analytically tractable and may often be incorporated effectively within more
complex stochastic models [24].

In general, treating point processes as stationary often yields a useful mathematical
perspective that matches scenarios when there is no known dependence on time. In
describing a point process, we use N(t) to denote the number of events during the
interval [0, t], and further use the sequence {Tn} to denote the sequence of interarrival
times. Two notions of stationarity are useful in this respect. A point process is
time-stationary if the distribution of the number of events within a given set is invariant
to time translations. That is, for a given subset of the timeline, T ⊂ R, the distribution
of the number of events during T is the same as the distribution of the number of
events during the shifted set {u + t | u ∈ T } for any time shift t.

A point process is event-stationary if the joint distribution of Tk1 , . . . , Tkn is the
same as that of Tk1+�, . . . , Tkn+� for any integer sequence of indices k1, . . . , kn and
any integer shift �. For a given model of a point process, one may often consider
either the event-stationary or the time-stationary case. The probability laws of both
cases agree in the case of the Poisson process; however, this is not true in general.
For MAPs, time-stationarity and event-stationarity are easily characterized by the
initial distribution of the background CTMC. Starting it at its stationary distribution
yields time-stationarity, and starting at the stationary distribution of an associated
discrete-time Markov chain yields event-stationarity. This associated discrete-time
Markov chain, with transition probability matrix P, defined later (see Section 2),
records the state at every time point Tn and is indexed by the (discrete) time index, n.

A common way to parametrise MAPs is by considering the generator Q of a
finite-state irreducible CTMC and setting Q = C + D. The off-diagonal elements of
the matrix C determine state transitions without event counts, while the diagonal
elements of C are negative. The matrix D determines state transitions associated
with event counts. Such parametrisation hints at considering two special cases:
Markov-modulated Poisson processes (MMPPs) arising from a diagonal matrix D,
and Markov-switched Poisson processes (MSPPs) arising from a diagonal matrix C.
We note that a single probability law of a MAP can be represented in multiple ways,
and the diagonal D or the diagonal C representations for MMPP or respectively MSPP
are only one of many forms.

MMPPs are a widely used class of processes in modelling and are a typical example
of a Cox process, also known as a doubly stochastic Poisson process [11, 28]. For a
detailed outline of a variety of classic MMPP results, see the work of Fischer and
Meier-Hellstern [10] and the references therein. MSPPs were introduced by Liu and
Neuts [20] and to date, have not been very popular for modelling. However, the duality
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of diagonal D versus diagonal C motivates us to consider and contrast both these
processes. We also note that hyper-exponential renewal processes are special cases
of MSPPs as well as Markovian transition counting processes (MTCPs). The latter is
an alternative model for the MMPPs [3].

There are two key random variables associated with the given MAP, which we
denote as Tπ1 and Tα1 . These are distributed as the first interarrival time, T1, in the
time-stationary and event-stationary versions, respectively. We note that π and α
notionally indicate the nature of the initial distribution of the MAP, and make sense
when considering Proposition 2.2 later.

Our focus in this paper is on second-order properties of MMPPs and MSPPs and
related traits. Consider the squared coefficient of variation and the limiting index of
dispersion of counts given by

c2 =
Var(Tα1 )

E2 [Tα1 ]
and d2 = lim

t→∞

Var(N(t))
E[N(t)]

, (1.1)

respectively.
From a modelling perspective, MMPPs are often used for bursty traffic. In fact,

in certain cases, modelling folklore has assumed that for MMPPs, c2 ≥ 1 (see for
example, [16]). The c2 ≥ 1 assumption is perhaps used without direct proof due to
the fact that d2 ≥ 1 is straightforward to verify, and there is a similarity between these
measures (for example, for a renewal process, c2 = d2). However, as we highlight in
this paper, determining such “burstiness” properties is not straightforward.

A related property is that Tα1 exhibits a decreasing hazard rate (DHR), where for
a random variable with probability distribution function (PDF) f (t) and cumulative
distribution function (CDF) F(t), the hazard rate is

h(t) =
f (t)

1 − F(t)
.

A further related property is the stochastic order (see Ch. VII of [4]) Tπ1 ≥st Tα1 . We
denote these properties as follows:

d2 ≥ 1, (I)

Tα1 exhibits DHR, (II)

c2 ≥ 1, (III)

Tπ1 ≥st Tα1 . (IV)

All these properties are related and in this paper, we highlight the relationships
between (I), (II), (III) and (IV) and establish the following. For MSPPs and MMPPs
of order 2, properties (I)–(IV) hold. For general MMPPs, it is known that (I) holds;
however, a counter-example shows that (II) does not hold and we conjecture that (III)
and (IV) hold. We note that (I) differs from (II)–(IV) as d2 is not directly related to the
random variable T1.

https://doi.org/10.1017/S1446181122000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181122000013


[4] Stationary Markovian arrival processes 57

Our interest in this class of problems stemmed from relationships between different
types of MAPs; as discussed by Nazarathy and Weiss [23], and Asanjarani and
Nazarathy [3]. Once it became evident that c2 ≥ 1 for MMPPs is an open problem even
though it is acknowledged as a modelling fact in folklore, we searched for alternative
proof avenues. This led to the stochastic order in (IV) as well as to considering DHR
properties.

The remainder of the paper is structured as follows. In Section 2, we present
preliminaries, focusing on the relationships between (I)–(IV) as well as defining
MMPPs and MSPPs. In Section 3, we present our main results and some conjectures
about MMPPs. We conclude the paper in Section 4.

2. Preliminaries

First, consider (I)–(IV) and their relationships. To establish (III), there are several
possible avenues based on (I), (II) and (IV). We now explain these relationships.

• Using (I): First, from the theory of simple point processes on the line, note the
relationship between d2 and c2:

d2 = c2
(
1 + 2

∞∑
j=1

Cov(Tα0 , Tαj )

Var(Tα0 )

)
,

(for more details, see [12]). However, the autocorrelation structure is typically
intractable, and hence does not yield results. If we were focusing on a renewal
process where Ti and Tj are independent for i � j, then this immediately shows
that d2 = c2. However, our focus is broader, and hence (I) (indicating that d2 ≥ 1)
does not appear to yield a path for (III).

• Using (II): An alternative way is to consider (II) and use the fact that for any
DHR random variable, we have c2 ≥ 1 (see [27]). Hence, if (II) holds, then (III)
holds.

• Using (IV): We have the following lemma, implying that (III) is a consequence
of the stochastic order (IV).

LEMMA 2.1. Consider a simple nontransient point process on the line, and let Tπ1
and Tα1 represent the first interarrival time in the time-stationary case and the
event-stationary case, respectively. Then, c2 ≥ 1 if and only if E[Tπ1 ] ≥ E[Tα1 ].

PROOF. From point process theory (see for example, (3.4.17) of [9]),

E[Tπ1 ] = 1
2λ
∗
E[(Tα1 )2],

where

λ∗ = lim
t→∞

E[N(t)]
t

=
1
E[Tα1 ]

.
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Now,

c2 =
E[(Tα1 )2] − (E[Tα1 ])2

(E[Tα1 ])2 = 2
E[Tπ1 ]

E[Tα1 ]
− 1,

and we obtain the result. �

MAPs: We now describe the MAP. A MAP of order p (MAPp) is generated by
a two-dimensional Markov process {(N(t), X(t)); t ≥ 0} on state space {0, 1, 2, . . .} ×
{1, 2, . . . , p}. The counting process N(·) counts the number of “events” in [0, t] with
P(N(0) = 0) = 1. The phase process X(·) is an irreducible CTMC with state space
{1, . . . , p}, initial distribution η and generator matrix Q. A MAP is characterized
by parameters (η, C, D), where the matrix C has negative diagonal elements and
nonnegative off-diagonal elements, and records the rates of phase transitions which
are not associated with an event. The matrix D has nonnegative elements and describes
the rates of phase transitions which are accompanied with an event (an increase of
N(t) by 1). Moreover, we have Q = C + D. More details are in the books by Asmussen
[4, Ch. XI] and He [13, Ch. 2].

MAPs are attractive due to the tractability of many of their properties, including
distribution functions, generating functions, and moments of both counting process
N(t) and the sequence of interarrival times {Tn}.

Since Q is assumed irreducible and finite, it has a unique stationary distribution
π satisfying πQ = 0′ and π1 = 1, where 0′ is a row vector of 0’s and 1 is a column
vector of 1’s. Note that from Q1 = 0′, we have −C1 = D1. Of further interest is
the discrete-time Markov chain with irreducible stochastic matrix P = (−C)−1D and
stationary distribution α, where αP = α and α1 = 1.

Observe the relation between the stationary distributions π and α:

α =
πD
πD1

and π =
α(−C)−1

α(−C)−11
= λ∗α(−C)−1, (2.1)

where λ∗ = πD1 = −πC1.
The following known proposition, as distilled from the literature [4, Ch. XI],

provides the key results on MAPs that we use in this paper. It shows that T1 is a
phase-type (PH) random variable with parameters (η, C), for the initial distribution
of the phase and the sub-generator matrix, respectively. It further shows that the
initial distribution of the phase process may render the MAP as time-stationary or
event-stationary. This proposition also motivates the notation Tπ1 and Tα1 .

PROPOSITION 2.2. Consider a MAP with parameters (η,C,D), then for t ≥ 0,

P(T1 > t) = ηeCt1.

Further, if η = π, then the MAP is time-stationary, and if η = α, it is event-stationary,
where π and α are the stationary distributions of Q and P, respectively.
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Note that for such a PH(η, C) random variable, the density f (t) and the hazard rate
h(t) are respectively

f (t) = ηeCtD1 and h(t) =
ηeCtD1
ηeCt1

.

Further, to show DHR, the derivative of the hazard rate

h′(t) =
ηCeCt(−C)1 ηeCt1 − ηCeCt1 ηeCt(−C)1

(ηeCt1)2 .

We now describe the second-order properties associated with each case.

Event-stationary case: For an event-stationary MAP (sometimes an event-stationary
MAP is referred to as an interval-stationary MAP [10]), where η = α, the (generic)
interarrival time is phase-type distributed, PH(α, C), and thus the kth moment is

Mk = E[Tk
n] = k!α(−C)−k1 = (−1)k+1 k!

1
λ∗
π(C−1)k−11,

with the first and second moments (here represented in terms of π and C)

M1 =
1
λ∗
π1 =

1
λ∗

and M2 = 2
1
λ∗
π(−C)−11.

Hence, the squared coefficient of variation (SCV) of events (intervals) has the
following simple formula:

c2 + 1 =
M2

M2
1

=
−2 (1/λ∗) πC−11

(1/λ∗)2 = 2πC1πC−11. (2.2)

Time-stationary case: For the time-stationary MAP with parameters (η, C, D) (where
η = π) (see [4]),

E[N(t)] = πD1 t, (2.3)

Var(N(t)) = (πD1 + 2 πDD�QD1) t + o(t), (2.4)

where o(t)/t vanishes as t → ∞, and D�Q is the deviation matrix associated with Q
defined by the formula

D�Q = lim
t→∞

D�Q(t) =
∫ ∞

0
(eQu − 1π) du.

Note that in some sources [4, 21], the variance formula (2.4) is presented in terms of the
matrix Q− := (1π − Q)−1. The relation between these two matrices is Q− = D�Q + 1π
(see [8]).

Applying (2.3) and (2.4), we can write d2 in terms of MAP parameters as

d2 = 1 +
2
λ∗
πDD�QD1. (2.5)
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MMPP: A MAP with a diagonal matrix D is an MMPP. MMPPs correspond to doubly
stochastic Poisson processes (also known as Cox processes), where the modulating
process is driven by a CTMC. MMPPs have been used extensively in stochastic
modelling and analysis [10]. The parameters of an MMPPp are D = diag(λi), where
λi ≥ 0 for i = 1, . . . , p, and C = Q − D. For MMPPs, (2.3) and (2.4) can be simplified
by using the relations:

λ∗ = πD1 =
p∑

i=1

πiλi, D1 = (λ1, . . . , λp)′, αi =
λi

λ∗
πi,

where the last equation comes from (2.1).

MSPP: A MAP with a diagonal matrix C is an MSPP [2, 13]. For MSPPp, events
switch between p Poisson processes, each with rate D11, . . . , Dpp, where each phase
transition also incurs an event. This is in contrast to MMPPs where the transition of
the phase process never generates events. We denote the diagonal elements of C with
−γi and hence,

λ∗ = π(−C)1 =
p∑

i=1

πiγi, (−C)1 = (γ1, . . . , γp)′ and αi =
γi

λ∗
πi.

Note that analysing MSPPs is considerably easier than MMPPs, because a diagonal
C is much easier to handle than a nondiagonal C, and in an (irreducible) MMPP, C
must be nondiagonal.

Properties (I)–(IV) for MAPs: Using the results above, for any irreducible MAP with
matrices C and D, the main properties (I)–(IV) of this paper can be formulated as

(I) πDD�QD1 ≥ 0, (2.6)

(II) αCeCt(−C)1 αeCt1 + (αCeCt1)2 ≤ 0 for all t ≥ 0, (2.7)

(III) πC1πC−11 ≥ 1, (2.8)

(IV) πeCt1 ≥ αeCt1 for all t ≥ 0, (2.9)

respectively, where D�Q is the deviation matrix defined by the formula

D�Q =
∫ ∞

0
(eQu − 1π) du.

3. Main results

We now show that an MSPP and an MMPP2 satisfy (I)–(IV). Establishing (I),
d2 ≥ 1, is not a difficult task for both MMPPs and MSPPs.

PROPOSITION 3.1. An MMPP and an MSPP exhibit d2 ≥ 1.
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PROOF. This is a well-known result that for all doubly stochastic Poisson processes
(Cox processes), d2 ≥ 1 [18, Ch. 6]. So, we have the proof for MMPPs.

The fact that for a given MMPP, we have d2 ≥ 1 and using (2.5) results in

πDD�QD1 ≥ 0 for any diagonal nonnegative matrix D. (3.1)

However, all MAPs satisfy πDD�QD1 = π(−C)D�Q(−C)1. Since for an MSPP, −C is a
diagonal nonnegative matrix, from (3.1), we have (2.6). �

It is not difficult to show that for (II), DHR holds for MSPP.

PROPOSITION 3.2. For an MSPP, the hazard rate of the stationary interarrival time is
nonincreasing.

PROOF. By denoting C = diag(−γi) and u = eCt1, the left-hand side of (2.7) can be
written as

−
( p∑

i=1

αiγ
2
i ui

)( p∑
i=1

αiui

)
+

( p∑
i=1

αiγiui

)2
.

Denoting vi = αiui, setting qi = vi/ (
∑p

i=1 vi) and dividing by (
∑p

i=1 vi)2 results in

−
p∑

i=1

γ2
i qi +

( p∑
i=1

γiqi

)2
.

The above expression can be viewed as the negative of the variance of a random
variable that takes values γi with probability qi. Therefore, we have (2.7). �

However, somewhat surprisingly, MMPPs do not necessarily possess DHR. An
exception is MMPP2, as shown in Proposition 3.7; however, DHR for higher-order
MMPPs does not always hold. The gist of the following example was communicated
to us by Milkós Telek and Illés Horváth.

EXAMPLE 3.3. Set

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.01 0 0 0

0 0.01 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3.2)

As shown in Figure 1, the hazard rate function for an MMPP with the above
matrices is not monotone. Hence, at least for general MMPPs, trying to show (III),
c2 ≥ 1, via hazard rates is not a viable avenue.

Since hazard rates do not appear to be a viable path for establishing (III) for
MMPPs, an alternative may be to consider the stochastic order (IV). Starting with
MSPPs, we see that this property holds.

PROPOSITION 3.4. For an MSPP, Tπ1 ≥st Tα1 .
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FIGURE 1. Nonmonotone hazard rate for an MMPP4.

PROOF. Using inequality (2.9), we claim

(π − α) eCt1 ≥ 0 for all t ≥ 0.

Without loss of generality, we assume that there is an order 0 < γ1 ≤ γ2 ≤ · · · ≤ γp

(with γi � γj for some i, j) for diagonal elements of the matrix (−C). There is a
possibility that for 1 < p′ < p, 0 = γ1 = γ2 = · · · = γp′−1 and 0 < γp′ ; however, in the
rest of the proof, we assume that p′ = 1, meaning that all γi are strictly positive.
Adapting to the case of p′ > 1 is straightforward.

Now, {λ∗ − γi}i=1,...,p is a nonincreasing sequence and therefore in the sequence
{πi − αi} = {πi(λ∗ − γi)/λ∗}, when an element πk − αk is negative, all the elements
πi − αi for i ≥ k are also negative. Moreover, both π and α are probability vectors,
so (π − α)1 =

∑
i(πi − αi) = 0. Therefore, at least the first element in the sequence

{πi − αi} = {πi(λ∗ − γi)/λ∗} is positive. Hence, there exists an index 1 < k ≤ p such that
πi − αi for i = 1, . . . , k − 1 is nonnegative and for i = k, . . . , p is negative. Therefore,

(π − α) eCt1 =
k−1∑
i=1

(πi − αi) e−γit

︸��������������︷︷��������������︸
nonnegative

+

p∑
i=k

(πi − αi)e−γit

︸��������������︷︷��������������︸
negative

≥ e−γk−1t
k−1∑
i=1

(πi − αi) + e−γkt
p∑

i=k

(πi − αi)

= L(e−γk−1t − e−γkt) ≥ 0 ,

where L =
∑k−1

i=1 (πi − αi) =
∑p

i=k(αi − πi). Here the inequalities are a consequence of
the ordering of γi. �

Hence, via Lemma 2.1 or alternatively via the DHR property in Proposition 3.2, we
have the following result.

COROLLARY 3.5. For an MSPP, c2 ≥ 1.
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In fact, for MSPPs, this is an easy result and it can also be proved independently by
using the Cauchy–Schwarz inequality. Further, we can find an upper bound for c2 as
follows.

PROPOSITION 3.6. An MSPP with diagonal matrix C = −diag(γi) satisfies

1 ≤ c2 ≤ 2
κ2

γ2 − 1,

where κ = (min γi +max γi)/2 and γ =
√

(min γi)(max γi).

PROOF. From (2.2), we have c2 + 1 = 2πC1πC−11. For C = −diag(γi), we have
C−1 = −diag(1/γi) and so,

c2 + 1
2
= πC1πC−11 =

( p∑
i=1

πiγi

)( p∑
i=1

πi
1
γi

)
. (3.3)

From the Cauchy–Schwarz inequality and the Kantorovich inequality [26],

1 =
( p∑

i=1

πi γ
1/2
i

1

γ1/2
i

)2
≤

( p∑
i=1

πiγi

)( p∑
i=1

πi
1
γi

)
≤ κ

2

γ2 . (3.4)

Combination of (3.3) and (3.4) results in

1 ≤ c2 + 1
2
≤ κ

2

γ2 ,

which completes the proof. �

For MMPPs, we do not have general proofs for properties (III) and (IV). Still, for
MMPPs of order two (MMPP2), things are easier and we are able to show that all
properties (I)–(IV) hold.

PROPOSITION 3.7. For an MMPP2, c2 ≥ 1 and d2 ≥ 1, h(t) is DHR and the stochastic
order Tπ1 ≥st Tα1 holds. Further, c2 = 1 and d2 = 1 if and only if λ1 = λ2.

PROOF. Consider an MMPP2 with parameters

C =
(
−σ1 − λ1 σ1
σ2 −σ2 − λ2

)
and D =

(
λ1 0
0 λ2

)
. (3.5)

Then, π = (σ2, σ1)/(σ1 + σ2). As in [15], evaluation of the transient deviation matrix
through (for example) Laplace transform inversion yields

Var(N(t))
E[N(t)]

= 1 +
2σ1σ2(λ1 − λ2)2

(σ1 + σ2)2(λ1σ2 + λ2σ1)

− 2σ1σ2(λ1 − λ2)2

(σ1 + σ2)3(λ1σ2 + λ2σ1)t
(1 − e−(σ1+σ2)t).
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Therefore, from (1.1),

d2 = 1 +
2σ1σ2(λ1 − λ2)2

(σ1 + σ2)2(λ1σ2 + λ2σ1)
≥ 1.

Further, explicit computation yields

c2 = 1 +
2σ1σ2(λ1 − λ2)2

(σ1 + σ2)2(λ2σ1 + λ1(λ2 + σ2))
≥ 1.

Thus, it is evident that the MMPP2 has d2 > 1 and c2 > 1 as long as λ1 � λ2, and
d2 = c2 = 1 when λ1 = λ2.

For DHR and the stochastic order, first we note that for an MMPP2 with the above
parameters, α = (σ2λ1,σ1λ2)/(σ1λ2 + σ2λ1). By setting a = σ2λ1 + λ2(σ1 + λ1) > 0
and b = σ1 + σ2 + λ1 + λ2 > 0, after some simplification, the left-hand side of (2.7) is
given by

−ae−btσ1σ2(λ1 − λ2)2

(σ2λ1 + σ1λ2)2 ,

which is strictly negative for λ1 � λ2 and is zero for λ1 = λ2. For the stochastic order,
by evaluating the matrix exponential and simplifying,

(π − α)eCt1 =
e−(b+

√
b2−4a)/2(e t

√
b2−4a − 1)σ1σ2(λ1 − λ2)2

(σ1 + σ2)(σ1λ2 + σ2λ1)
√

b2 − 4a
,

which is strictly positive for λ1 � λ2 and is zero for λ1 = λ2. �

We note that c2 > 1 in Proposition 3.7 may also be derived by considering a
canonical form representation of second-order MAPs as presented by Bodrog et al. [7].
In that paper, they suggested two canonical form representations for MAPs of order 2.
MMPPs fit the first canonical form which is represented in Definition 1 of [7] via,

C̃ =
[
−λ̃1 (1 − ã)λ̃1

0 −λ̃2

]
, D̃ =

[
ãλ̃1 0

(1 − b̃)λ̃2 b̃λ̃2

]
. (3.6)

We use tildes so as not to confuse the notation of Bodrog et al. [7] with the notation
of our current paper. Given a representation of an MMPP2 as in (3.5), one may
use a similarity transform jointly for C and D to find an equivalent canonical form
representation. In this case, a similarity transformation matrix which satisfies BC =
C̃B and BD = D̃B can be represented as

B =
[

b1 1 − b1
1 − b2 b2

]
.
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Solving a system of equations for b1, b2, and the parameters of the canonical form, we
find four different equivalent solutions in the sense that the resulting canonical form
agrees with the original MMPP2. One possible solution is

b1 = 0 and b2 = −
r − λ1 + λ2 + σ1 + σ2

2λ1 − 2λ2
.

Here, r =
√

b2 − 4a, where a and b are as in the proof of Proposition 3.7. With
this similarity transform, the parameters of the canonical form (3.6) yielding
MMPP2 are

λ̃1 =
b − r

2
, λ̃2 =

b + r
2

, ã =
λ2(b + r)

2a
, b̃ =

λ1(b − r)
2a

.

Having this representation in hand, from the work of Bodrog et al. [7, Lemma 1], we
observe that c2 > 1.

Note that one can also represent MSPPs of order 2 in terms of their canonical
representations [7]. However, for MSPP, the correlation coefficient can be both
positive and negative, and thus one needs to choose between two alternative canonical
representations.

3.1. Conjectures for MMPP We embarked on this research due to the folklore
assumption that for MMPP, c2 ≥ 1 (III) (see for example, [16]). To date, there is no
known proof for an arbitrary irreducible MMPP. Still, we conjecture that both (III) and
(IV) hold for MMPPs.

CONJECTURE 3.8. For an irreducible MMPP, c2 ≥ 1.

CONJECTURE 3.9. For an irreducible MMPP, Tπ1 ≥st Tα1 .

In an attempt to disprove these conjectures, we carried out a numerical experiment
by generating random instances of MMPPs. Each instance is created by first generating
a matrix Q where off-diagonal entries are generated from a uniform (0, 1) distribution
and diagonal entries that ensure row sums are 0. We then generate a matrix D with
diagonal elements that are exponentially distributed with rate 1. Such a (Q, D) pair
then implies π and α using their definitions in Section 2. For each such MMPP, we
calculate πC1πC−11 − 1 as in (2.8) (for Conjecture 3.8) and (π − α)eCt1 as in (2.9)
(for Conjecture 3.9), where we take t ∈ {0, 0.2, 0.4, . . . , 9.8, 10.0}. Getting a strictly
negative value on any of these would imply a counterexample for the associated
conjecture.

We repeated this experiment for random MMPP instances of orders 3, 4, 5 and
6 with 106 instances for each order. In all the cases, the calculated quantities were
greater than −10−15. Note that in certain cases, the quantity associated with (IV)
was negative and lying in the range (−10−15,−10−16]. We attribute these negative
values to numerical error stemming from the calculation of the matrix exponential eCt.
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We ran our experiments with the Julia programming language, V1.0 [22]. The
calculation time was approximately 1.5 hours on a desktop computer.

The purpose of carrying out such experiments is to try to disprove the conjectures;
however, we failed to do so. Also note that when considering uniformly generated
instances, it is possible that we miss corner cases that may disprove the conjectures.
In trying to find some classes of such corner cases, we considered random cyclic
Q matrices with nonzero entries similar to (3.2). We generated 106 such (order 4)
examples, and all agreed with (III) and (IV) as well.

4. Conclusion

We have highlighted various related properties for point processes on the line and
MAPs exhibiting diagonal matrices (C or D), in particular. Bodrog et al. [7] showed
c2 ≥ 1 for MMPPs of order 2, and here we have derived it alongside Tπ1 ≥st Tα1 using
alternative means. Further, using a similar technique to our MSPP proof (proof of
Proposition 3.2), we can also show properties for MMPPs with symmetric C matrices.
However, for general MMPPs of order greater than 2, proving these properties remains
an open problem.

We note that stepping outside of the matrix analytic paradigm and considering
general Cox processes is also an option. In fact, since any Cox process can be
approximated by an MMPP, one may formulate versions of conjectures 1 and 2 for
Cox processes under suitable regularity conditions.

There is also a related branch of questions dealing with characterizing the Poisson
process via c2 = 1 and considering when an MMPP is Poisson. For example, for the
general class of MAPs, Bean and Green [6] provide a condition for determining if
a given MAP is Poisson. It is not hard to construct a MAP with c2 = 1 that is not
Poisson. However, we conjecture that all MMPPs with c2 = 1 are Poisson. Yet, we do
not have a proof. Further, we conjecture that for an MMPP, if c2 = 1, then all λi are
equal (the converse is trivially true). We do not have a proof for orders beyond two.
Related questions also hold for the more general Cox processes.

We also note that the MSPP class of processes generalizes hyper-exponential
renewal processes, as well as a class of processes called a Markovian transition
counting process (MTCP), as in the authors’ previous work [3]. Further, since the
stationary interval interarrival times of MMPP processes are PH distributed, it is
also of interest to consider related problems dealing with moments of phase-type
distributions (see for example, [14] and the references therein).
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