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Onset of instabilities in rotating flows by direct
numerical simulation
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A rotating disk is the canonical experiment for measuring surface reaction rates in
geochemical and electrochemical systems. Using the similarity solution for laminar flow
around an infinite disk, the mass transfer coefficient can be simply related to the intrinsic
reaction rate at the surface. However, measurements of mass transfer rates use a finite-size
disk within a larger container of solution; here the flow is no longer strictly laminar, but
there must always be some recirculation. Our interest was initially in the assumption of
a uniform radial concentration field, how this breaks down near the perimeter of the
disk, and what effect that might have on the measured mass transfer rates. However,
our numerical simulations suggest that the flow around a finite-size disk becomes time
dependent at Reynolds number (Re) below 1000, which is much smaller than the typical
values in mass-transfer measurements (Re ∼ 104). We observe the formation of coherent
structures in the flow, which suggest a non-uniform mass transfer at the disk surface.
The rotating-disk flow follows a similar sequence of instabilities to the Taylor–Couette
flow: a centrifugal instability leading an axisymmetric, time-invariant flow, followed by a
Hopf bifurcation to a time-periodic flow. To minimise the possibility that our results are a
numerical artefact, we have also simulated the instability in the stationary boundary layer
of a rotor–stator flow, comparing with self-similar solutions at low Re and with spectral
methods near the critical Reynolds number.

Key words: rotating flows, computational methods, shear-flow instability

1. Introduction

A rotating disk apparatus (figure 1a) is the foundation for accurate mass transfer
measurements in electrochemistry and geochemistry. This is predicated on the belief that
the flow underneath a rotating disk is essentially laminar under the conditions of the
experiment, where the Reynolds number, Re = ωa2/ν, is typically less than 104 (Gregory
& Riddiford 1956; Levich 1962; Pokrovsky, Golubev & Schott 2005). von Kármán (1921)
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Figure 1. Rotational flows in a cylindrical cavity, radius R and height h. (a) Sketch of a typical rotating-disk
experiment. The disk, radius a and thickness d, is usually placed approximately halfway between the bottom
of the container and the free surface of the fluid. Mass transfer takes place on the bottom surface of the disk,
while the remaining surfaces are passivated. The outer cylinder in the simulations is larger than indicated in the
sketch, R = 2h = 4a. (b) Sketch of a rotor–stator geometry. The lower disk (shaded) rotates with an angular
velocity ω, while the upper disk and sidewalls are stationary; R = 5h.

derived a similarity solution for an infinite disk, which Levich (1962) used to obtain
an exact result for a radially (and azimuthally) uniform concentration field. However,
simulations of a typical experimental set-up (figure 1a), with h = 2a and R = 4a, indicate
that the flow is unstable above a Reynolds number of approximately 100. The breakdown
of the von Kármán flow at such small angular velocities may impact the interpretation of
reaction rates from spinning disk experiments.

The flow around a rotating disk is localised within a thin boundary layer (the Ekman
layer) of thickness δ = √

ν/ω, where ω is the angular velocity of the disk and ν is the
kinematic viscosity of the fluid. At low rotation rates the flow is laminar (von Kármán
1921), but at Reδ = √

ω/νr ≈ 285, linear stability analysis indicates that the bending of
streamlines by the Coriolis force makes the flow unstable (Malik 1986); this is referred
to as a type II instability in the literature. An additional convective (type I) instability,
originating at the inflexion point in the radial velocity, occurs at Reδ ≈ 440. The transition
to an absolutely unstable flow occurs around Reδ ≈ 513 (Malik, Wilkinson & Orszag
1981).

Batchelor (1951) extended von Kármán’s work to include a second coaxial disk rotating
at a different velocity. The rotor–stator geometry is a special case where one disk is
rotating while the other remains stationary. Batchelor showed that boundary layers can
form at both disks, while the core of the fluid rotates as a rigid body. However, Stewartson
(1953) obtained a different solution, with a single boundary layer at the rotating disk
and a stationary core. The disagreement generated a significant literature (Zandbergen &
Dijkstra 1987), but the overall conclusion is that both types of flow are possible, depending
on the Reynolds number and the degree of confinement, expressed by the aspect ratio
A = h/R. Similarity solutions exhibit Batchelor flow (rotating core) over a wide range of
Reynolds numbers; Stewartson flows are possible at when Reh = ωh2/ν > 217 (Brady &
Durlofsky 1987).

In a bounded rotor–stator geometry there is an additional boundary layer just inside
the cylinder (the Batchelor layer). Over most of the fluid domain the axial flow is in the
direction of the rotor plate, but in the Batchelor layer it flows strongly in the opposite
direction. By using matched asymptotic expansions, Brady & Durlofsky (1987) showed
that when A � 1, the similarity solution applies in almost all the domain, except for a
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Instabilities in rotating flows

thin boundary later O(A) next to the cylinder wall. Flows in an enclosed cavity have a
rotating core (Batchelor flow), while those in an open cavity have a non-rotating core
(Stewartson flow). Convective instabilities form first in the boundary layer next to the stator
(the Bödewadt layer). Both type I and type II instabilities have a similar spatial structure:
travelling vortices expanding in rings or spirals in the azimuthal plane (Launder, Poncet &
Serre 2010). Increasing the aspect ratio (A > 0.02) has a significant effect on the critical
Reynolds number, reducing it from approximately 105 to 104, although the structure of the
unstable flows is similar.

In this work, finite-volume discretisation, with solvers based on the OpenFOAM tool
kit, was used to investigate the flow around rotating disks. Simulations of rotor–stator
flows (figure 1b), were used to check the validity of the numerical predictions (§ 3),
comparing with similarity solutions (Batchelor 1951; Brady & Durlofsky 1987) and
spectral simulations (Serre, Tuliszka-Sznitko & Bontoux 2004). Spectral solutions (Serre
et al. 2004) give us the best basis for comparison, with an accessible geometry (A = 0.2)
and a range of Reynolds numbers Re = ωR2/ν ≈ 104 that are manageable with our
computational methods and resources. We use a Reynolds number based on the maximum
velocity of the rotating disk to facilitate comparison with literature results (Serre et al.
2004; Launder et al. 2010); at the edge of the disk Reδ = √

Re. Our simulations do not
probe instabilities in the Ekman layer (next to the rotor plate), which occur at significantly
higher Reynolds numbers.

The novel part of this work is an investigation of flows around a disk rotating within
a larger container of fluid (§ 4). Low-Reynolds-number flow is axisymmetric and stable,
with reflection symmetry approximately in the central plane (z = 0.5h). This flow persists
up to a Reynolds number Re∼100 when the reflection symmetry is broken. The initially
symmetric vortex rolls take up positions outside and underneath the disk, but the flow
remains stationary. At Re ≈ 700, the vortex rolls become unsteady and axisymmetry
is lost. Surfaces of constant vorticity now exhibit a two-fold symmetry, rotating in the
same direction as the disk but at a much lower angular velocity. At Reynolds numbers
above 1000 the vortex sheet fluctuates in shape with increasingly large amplitudes as Re
increases. The flow becomes more chaotic, with a turbulent flow developing by Re ∼ 5000.
We have included a free-surface condition on the upper boundary, which is typical for most
experimental studies of dissolution rates. Flow is stabilised by moving the disk towards the
container base, while near the free surface the flow is less stable.

2. Equations and methods

Fluid flow is described by the incompressible Navier–Stokes equations for the velocity (u)
and pressure (p) fields,

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇) u = −∇p + ν∇2u, (2.2)

where p has been scaled by the mass density and ν is the kinematic viscosity. In the
rotating-disk geometry (figure 1a), the boundary conditions on the rotating disk, the
container wall and the base are no-slip; the upper boundary is usually a free surface,
although in some instances we use a no-slip boundary there as well. In the rotor–stator
geometry (figure 1b) all the boundaries are no-slip.

The equations are discretised using a finite-volume decomposition, with a structured
mesh of hexahedral cells (figure 2) created with the blockMesh utility. A structured
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Figure 2. Finite-volume mesh for rotating disks. (a) The central layer of a rotating disk geometry, showing the
area excluded by the disk. The mesh is created in four quadrants of which only one is shown. (b) Side view of
the fluid domain (grey) and rotating disk (white). The radius of the fluid cell R = 4a, the height h = 2a and
the thickness of the disk d = 0.1a. The origin z = 0 is on the base of the container, and the disk is centred at
(0, 0, h/2). The mesh lines are graded in the vicinity of the disk to improve resolution. The upper and lower
layers of the disk are fluid filled and the quadrants are connected by a central square of length a. The red
squares indicate the probe locations discussed in § 4.3.2: the radial positions are r = 0.5a, a, 1.5a, 2a, and
the axial positions are z = 0.1h, 0.25h, 0.45h, 0.55h. (c) Top view of the rotor–stator geometry. The cavity is
meshed using a central square (length 0.035R), with the small cells near the centre growing larger. (d) Side
view: the mesh lines are graded near the rotor and stator plates.

mesh for these geometries requires a lengthy dictionary, but it produces more accurate
solutions than unstructured meshes created with snappyHexMesh. The m4 macro
language (a standard UNIX utility) was used to simplify dictionary creation and
modification. The cylindrical geometry requires merging an outer polar mesh with
a central square, as illustrated in figure 2(c). Unfortunately, this imposes a four-fold
symmetry on the overall mesh, which can affect the pattern selection, especially in
rotor–stator flows. We have sought to minimise the resulting error by making the square
small in comparison with the container dimensions. In order to have sufficient cells in
the azimuthal direction, the mesh becomes over resolved in the central region; radial
grading reduces the number of cells in the mesh while avoiding rapid changes in cell size
(figure 2c). Radial grading is also used to improve the resolution near the boundary of the
rotating disk (figure 2a). Axial grading is used near the rotor and stator plates (figure 2d)
and near the rotating disk (figure 2b).

Discrete approximations for u and p were integrated with second-order accuracy
in space and time using solvers and boundary conditions from the OpenFOAM�
tool kit (Weller et al. 1998). The equations are solved in a weak second-order
approximation, with the average field in each control volume stored at the geometric
centre of the cell. Boundary conditions and fluxes are evaluated at the face
centres We used several standard boundary conditions from OpenFOAM: noSlip
for stationary boundaries; rotatingWallVelocity for rotating surfaces; and
pressureInletOutletParSlipVelocity for flow on the free surface. A
zeroGradient pressure boundary condition is applied to all solid surfaces and the
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Instabilities in rotating flows

free-surface pressure field is calculated by the pressureInletOutletParSlip
Velocity class. The flow solvers icoFoam (rotor–stator) and potentialFree
SurfaceFoam (rotating disk) both used the ‘pressure-implicit with splitting of
operators’ (PISO) method (Issa 1986), which implements an explicit update of the velocity
field. A fully implicit solution takes more computational time than the additional time steps
required by the Courant condition in PISO. We found convergent time histories when the
maximum Courant number was less than two.

Unlike spectral methods, which have a grid point in each corner, a finite-volume method
specifies the boundary on the cell faces. Thus, the rotor and the container are on separate
patches and there is no corner singularity to regularise (Serre et al. 2004). We took the
simplest initial condition, with zero flow inside the cavity, and allowed the system to evolve
from there. We have also investigated stepping up the rotation rate from the end of a
previous simulation, but that did not lead to different final states.

The tool kit OpenFOAM implements a number of different schemes for the temporal and
spatial discretisation (Jasak 1996; Weller et al. 1998). We used a second-order backward
difference scheme for the time stepping, linear interpolation for the diffusive fluxes and
a blend of linear (75 %) and linear upwind (25 %) interpolation for the convective flux.
The scheme is similar to κ = 1/2 interpolation (Waterson & Deconinck 2007), except that
a surface gradient is used in the upwind interpolation, rather than values from a second
upwind point. We found this scheme produced more stable simulations than the flux limiter
methods we tried. Test cases for the rotor–stator and rotating-disk geometries are provided
in the supplementary materials available at https://doi.org/10.1017/jfm.2022.566. They are
compatible with OpenFOAM-v1712, OpenFOAM-v1912 and possibly with other versions
as well (https://www.openfoam.com).

3. Rotor–stator flows

Rotor–stator flow has been studied extensively by linear stability analysis, numerical
simulation and experiment. Launder et al. (2010) presents a concise summary of work up
to approximately a decade ago. Here we use results from Serre et al. (2004) as a means of
checking the soundness of the numerical simulations. Our results for the finest meshes are
in quantitative agreement with spectral codes on the main features of the first instability:
the critical Re, the number of spiral arms and the frequency of oscillations in the fluid
velocity at a fixed point. Nevertheless, we were not able to demonstrate mesh convergence
with our available computational resources, only that we are close to the known solutions
in several details.

3.1. Similarity solutions
von Kármán (1921) showed that the flow around a rotating disk has a one-dimensional
similarity solution,

ur = ωrF(z/δ), uθ = ωrG(z/δ), uz = ωδH(z/δ), (3.1a–c)

where δ = √
ν/ω is the thickness of the viscous boundary layer. Differential equations for

these functions have been derived for a single disk (Cochran 1934) and two coaxial disks
(Batchelor 1951). We have solved these equations numerically, as shown by the solid lines
in figure 3(b).

We analysed data from finite-volume simulations at low Reynolds number Reh = 30 to
extract similarity solutions. The angular velocity was kept small so that the flow remains
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Figure 3. Dimensionless velocity components F(z), G(z), H(z) in a cavity with aspect ratio A = 0.1 and
Reh = 30. (a) The functions ur/(ωr), uθ /(ωr) and uz/(ωδ) at the midplane position z = 0.5h. There is a
window between r = 2h and r = 4h where the solution is smooth and almost independent of r. (b) The
functions F(z), G(z), H(z) derived from finite-volume simulations at r = 3h (points) are compared with
similarity solutions (solid lines).

laminar. First we plotted the functions ur/(ωr), uθ /(ωr) and uz/(ωδ) at the midplane
position (z = 0.5h), looking for a similarity region where the functions show no significant
radial dependence (figure 3a). Points too close to the origin are not well resolved in the
azimuthal direction, while points too close to the outer boundary are perturbed by the
upflow near the cylinder wall. We use distances of r = 2h or r = 3h, which gave similar
results. For these comparisons we simulated a cavity with an aspect ratio A = 0.1, which
leads to close agreement with the similarity solution (figure 3b). An aspect ratio A = 0.2,
which we use to compare with Serre et al. (2004), is too large for a strictly self-similar
solution (Brady & Durlofsky 1987).

3.2. Mesh convergence
Unsteady rotor–stator flow has been simulated in a cavity with aspect ratio A = 0.2 at
a Reynolds number Re = 13 200, just above the instability threshold Re ≈ 12 000 (Serre
et al. 2004). We have compared four different meshes, all based on the one shown in
figure 2(c,d). The coarsest mesh has 24 cells spanning the interior square, meaning 96 cells
around the azimuthal direction, and 75 cells between the square and the outer boundary.
The cells were graded in the radial direction so that the cell sizes in the square were similar
to those in the adjacent polar region (figure 2c). There were 24 cells across the height of the
cell, refined close to the rotor and stator boundaries (figure 2d). This base mesh (186 624
cells) is double the resolution shown in figure 2 and is denoted R111; the indexes indicate
the resolution in r, θ and z, respectively. In addition to the base mesh we have simulated
flows with more refined meshes: R222, R442 and R444.

Flow in the coarsest mesh (R111) is stable at Re = 13 200 for times of at least 500ω−1,
but with a more refined mesh (R222) an instability emerges at ωt ≈ 200 (figure 4a);
entirely periodic oscillations, with a period (�t = 18.2ω−1), develop after ωt ≈ 350. An
image of the axial velocity field is shown in figure 4(a) at ωt ≈ 500. Spiral waves develop
under the stator 4(b), beginning in the Batchelor layer and travelling towards the centre of
the cavity. The phase diagram in Schouveiler, Gal & Chauve (2001) (their figure 3) shows
that circular rolls disappear by an aspect ratio slightly larger than 0.1, although they can
still be seen at early times (Serre et al. 2004).

Increasing the mesh resolution in the rθ plane (R442) leads to a qualitatively similar flow
4(d), but with 10 spiral arms instead of eight, and a significantly shorter oscillation period
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Figure 4. Unstable flow at Re = 13 200 in a cavity of aspect ratio A = 0.2. Time dependent oscillations of
the axial velocity at a probe position r = 4.17h, z = 0.9h for different mesh resolutions: (a) R111 (black), and
R222 (red); (c) R442, Co = 2.8 (black), R442, Co = 1.4 (red) and R444, Co = 1.4 (blue). Spatial variations in
axial velocity in the time-periodic regime are shown on the right-hand side. Images in the plane z = 0.9h are
shown for mesh resolutions: (b) R222 and (d) R442. Images are characteristic of an oscillatory steady state; the
fluctuations in point velocities are from the rotation of a fixed velocity field.

�t = 6.7ω−1, close to the rotation period of the disk. Results from the R442 mesh compare
well with published data from spectral methods (Serre et al. 2004). The oscillation period
found by Serre et al. (2004) �t = 5.7ω−1 was slightly shorter, while the number of spiral
arms (10) was the same. We should point out that in the text the authors say there are
12 spiral arms, but their figure 14(b) shows only 10. Additional refinement in the axial
direction did not lead to significant changes in flow: the image from R444 (not shown)
is similar to R442, with 10 spiral arms and a period of 6.7ω−1. Pattern selection may be
affected by the transition to the central square mesh (figure 2c), which imposes a four-fold
symmetry on the flow close to the rotor plate. This might explain the eight-fold structure
observed with the R222.

Test calculations with the R222 showed that the results are insensitive to time step
if the maximum Courant number is kept below three. The time trace in figure 4(c)
includes results with Co = 2.8 and Co = 1.4; the traces are indistinguishable. An identical
oscillation period (�t = 6.7ω−1) was found with the R444 mesh (figure 4c), but the
simulation required 2300 core hours just to integrate over the final 66ω−1; further mesh
refinement is not feasible with our present computational resources. By contrast, a spectral
method with only 150 000 cells was sufficient to obtain convergent solutions (Serre et al.
2004).
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||Ω||/ω
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Figure 5. Isosurface of Q = 0.19ω2 (3.2), showing circular and spiral vortexes in the stator layer, at a time
of (a) ωt = 25, (b) ωt = 60 and (c) ωt = 250; the mesh resolution is R442. The top of the isosurface is at
z ≈ 0.95h and the images are clipped at z = 0.1h to remove the sheet above the rotor. The colour field expresses
the magnitude of the vorticity.

3.3. Vorticity waves at Re = 13 200
At the onset of instability (Re ≈ 12 000) the unstable regions are known to comprise a
mixture of circular and spiral vortexes (Launder et al. 2010). For this specific geometry,
Serre et al. (2004) identified circular rolls at short times, followed by coexisting circular
and spiral rolls, and finally only spiral rolls. We have used the second invariant of the strain
rate (Jeong & Hussain 1995),

Q = 1
2

(
‖Ω‖2 − ‖S‖2

)
, (3.2)

to characterise surfaces of constant Q; here Ω and S are the antisymmetric and symmetric
components of ∇u. Vortex cores correspond to regions of positive Q, and we found
empirically that contours around Q = 0.2ω2 showed most of the vortex structure without
noticeable noise (figure 5).

We find the expected progression of vortex waves: at short times (ωt = 25) there are
only circular rolls (figure 5a), while at intermediate times (ωt = 60) faint shadows of the
spiral rolls can be seen from the vorticity colour map (figure 5b). The spiral pattern shows
up more clearly in supplementary movie 1, where coexisting circular and spiral rolls can
be seen between ωt of 45 and 60. At a time ωt ≈ 140, distinct spiral rolls emerge, while
by ωt = 200 the final pattern has stabilised (figure 5c). The movie shows that the vortex
pattern rotates in the same direction as the flow, with a period of 69ω−1.

3.4. Onset of Instability and critical Reynolds number
We have made three additional simulations in the region of the expected transition from
stable to unstable flows: Re = 11 000, Re = 11 500, and Re = 12 000. Probe traces and
maps of the velocity field, all for the R442 mesh, are illustrated in figure 6. At Re = 12 000
the flow is similar to Re = 13 200. Again we see 10 spiral vortexes, but the probe traces
are less regular than at higher Re. At Re = 11 500, a faint impression of spiral vortexes
can still be seen after a long time, but in this case the perturbations grow very slowly
and erratically. Finally, at Re = 11 000 (not shown) no noticeable perturbations developed

945 A31-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.566


Instabilities in rotating flows

0 200 400

–0.020

–0.015

–0.010

–0.005

0

0 200 400 600

–0.020

–0.015

–0.010

–0.005

0

(a) (b)
u z

/ω
R

u z
/ω
R

ωt

0.04

0.03

0.02

0.01

0

u z
/ω
R

0.03

0.02

0.01

0

u z
/ω
R

Re = 11 500

Re = 12 000

(c) (d)

Figure 6. Axial velocity measured by a probe located at r = 4.17h, z = 0.9h, together with a map of the axial
velocity in the plane z = 0.9h: (a,b) Re = 12 000 and (c,d) Re = 11 500.

over the duration of the simulation (580ω−1). Our results place Recrit ≈ 11 500, which
compares quite well with the bounds in Serre et al. (2004), 11 500 < Recrit < 12 300.

4. Instabilities in rotating-disk flows

Results of experiments using a rotating-disk apparatus (Gregory & Riddiford 1956;
Pokrovsky et al. 2005; Giaccherini et al. 2020) are inevitably analysed within the
framework developed by von Kármán (1921), Cochran (1934) and Levich (1962). The
mass transfer at the reactive surface can be described by an effective rate constant,

1
keff

= 1
k

+ δc

D
, (4.1)

where k is the intrinsic surface reaction rate and δc is the thickness of the concentration
boundary layer. The intrinsic reaction rate can be determined from the effective rate
measured in the experiment using the simple formula (Levich 1962)

δc = 1.61δ Sc−1/3, (4.2)

where Sc = ν/D is the Schmidt number (Sc ∼ 1000).
The formula (4.2) follows from the assumption of a laminar flow around the disk, so

that the similarity solution from § 3.1 remains valid and uz is only a function of z. A
second assumption is that the concentration field is radially uniform over a sufficiently
large portion of the disk that variations near the periphery of the disk do not significantly
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affect the total mass transfer. Experimentally, the disk is positioned within a much larger
container of fluid, in order to approximate a von Kármán flow underneath the disk, next to
the reactive surface. However, the liquid exterior to the disk generates significant friction
to the rotational flow; then a rapid drop in azimuthal velocity can generate a centrifugal
instability, qualitatively similar to Taylor–Couette flow (Chandrasekhar 1981).

In these investigations we use a similar geometry to laboratory experiments (Gregory &
Riddiford 1956): a rotating disk of radius a and thickness d = 0.1a in a cylindrical cavity
of radius 4a and height 2a; in typical experiments a is of the order of a few centimetres.
The simulations show that recirculation outside the disk is unstable at surprisingly low
Reynolds numbers, around Re = 100 for this particular geometry. A second instability,
leading to time-periodic flow, commences around Re = 700. In future work we will
investigate the effects of these instabilities on mass transfer to the disk.

4.1. Stationary flows: symmetry breaking
In the absence of inertia, flow around a rotating disk is purely azimuthal, with ∇2uθ = 0
and p constant throughout the fluid. However, at finite Reynolds number, Re = ωa2/ν,
there is an additional recirculation (r) flow, proportional to Re2. A rotating disk captures
fluid axially and ejects it radially, so that pairs of counter-rotating vortexes are formed
above and below the disk as shown in figure 7(a,b). The flow is axisymmetric, with perfect
reflection symmetry about the plane z = 0.5 when a no-slip condition is applied to the top
surface.

At larger angular velocities (100 < Re < 120) reflection symmetry (top to bottom) is
broken, although the flow remains stationary and axisymmetric. The azimuthal velocity
outside the rotating disk decreases rapidly, and the Rayleigh discriminant ∂r(ruθ )

2 is
negative in the region around r = 1.5a. This is reminiscent of the first Taylor–Couette
instability and occurs at a similar Reynolds number. The ejected fluid now flows axially as
well as radially, reinforcing the recirculation (figure 7c,d). The vortexes are asymmetric,
with the larger roll in the bulk fluid region. The symmetry of the boundary conditions
means that there is no physical reason for the axial component of the flow between the
vortexes to point upwards rather than downwards; it was most likely determined by small
details in the numerics.

Pattern selection can be controlled by moving the disk to an off-centre (vertical) location
(§ 4.6), or by introducing a free-surface condition on the upper boundary, which is more in
line with laboratory experiments (Gregory & Riddiford 1956) than a no-slip condition. At
low Reynolds number (Re < 10) an approximately symmetric flow is still realised, similar
to figure 7(a,b), although a close inspection reveals asymmetries in the flow arising from
the free surface. The near reflection symmetry is broken before Re = 50, with the flow
pointing up (figure 7e, f ), but when Re > 100 the flow between the vortexes always points
down (figure 7g,h). The flow remains stationary and axisymmetric up until a Reynolds
number of approximately 700.

4.2. Transition flow: Re = 600–800
The flow illustrated in figure 7(g,h) (with a free surface at z = h) becomes unsteady around
Re = 700. At a slightly lower Reynolds number (Re = 600) the flow remains axially
symmetric and stable (figure 8a,b), but by Re = 800 the axial symmetry is broken and
an oscillating flow develops (figure 8c,d), with a period �t ≈ 275ω−1 (black line). The
same frequency shows up in all the probe locations shown in figure 2(b) (red squares),
with an additional weak oscillation at approximately the frequency in the outer probe
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Figure 7. Time-independent flows around a rotating disk. Time traces of the axial velocity at r = 1.5a, z =
0.25h (and elsewhere) show that the velocity field is time invariant after an initial transient. Maps of the steady
flow in the plane x = 0 are shown in panels (b,d, f,h). Panels (a–d) have no-slip boundaries on all surfaces: (a,b)
Re = 50; (c,d) Re = 100. Panels (e–h) include a free-surface boundary condition at z = h: (e, f ) Re = 100;
(g,h) Re = 120. Arrows represent the magnitude and direction of the flow within the yz plane. The colour scale
indicates the magnitude of the in-plane velocity field, uyz = (u2

y + u2
z )

1/2.

945 A31-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.566


Z. Liu and A.J.C. Ladd

0 2 4 6 8 10 12

–0.015

–0.010

–0.005

–0.15

–0.10

–0.05

0

0.005(a) (b)

0

0 1 2 3 4 5 6

–0.01

0

)

ωt × 10–3

u z
/ω
a

u z
/ω
a

–0.15

–0.10

–0.05

0.05

0

u z
/ω
a

u z
/ω
a

(c) (d)

Figure 8. Onset of instability between Re = 600 and Re = 800. Axial velocity measured by probes located at
r = 1.5a, z = 0.25h (black) and r = 2a, z = 0.25h (red), together with colour contours of the axial velocity in
the plane z = 0.125h: (a,b) Re = 600 and (c,d) Re = 800.

locations (r = 2a, red line). The instability for a finite-size disk occurs at significantly
lower Reynolds number than an Ekman instability (infinite disk), which occurs around
Re = 80 000 (Malik 1986).

We can track the development of the instability by monitoring the evolution of vorticity
or Q contours (3.2). The shape of a fixed contour Q = 0.0032ω2 is shown in figure 9
at four different times. We found empirically that this isosurface showed most of the
vortex structure without noticeable noise. A complete time history of the Q field is shown
in supplementary movie 2. The initial isosurface (figure 9a) shows two separate sheets,
corresponding to a large vortex roll in the bulk fluid and a smaller roll underneath the disk
(see supplementary movie 2). When ωt ≈ 3500 an instability in the outer vortex becomes
visible, signalled by small holes in the larger vortex sheet (figure 9b). Projections of the
flow onto a vertical plane indicate that the instability is initiated at the edge of the large
vortex roll (supplementary movie 3), rather than in the boundary layer around the disk or
along the vertical edges of the disk. The tear in the vortex sheet, centred at approximately
r = 2.3a, z = 0.35h, corresponds to the region where the ejected flow is entering and
reinforcing the vortex roll. Axial symmetry is broken by the instability (figure 9c), and
the final oscillating state is a fixed vortex sheet, rotating in the same direction as the disk,
with a period of approximately 550ω−1. There is a precise two-fold symmetry in the sheet,
which gives the primary period for the point velocity fields of 275ω−1.

4.3. Critical Re
The lowest rotation rate for which oscillations develop over the time scale of the simulation
(ωt = 17 500) corresponds to a Reynolds number Re = 700. Over the same time range the
flow at Re = 600 remains time invariant (figure 8a,b) with no hint of fluctuations, while
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(a) (b) (c) (d )

Figure 9. Isosurface of Q = 0.0032ω2 at Re = 800: (a) ωt = 800; (b) ωt = 3520; (c) ωt = 3840; and (d)
ωt = 4800.

at Re = 800 it is unsteady before ωt = 2500 (figure 8c,d). An analogy to Taylor–Couette
flow suggests that the instability in the vortex sheet (figure 9) is a Hopf bifurcation, leading
to an azimuthally periodic flow. Since the subcritical flow (Re = 600) is axisymmetric
(figure 8a,b), we look for time-dependent perturbations δu to the mean (base) flow u:

u(x, t) = u(r, z) + δu(x, t). (4.3)

However, at Re = 700 the flow is never entirely stationary. Once the initial transient has
died out (ωt ∼ 2000), point probes show small (order 10−6) but very regular fluctuations in
the local velocity. These oscillations are too small to be seen on normal scales (figure 8c,d)
and we have minimised their effects on the mean flow by averaging over four complete
oscillation periods (two rotations), from ωt = 2100 to ωt = 3430.

We have determined the growth rates of the velocity field at different probe positions
in the fluid domain (§ 4.3.2). At the two lowest supercritical Reynolds numbers, the
growth rate at different probe positions was the same to within the numerical uncertainties
(figure 11), with average values of 0.00074ω−1 at Re = 700 and 0.0024ω−1 at Re = 800.
Since the perturbations are linear in Re (§ 4.3.3), by extrapolating to zero growth rate we
can estimate the critical Reynolds number as Rec = 655.

4.3.1. Mean flow
The mean flow at Re = 700 separates into three distinct circulation zones, as illustrated
by the streamlines in figure 10. Starting from any spatial location a Lagrangian tracer
always maps out a path in one of these three zones; no matter how long the streamline,
it never crosses into a different zone. In circulation zone I (figure 10a), fluid ejected from
the edge of the disk moves towards the bottom of the cylinder, forming a rotating ‘dome’
just underneath the disk. After reaching the bottom of the disk, fluid flows out radially
along the base of the container before flowing up the sides (Batchelor flow) to the free
surface. Flow lines accumulate towards the centre of the free surface, creating a cyclone
flow towards the disk. Flow lines then spiral out from the top of the disk before descending
again to the bottom of the container. Circulation zone II (figure 10b) is a vortex ring of
radius approximately 2.5a and diameter ∼ a. Finally, in zone III (figure 10c), the vortex
roll is tightly confined under the rotating disk.

4.3.2. Velocity probes
Time traces of the axial velocity are shown in figure 11 at 16 different locations, spanning
a range of r and z positions above and below the disk (see figure 2). To make the
exponential growth of perturbations clearly visible, the mean flow at each probe position
was subtracted. Maxima and minima were detected by comparing the magnitude of δuz
at a particular time with values at neighbouring time points. Traces of the other velocity
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(a) (b) (c)

Figure 10. Streamlines of the mean flow u(r, z) at Re = 700. The tracers within each circulation zone are
indicated by a different colour: (a) red, zone 1 recirculation; (b) blue, zone 2 vortex roll; (c) white, zone 3
vortex roll underneath the disk.
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Figure 11. Axial velocity relative to the mean flow (|δuz|) at the probe positions indicated in figure 2. The plots
show the maxima (closed circles) and minima (open circles) in δuz. The probes are located at (a) r = 0.5a,
(b) r = a, (c) r = 1.5a and (d) r = 2a. The vertical positions are indicated by the colour: z = 0.1h (black);
z = 0.25h (red); z = 0.45h (blue); and z = 0.55h (green).

components show similar behaviour, as do probes located in the upper region of the fluid
(z > 0.6h).

The velocity profiles show that perturbations at all the probe points develop with
the same frequency and growth rate. This suggests a spatiotemporally periodic flow,
with a single global mode growing exponentially in time, similar to the transition from
axisymmetric to wavy vortices in Taylor–Couette flow (Davey, Prima & Stuart 1968; Jones
1985). If we assume a supercritical Hopf bifurcation at Re ≈ 700, then the flow has an

945 A31-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.566


Instabilities in rotating flows

unstable fixed point (mean flow) with a stable limit cycle nearby. We therefore write the
perturbation as a single mode (Stuart 1958; Watson 1960),

δu(x, t) = A(t)δu0(r, z)e2iθ + A	(t)δu	
0(r, z)e−2iθ , (4.4)

where A(t) is the (complex) amplitude; in the linear regime A = e−iΩt. The modes must
be even multiples of θ because of the mirror symmetry in the rθ plane; figure 8(c,d) shows
that the primary instability has a wavenumber of two. The complex field δu0(r, z) is a
snapshot of the flow field in two rz planes, with an angle of 45◦ between them.

The frequency and growth rate Ω = (19.0 + 0.74i) × 10−3ω were found by fitting data
in the linear regime (figure 11) over times ωt from 6000 to 8000. A single mode grows
exponentially and symmetrically about the mean, from the end of the initial transient
(ωt ≈ 2000) to the onset of the nonlinear region at ωt ≈ 10 000; eventually the mode
stops growing and a stable oscillating state is reached (§ 4.3.4). The rotational period of
the vortex roll is 662ω−1, with two oscillations per complete rotation.

4.3.3. Linear perturbations
A planar projection of the mean flow at Re = 700 is shown in figure 12(a). The flow is
dominated by two counter-rotating vortex rolls: a large roll in the bulk fluid outside the
rotating disk (blue trace in figure 10b) and a smaller roll underneath the disk (white trace
in figure 10c). The rolls drive a strong flow from the disk to the container base, where it
recirculates to the top of the container (red trace in figure 10a). Regions of high angular
velocity in the mean flow (pale blue and red regions) are localised near the disk, in the
region between circulation zones II and III, and in the vortex roll underneath the disk.

Spatial variations of the real and imaginary parts of the eigenfunction δu0(r, z) are
illustrated in figure 12(b,c). Whereas in the mean flow there are two counter-rotating rolls,
the perturbation has corotating vortexes, with an additional small vortex at the base of the
separation between circulation zones II and III (figure 10b). The vortexes are fed by the
strong shear arising from gradients in the azimuthal velocity, indicated by the changing
background colour. In the plane lagging by 45◦ (figure 10c), the small vortex has slipped
from the boundary layer and displaced the larger vortex, which is then dissipated by the
friction from the nearly stationary outer fluid region (r > 3a). The perturbation to the
azimuthal velocity changes sign over the 45 ◦ rotation, as shown by the reversal of the
colour maps. The time-periodic vortex shedding can be seen in projections of the axial
velocity shown in supplementary movie 4. The large vortex moves towards to the cylinder
wall while in the interior it is replaced by a counter rotating vortex.

Figure 12(d) shows the real part of δu0 seven oscillations (3.5 rotational periods) later
(ω�t = 8280), with the time lag calculated from the real part of Ω0; images of the
velocities (arrows and colours) were rescaled based on the imaginary part of Ω0. The
similarity with figure 12(b) shows that a single mode is evolving in this time range, with a
single frequency Ω = (19.0 + 0.74i) × 10−3ω.

4.3.4. Nonlinear regime
Figure 13 shows axial velocity traces (red lines) from two probes in the boundary layer
between zones I and II; r = 1.5a and z = 0.1h (probe 8) and z = 0.25h (probe 9). The
mean velocity over each period was subtracted from the trace and is shown as the
blue dotted line. The velocity fluctuations about the time-dependent mean are then well
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Figure 12. Maps of the mean flow (a), and perturbation δu at ωt = 5960 (b,c). Slice (c) is rotated by +45◦
with respect to (b). Panel (d) is delayed by seven complete oscillations from panel (b); the length of the lines
and the colour scale have been adjusted for the growth of the eigenmode, a factor of 5.55 over this time interval.
Flow in the plane δur, δuz is indicated by arrows, while the perpendicular flow δuθ is indicated by the colour
scale. The arrows indicating the direction of the flow have been clipped from the left side of panel (a) so the
variations in colour are more visible.
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Figure 13. Axial velocity relative to the mean flow (|δuz|) at sample probe positions 8 and 9 (r = 1.5a,
z = 0.1h and r = 1.5a, z = 0.25h). Results from numerical simulations (red) are compared with solutions of
the Stuart–Landau (SL) equation (black dots), with Ω = (19.0 + 0.74i) × 10−3ω and Γ = (−2.65 + 3.64i) ×
10−7ω.

described by the SL equation for the (complex) amplitude (black dotted line),

Ȧ = −iΩA − Γ A|A2|, (4.5)

where Γ is a constant. The amplitude for each probe position was determined fitting a
numerical integration of (4.5) to the simulated δuz. We used data in the time range 6000 <

ωt < 8000, where the perturbation to the mean flow is growing exponentially (figure 11).
We determine the modulus and phase A(ωt = 6000) for each probe independently, but the
values of Ω and Γ are the same in both cases. Equation (4.5) captures the saturation of
the perturbation and the nonlinear phase shift (approximately π over the duration of the
simulation).

For times beyond ωt = 10 000, a double minimum appears in the trace for probe 8
(figure 13a), which suggests that higher harmonics are being generated by the nonlinearity.
This was confirmed by Fourier transforms of the complete probe trace, which showed an
additional peak at twice the frequency of the base signal. If the input signal to the fast
Fourier transform was terminated before ωt = 10 000, there was only a single peak.

The shape of the large vortex roll near the onset of frequency doubling is shown in
figure 14. In the linear regime up to times of ωt ≈ 9000, the roll remains circular and
flat (figure 14a). As ωt approaches 10 000, the roll expands and a slight waviness in the
outline develops (figure 14b). This is not visible at earlier times because the perturbation is
too small to significantly impact the overall flow, but by ωt = 10 150 there are noticeable
deviations from flatness and a loss of circular symmetry. There is an abrupt transition in the
region ωt = 10 500, when periodic variations in the overall shape of the vortex develop.

4.4. Re = 900–1000
At Reynolds numbers up to 1000, the flow remains organised in coherent vortex rolls,
with stable oscillations similar to those at lower Reynolds number. At Re = 900 the vortex
sheet again just rotates, but with a faster period 440ω−1. Point velocity probes again show a
single frequency in some locations (black line in figure 15a), with two periods per rotation
of the vortex, and two frequencies in others (red line) with four periods per rotation. The
different frequencies can be understood from the structure of the vorticity (figure 15b);
the black and red circles indicate the (r, z) coordinates of the two probes. At Re = 900
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(a) (b) (c) (d )

Figure 14. Streamlines showing the outline of the large vortex roll at different times: Re = 700; (a) ωt = 9100;
(b) ωt = 9800; (c) ωt = 10 150; (d) ωt = 10 500. The upper subpanels show the view from the vertical (z) axis,
and the lower subpanels the view from the horizontal (y) axis.
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–0.01
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Figure 15. Oscillatory flow at Re = 900 and Re = 1000. (a) Axial velocity at Re = 900, (b) isosurface at
Re = 900, (c) axial velocity at Re = 1000 and (d) isosurface at Re = 1000. The probe locations are at r =
1.5a, z = 0.25h and r = 2a, z = 0.45h; the isosurface contour is Q = 0.0032ω2. The probes lie on the circles
of the same colour.

the lobes of vorticity near the free surface have increased in size over those at Re = 800
and now contribute a significant signal to nearby probe points. It can be seen that the red
circle crosses the vorticity sheet eight times in a single rotation, indicting four signals to
the probe within one revolution (�t = 440ω−1), matching the observed fluctuations in
axial velocity at the outer-upper location (red line in figure 15a). On the other hand, the
inner-lower probe (black) is not affected by the upper lobes and only shows two oscillations
during a full rotation of the vortex sheet.

At Re = 1000, there are fluctuations in the shape of the vorticity contour as well as
rotation (�t = 400ω−1). The dominant signals at the probes are similar to those at the two
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Figure 16. Oscillations of the axial velocity at Re = 1000 for mesh resolutions R111, R112, R222, R114 and
R224. The probe is at r = 2a, z = 0.45h.

lower Reynolds numbers, but there are small perturbations from fluctuations in the vortex
sheet. This causes additional, less regular, fluctuations in axial velocity.

4.5. Mesh dependence at Re = 1000
We have compared the time evolution of the axial velocity at Re = 1000 for five different
mesh resolutions, all based on the one shown in figure 2(a,b), but at double the resolution
shown in the figure. The coarsest mesh (721 920 cells), is denoted R111; the other four
meshes were various refinements formed by doubling the number of cells in a particular
direction:R112, R222, R114 and R224.

Figure 16 plots the axial velocity at a single characteristic probe position (r = 2a, z =
0.45h) for different mesh resolutions. Figure 16(a,b) compare uz(t) from the base mesh
(R111) and one with double the resolution in the axial direction (R112). Although the
flow patterns and oscillation frequencies are quite similar, the point velocities differ by
approximately 50 % between the two mesh resolutions. However, further mesh refinement
has a much smaller effect on the probe velocities and no visible changes to the flow field.
To study finer meshes, without the computational expense required to erase the initial
condition, the flow field from the R112 mesh at ωt = 3000 was interpolated to more
resolved meshes – R222, R114 and R224 – for the comparisons shown in figure 16(c,d).
The results figure 16(c) show that the effect of increasing resolution in the rθ plane
is small, while increasing resolution in the z direction leads to a sharpening of the
peaks and a small phase shift that accumulates with time. This is not unexpected given
the multiple frequencies in the dynamics. Finally, figure 16(d) shows the first period
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1600 1800 2000

ωt
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0

0.002
u z
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a

(a) (b)

(c)

Figure 17. Oscillatory flow at Re = 1200 with the central plane of the rotating disk located at the quarter
height zdisk = 0.25h. (a) Axial velocity at a single radial position r = 2a, indicated by the red circle. The circle
is coplanar with the central plane of the disk (z = 0.25h). The three probes are near the base of the container
(z = 0.1h), coplanar with the disk (z = 0.25h) and in the fluid above the disk (z = 0.45h). (b) Isosurface of
Q = 0.0032ω2 at ωt = 4800, showing three pairs of spiral vortexes. (c) Isosurfaces of Q = 0.0032ω2 at ωt =
120, 240, 360, 480.

(from 3000 < ωt < 3200) including the highest resolution we could calculate R224. The
different resolutions lead to very similar axial velocities for at least one period and again
the in-plane resolution is less important than the axial resolution.

In figures 9 and 15, small perturbations can be seen on the surface of the innermost
vortex. The four-fold symmetry implies that this is again an artefact of the central
square. However, the overall vortex structure is much less sensitive to mesh resolution
than in the rotor–stator geometry and the shape of constant Q contours for more refined
meshes remains the same as for R112. As a reasonable compromise between accuracy and
computational cost we use R112 for the simulations up to Re = 5000.

4.6. Varying disk position and thickness
The flow patterns are very sensitive to disk position. If the rotating disk is moved closer
to the base (zdisk = 0.25h) the flow is more stable, with a critical Reynolds number in
the range 1100 < Recrit < 1200. When Re > 1100, regular, high frequency (�t = 12ω−1)
oscillations emerge after some initial transients (figure 17a). The fast oscillations are
caused by the development of spiral waves in the bulk fluid outside the rotating disk
(figure 17b). With the disk in the central position (zdisk = 0.5h), spiral waves are never
observed (figures 8–15), but here the additional friction between the spinning disk and
the container base provokes an additional instability in the vortex sheet; the sequence can
be followed in figure 17(c). Initially (ωt ≈ 120) a circular vortex forms outside the disk,
indicated by the middle ring. This vortex ring develops instabilities around its exterior
around ωt ≈ 240, which break up into six pairs of spiral vortexes (ωt ≈ 360). Each pair is
composed of a large interior roll and a smaller exterior one. The six spiral pairs coalesce
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ωt = 1470

ωt = 1380

ωt = 1290

ωt = 1200

2.0

1.5

1.0

0.5

0

u y2
 +

 u
z2
/ω
a

Figure 18. Oscillatory flow at Re = 300 with the central plane of the rotating disk located at the three-quarter
height, zdisk = 0.75h; the flow field near the rotating disk is projected on the yz plane. Flow fields are shown
at four successive times: (a) ωt = 1200; (b) ωt = 1290; (c) ωt = 1380; and (d) ωt = 1470. The colour scale
indicates the magnitude of the in-plane flow field, uyz = (u2

y + u2
z )

1/2.

quickly (ωt ≈ 480) into three larger pairs, which becomes the stable structure (figure 17b).
We observed similar flow patterns up to Re = 2000.

If the disk is shifted upwards, towards the free surface, the reduced resistance to
rotational flow near the free surface (compared with a no-slip boundary) allows for
unstable flows at lower Re. The critical Reynolds number decreases, and with zdisk = 0.75h
the flow becomes unstable in the range 100 < Re < 200. In this case there is a symmetry
breaking in the rz plane, with an upward flow on one side and a downward flow on the
other. Images of the flow are shown in figure 18 at a Reynolds number Re = 300. Over
time the axial flow oscillates back and forth with a period of approximately �t = 360ω−1.
The four images show the flow switching back and forth at intervals of approximately
�t/4. The uniform flow towards the disk suggested by the similarity solution does not
occur here.

We did not find significant variations with a centrally placed disk of half the original
thickness (d = 0.025h). The instability develops within the same range of Re and the flow
patterns are similar to the thicker (0.05h) disk. This is consistent with an instability in the
vortex roll outside the disk (§ 4.3), rather than being generated at the edge of the disk.

4.7. Transition to turbulence: Re = 1200–5000
With the disk centrally positioned (zdisk = 0.5h) the flow below Re = 2000 is
characterised by rotation of the vortex sheet, but the mirror symmetry present in lower
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(a)

(b)

(c)

(d)

(e)

0

0.1

0.2

0

0.1
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0.1

0

0.1
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0
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Figure 19. Flow fields at higher Reynolds numbers: (a) Re = 1200; (b) Re = 1500; (c) Re = 2000;
(d) Re = 3000; (e) Re = 5000. The colour scale indicates the magnitude of the in-plane flow field, uyz =√

u2
y + u2

z .

Re flows is lost. The shape of a fixed Q contour is no longer constant, but the oscillations
first observed at Re = 1000 grow in magnitude and complexity. In figure 19 the velocity
field has been projected onto an (rz) plane. The higher velocity regions (light blue to red)
envelope more or less symmetric vortex rolls, but these rolls change shape and spawn new
vortexes as the primary vortex sheet rotates. The flow becomes more asymmetric as Re
increases and the size of the rolls decreases noticeably at Re = 2000. Up to Re = 2000
the vortex core is almost entirely contained within a single rotating sheet, with only
a few isolated vortex blobs. But, by Re = 3000, there is a sharp increase in the axial
velocity fluctuations and the flow becomes turbulent; there is no longer any structure to
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the vorticity, just blobs of different sizes and shapes. Simulations at Re = 5000 suggest
that the flow has become fully turbulent. For comparison, the experiment described by
Gregory & Riddiford (1956) was at Re ∼ 10 000.

5. Conclusions

We have simulated rotating flows in rotor–stator and spinning disk geometries using direct
numerical simulations with finite-volume discretisation. Our results for rotor–stator flows
(§ 3) reproduce the key results from previous spectral simulations (Serre et al. 2004): a
critical Reynolds number Recrit ≈ 11 500, with a periodic flow formed by rotating spiral
vortexes. Our finest meshes reproduced the correct number of spirals at Re = 13 200, but
we were unable to demonstrate that the mesh was fully converged. The finest mesh utilised
12 × 106 cells, as opposed to approximately 150 000 cells in a fully resolved spectral
simulation. A mixed discretisation, using finite-volume cells in the rz plane and a spectral
decomposition in the axial direction, may prove to be an efficient solution in more general
axisymmetric geometries. Among other things, it would avoid the artefacts in the present
work associated with merging Cartesian and polar meshes.

New results were obtained for a finite-size disk rotating in a larger volume of fluid
(§ 4). The simulations include a free surface as the top boundary condition, which mimics
the typical experimental set-up for surface reaction rate measurements. At low Reynolds
number (Re ∼ 100) the flow is time independent, with the vorticity confined in symmetric
doughnut-shaped rolls. This flow is unstable to an imbalance in centrifugal and pressure
forces, and mirror symmetry is broken at Reynolds numbers in excess of 100. However,
the double vortex flow (figure 7g,h) remains stable and time invariant up to Reynolds
numbers around 700. At that point, azimuthal symmetry is broken (figure 6c,d) by a
Hopf bifurcation, and a two-fold symmetric vortex sheet is formed (figures 9 and 15). The
outer vortex develops periodic oscillations, similar to the rolls in a wavy Taylor–Couette
flow, but the overall vorticity envelope simply rotates until a Reynolds number of 1000
is reached, when small fluctuations develop. The amplitude increases with increasing
Reynolds number and after Re = 1200, the mirror symmetry characterising the slower
flows is lost. Velocity fluctuations become more chaotic until the onset of a turbulent flow
in the range 3000 < Re < 5000. Reynolds numbers in laboratory experiments are in the
same range, Re ≈ 10 000 (Gregory & Riddiford 1956).

Time varying flows are sensitive to the disk position. If it is shifted below the central
plane (zdisk = 0.25h), spiral vortexes develop outside of the spinning disk near the base of
the cylinder (figure 17). On the other hand, moving the disk upwards (zdisk = 0.75h) breaks
the mirror symmetry in the rθ plane. In this case a very large vortex flow develops on top
of the disk, which dominates the rz velocity. The direction of the vortex flow switches
periodically in time (�t ≈ 360ω−1).

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.566.
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