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Seventh Meeting, May 11¢h, 1888,

W. J. Macpoonarp, Esq., M.A,, F.R.S.E,, President, in the Chair,

“Vortex Rings in a Compressible Fluid.”
By C. Crrer, M.A,

In a paper recently printed in the Society’s Proceedings, I con-
sidered the effect of compressibility in the fluid on the motion of
straight vortices ; the present paper treats of circular vortex rings
in a compressible fluid. The circle passing through the centres of
the circular cross sections of the vortex filament will be called the
“circular axis,” and the perpendicular to the plane of the circular
axis through its centre, the ¢ axis” of the vortex. In the notation
employed, a denotes the radius of the circular axis, and e that of the
cross section of the filament, while w represents vorticity, and p den-
sity. It is also convenient to denote the area of the cross section—
i.e., me?, by 0. Following Helmholtz, it will be supposed that e/a is
always very small, and that the cross section is truly circular. Cer-
tain small inconsistencies in the ordinary theory following from this
last assumption will be pointed out, though they do not seem seri-
ously to affect the general applicability of the results. The axis of
the vortex ring is taken as axis of z, and 2, r, § are the ordinary
cylindrical co-ordinates. It is also convenient to denote by »' the
distance of a point from the circular axis of a ring, and by y the
inclination of this distance to the plane of the circular axis. The
effects of the vorticity and variation in density may be considered
separately.

The components of vorticity at any point of the ring are £=
— wsinf, y = wcosf. There is obviously symmetry about oz, and the
velocity at any point can be resolved into « parallel to oz and »
along the perpendicular on oz Since e/a is very small, we shall,
following the common practice in calculating the velocity, regard the
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vortex filament as concentrated in the circular axis, and so in Lamb’s

formule* replace the vortex element dxdydz by ™%40; where
w

m, = wé'w, is the strength of the vortex. Supposing the origin taken
in the instantaneous position of the centre of the circular axis, we
find from these formule for the velocity in the fluid at the point
r, 0, z outside the vortex

(a — rcosf)dd

= 1),
w= 27" (z +a® + 1% — 2arcos6)d M)
zcosOdd
: (@).
o (2'+a*+7*— 2arcosf)}
We may at once transform* (1) into
_ 2ma d[ 4 ] 3),
JA+ (r+ a) ,Jl - k’sm’¢
4
where =___""" _ 2¢=m-0 e e (4

2+ (r+a) !
Thus if, as usual, F; denote the complete elliptic integral of the
first order,

w= -2_”_‘“1[{z +(r+a)7) *F(k)] e e ().
‘When £ is nearly unity, an approximate value is F\(k)=1og(4/k,),
-1 -p=itroae) e (6).

where &, Fr(rTay (6)

Thus, for points near the surface of the filament, where zand » - &
are both very small, an approximate value is

= - W i[{z’ +(r+ a)z}_élog{ll(z:iﬂ)g}].

2+ (r-a)
This gives
we 2_:’!& (2+ @+ a)a}"%[(r + a)log{‘}(:——I E: t Z;:)%}
_2(z+1r*—a?)
Zio—ap 1 (7).

For points outside, but in contact with the surface of the filament,
we have r=a + ecosy,z = esiny.  Substituting these values in (7) and

* «“Motion of Fluids "—Equations (15), p. 152,
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retaining the principal terms, we get for the velocity in the fluid
just outside the filament

w= __{log__ —1+cos’y - 2acos¢} . (8).

The first and last are much the most important terms.

The most important term omitted is — mecosin#l —
T €
From (2), using & and ¢ in the same sense as before, we easily
find

_mdfl . nig gy L+rital ] 9) -
e G R ACR et O] IOF

where El is the complete elliptic integral of the second order.
For points near the surface of the filament, we saw that approxi-

mately Fy(k) =log(4/k,) ;
also E(k)=(1 -v){F,(k)+d_’°‘]fF,(k)} e (10)%

From its approximate value we get kdl‘:ill(c“ = %—-z_’._‘_t:r a7 5
thus an approximate value is
24 (r - a)? 2+ (r+a)\i 4ar
Ey(k =?_i(’_‘i[1 (s(Groranyh), P 1. av.
() 22+ (r+a) o8 2+ (r—a) +z’+('r—a)’ (an
Substituting these values in (9), carrying out the differentiations
and reducing, we obtain the approximate value

BT S
dar ] e (12)

2! +(r a)
Using the same notation as before, and retaining the principal

terms, we find for the velocity in the fluid just outside the filament

m . m .
=" - 13).
u ﬂsmyb 27rasm¢cos¢ (13)

mesim/zl 8a
o e
From (8) and (13) we see that the velocity in the fluid just out-
side the vortex is composed of the two components
w=_"{10g% —-l} (14),

2ra

The most important term omitted is

* Cayley's * Elliptic Functions,”
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parallel to the axis oz, and
m e
T“;(I—Q_&cos'//) (15),

tangential to the surface of the filament in the plane containing oz,

The former component (14) is a motion en masse, the same at
every point of the surface of the filament, and is shared by the vortex
and the fluid bordering on it ; the latter (15) represents the velocity
of circulation of the fluid round the circular axis. This velocity is
slightly greater on the concave, or inner, side of the filament, and
less on the convex side than in the case of a straight vortex of the
same strength and cross section.

This is one of the small inconsistencies already referred to; for
if the vorticity w be constant throughout the filament and the section
truly circular, the velocity of circulation in the fluid just inside the
surface of the filament must be we; while from (15) the fluid just

outside has its velocity of circulation=we(l —2icos¢). There is
a

thus a very slight absence of continuity in the motion on crossing
the surface. In a perfectly frictionless fluid this may seem of abso-
lutely no importance, but the following reasoning shows that an
inconsistency of a precisely similar character exists in the hypothesis
that o can be constant throughout a truly circular section.

Using 7’ in the sense already indicated, let us not assume o to be
constant, but still suppose the velocity perpendicular to 7. Consider
the elementary ring formed by the revolution about oz of the element
7'dydr’ of the cross section of the filament. The volume of this ring
is 2m(a +r'cosy)r'dydr’, and the areas of the two surfaces through
which alone flow takes place are each 2x(a + r'cosy)dr’. The velocity
is normal to these surfaces avd equal to w»’. Thus, by the equation
of continuity, if the fluid be incompressible, we get

%[(1 + _’:licos%)wr'] + %[(1 + %cos://)r’] =o.
Since %}L =w, this gives at once

! 2
w(l + Lcosxﬁ) = constant.
a

Neglecting terms in (»'/a)?, and denoting the mean value of the
vorticity by @, this gives
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) =n(l - ?fcosgb).
a

Thus, our fundamental hypothesis that  and e are constant
when logically carried out requires us to neglect the second term in
(15), <.e., velocities of order m/a. This consequently would lead us
to neglect the second term in (14) also. This may explain the slight
divergence in the results obtained by Prof. J. J. Thomson,* Mr T.
C. Lewis, + and Mr W. M. Hicks.} The two former obtain the re-
sult (14), but the latter differs in the value of the small term.

We have next to consider the velocity due to variation in the
density p of the fluid. From the equations (6) and (10) of Chap.
VI. of Lamb’s Treatise, it follows that the velocity due to change of
density is expressed by the same formula as the force due to a
gravitating mass of density — -71r—p 88t—p If the ring be of small cross
section o we may in calculating the velocity, to the same degree of
accuracy as when treating the vorticity, regard it as equal to the

force due to & mass of line density — 4L7"P 88_'0 concentrated in the cir-
cular axis 7=a of the ring. 1If p varied with the distance from the
circular axis, but was independent of ¥, the accuracy would not be
seriously affected.

If w, and u; denote the component velocities parallel and perpen-
dicular to the axis of the ring, due to the variation in density alone,
then from the above remarks it follows that

n
. d9 . (16),
2mp 8t J 5(2% +° + a? — 2racosf)?
g = _o 8£a’J"'r (r — acosb)do N (17).
2mp 8t J o(23 +1* + a* ~ 2racosb)}

Thence, k£ having its previous meaning, we find
wl-_%—[{zw crarE®] o ()

To the same degree of approximation ag in the case of vorticity, we

* « Motian of Vortex Rings’—Equation (41), p. 83.
t * Quarterly Journal of Mathematics,” XVI., 1879, pp. 338-347.
1 ¢ Philosophical Transactions,” 1884, Part 1., and 1885, Part IT.
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have for the velocity in the fluid comparatively- near the surface of
the filament

et U=

4ra ]
— ... . (19).
ey (19)

For points just outside the ring, using the previous notation and
retaining the principal terms, we find

1
w, = 2:,) 3’; i ¢(1 - _cos¢) (20).
The most important term neglected is — SL (‘Z‘—t —s ¢log—
From (17) we find
o Bp d

1~

[{z +(r+ay}F (k)] L)
and thence for points comparatively near the ring

== 2t o)~ aog{4(SEE TN

7rp St

Z+(r—a)
(,,.2 —at— z‘“’) o
oo 22).

For points just outside the ring we thence obtain the approxi-
mate value

81 8 2
U= — ‘%) 3’?) (loor : 1) + _e-cosx,b(l - %cosgb)] v (23).
The most important term neglected is — gp 2 cosyl Og__

From (20) and (23) we see that the velocity in the fluid just out-
side the filament is composed of the two components
a 6p 1 { 8a }
=—___ L “Jlog—~1¢ .. .. 4
“ drp & a 8 (24)
perpendicular to the axis oz, i.¢., tending to increase the radius a of
the circular axis, and

__ o &1 (1* e ) 25
v, 27rp % %cos (26),

normal to the surface of the filament, i.e., tending to increase e.

The first component %, represents a motion of the ring and
surrounding fluid en masse; the second v, gives the rate of increase
in the radius of the cross section consequent on the change in density.
The slight variation in the rate of increase of ¢ in different directions
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is a phenomenon exactly similar to that illustrated by the existence
of the small term in (15). A consideration of the equation of con-
tinuity shows us, precisely as in the parallel case in vorticity, that if
the density be uniform over the cross section it cannot vary so that

the cross section remain truly circular, unless velocities of the order
_‘f_%_’: 1 e negligible. In this case the second terms in both (24)
P

and (25) must be neglected. It would even seem at first sight that
the equation of continuity was inconsistent with the existence of the
principal term of (24). For, since the mass of the ring is constant,
¢e’ap must be constant, and so

138 2 8 1 8a
e L 26).
P st T a ot (26)

But v, =%%, and so, retaining only the principal term of (25) and

1% 28 o . . @n.

t t
putting o =mé’, we ge S % 5

Thus it might be thought from (26) that 8‘0‘_‘: must vanish.

The true explanation is that %;: does not vanish, but _1_2_‘: is of
a

an order of small quantities we agreed to neglect when we came to
the conclusion that the second terms in (24) and (25) were negligible.
To this degree of approximation, then, we see from (27) that op is
constant, and we may replace — z %I; by ?

Combining the effects of vorb101ty and change of density, and
retaining only the terms consistent with an exactly circular cross
section, we finally obtain for the velocities of a thin filament

_logs.g
2mra
b ﬁszlog_s_‘f
dra Ot e
The circular axis of the ring moves on the surface formed by “e
revolution about oz of the curve whose differential equation is

iz=£=2m§‘t_’ (29).

(28).

If the rate of increase of the cross section be uniform this forms part
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of a right circular cone whose vertical angle is 2tan— QIE %’ .

It is easily seen that the case of a ring vortex in presence of an
infinite plane, whether inclined or not to the plane of the circular
axis, can be treated by the introduction of an “image” ring on the
other side of the plane. The position and direction of rotation in the
image were indicated in my previous paper; the cross section and
density must be the same as at corresponding points in the real ring.
However, the ring will remain circular with its circular axis in one
plane only when it is parallel to the infinite plane, and the formule
obtained above will be most usefully employed when the distance ¢
of the ring from the plane is small compared to the radius a, though
large compared to e. This case we proceed to treat.

Let us take the origin where the infinite plane is intersected by
the common axis of the rings.

The components of the velocity at any point due to the real ring
may be got from the preceding formule by writing 2 - ¢ for 2, while
the components of the velocity due to the image ring require the
substitution of z + ¢ for 2, and —m for .

For the velocity in the fluid immediately surrounding the ring the
effect of the ring itself is given by (8), (13), (20), and (23), while the
effect of the image may be got from (7), (12), (19), and (22) by
writing —m for m, a + ecosy for r and 2¢ + esiny for 2. Combining
the effects and retaining only the principal terms in accordance with
the remarks already made as to the probable degree of accuracy of
the method, I find

_meosyy @ &1 . m 2 o %1
Y TIm e e T E e o GO
- msiny o S 1 _m _o %1, (32a“)
"% Pt e =rid = 7l ey BRI GO

The two first terms in both (30) and (31) represent the velocity
of circulation and the rate of increase of the radius of the cross
section, while the two last terms in each represent a motion en
masse shared by the ring and the surrounding fluid. Thus the
velocity of the ring in the direction of the normal drawn from the
infinite plane is

my 2 o 8p 1
21ra0 e 4mpdt ¢ 7 (32),
while the rate of increase in the radius of the ring is
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da m o 3 1 320,*)
= F ] 33).
YT T 3w Imp St e P\ e (33)
Neglecting at first any change in p we have from (32) and (33)

8¢
2 _ ™ log 34
& 2ma e (34)
da m
e m e aee eae 35) ;
8t 2me (35);

while ae?*= constant

It .JC)
follows that ¢ o WM{ ( ;}

Thus % °ig always positive, for ¢ must be greater than e and so

log(:) greater than §. Hence if m be negative, or the vortex be

approaching the plane, its rate of approach continually diminishes ;
while if m be positive, or the vortex be receding, its rate of retreat
continually increases so long as (34) and (35) apply.

From (35) we see that the aperture, 2a, of the vortex increases
or diminishes continually according as it is approaching to or receding
from the plane.

Considering next the effect of the variation in density alone, we
see from (32) and (33) that if its density be increasing the ring
approaches the plane with a continually diminishing aperture, while
if the density be diminishing the ring recedes from the plane with a
continually increasing aperture. The exact relation between the
variations in @, ¢ and p is given by (26), but to the degree of accuracy
obtained here this may, as in the case of a solitary ring, be replaced
by (27). Using (27) in (32), and replacing o by we?, we find

& el 1

5t "0t dme St
whence it follows that ¢* - —e’ ¢ - §_ =constant ... ... (36).

T

In the cases to which our formule can be satisfactorily applied
efc is small, and so the total increase or diminution in the distance
of the ring from the plane due to change in density alone is also
small. Thus, in general, the effects of the vorticity will be much
more important than the effects of variation in density. We conclude
that if a vortex ring approach an infinite plane, its rate of approach
is slightly greater if its density be increasing, and slightly less if its
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density be diminishing, than it would be if the density remained
constant.

The most important terms due to the action of the image ring
which we have neglected in (30) and (31) respectively may without
much difficulty be found to be

w, = Acos(y — a) .
u2=ASin(¢_a)} e e (3T);
where, for shortness,

Al (2 )

me 2p Ot
a= ta,n"‘( . ?ﬁ)
2mp 8¢
Since, as already explained, we are not warranted in retaining

(38).

velocities of order Z* it follows that the above terms represent an
a

appreciable effect only when the vortex approaches so close to the
plane that ae/c* becomes large.

From (37) it follows that the cross section of the filament tends
to become slightly elliptical, the axes of the ellipse making with the

infinite plane the angles -;— t{. These axes are thus equally in-

clined to the plane when the fluid is incompressible. When the
deviation of the cross section from the circular form becomes appre-
ciable the accuracy of the preceding formule will be lessened, and
they can certainly not be applied to the case of a vortex whose dis-
tance from an infinite plane is of the same order of quantities as the
diameter of its cross section.

If in (32)— (36) we write ¢/2 for ¢, we get the case of two pre-
cisely equal ring vortices, with vorticities, however, in opposite
directions, at a distance ¢. If we suppose a to become infinite, we
deduce formulw applicable to the case of straight vortex filaments.
In particular, it will be noticed that (36) leads at once to a special
case of the formula obtained in my previous paper for the distance
of two straight vortices.
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