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Abstract

There is a clinical need to appropriately apply large language model (LLM)-based systems for use in infectious diseases. We sought to use LLM
and machine learning for extracting antibiotic susceptibility from clinical microbiology free-text reports, allowing use for outbreak detection,
increasing information gathering efficiency, and public health reporting.
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Introduction

Interest in artificial intelligence and machine learning (AI/ML)
has rapidly gained broad attention, particularly since the
November 2022 release of the ChatGPT large language model
(LLM) chatbot. The LLMs have sparked the imagination of both
the lay public and researchers while also generating immense
interest into potential applications.! In addition to chatbots,
LLMs can be trained, or fine-tuned, for classification tasks.
Despite the promise of LLMs,” tangible use cases applying this
new technology to electronic health record (EHR) data for clinical
infectious disease uses are limited,’ and there is need for
infectious disease experts’ participation and leadership to
generate data needed to guide development and deployment of
LLM-based systems for use in infectious diseases.

We sought to evaluate and compare LLM and ML models for
clinical infectious diseases information extraction from clinical
microbiology text. We trained LLMs and ML models to extract
specific and relevant antibiotic resistance information from
free-text microbiology reports. Human curation of this data is
currently necessary but time consuming because there are no
interoperability standards in this domain,* and EHRs often use
free-text fields to convey key information,’ including antibiotic
susceptibility testing (AST) results to last-line antibiotics and
mechanisms of antibiotic resistance. Some laboratories are forced
to rely on unstructured free-text fields rather than custom-built
structured data elements due to limited laboratory information
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system technicians, low volumes for these specialized tests, and
EHR differences. Improving electronic data standardization with
LLM and ML technology in the infectious diseases domain will
enable secondary uses, such as real-time outbreak detection, public
health reporting, and developing and training AI/ML models that
predict antibiotic resistance.

Methods
Study design

We used data from the VA Corporate Data Warehouse, which
contains EHR data from all 136 VA Medical Centers. This dataset
included microbiology comment boxes from bacterial culture
reports from 10/1/99 to 2/11/22; each microorganism has one
comment box with up to 8,000 characters. A priori, we chose to use
iterative SQL queries to limit entries to under 10,000 due to limited
annotation time (Supplemental Methods). The comment box is
an unstructured free-text box used by microbiology laboratory
technicians to communicate any important information that does
not have a structured data field (Supplemental Figure 1), for
example, results of susceptibility testing for antibiotics not in
automated panels (eg, ceftazidime/avibactam, ceftolozane/tazo-
bactam). The contents of the microbiology comment box and
antibiotics tested on automated panels are not standardized
across facilities.

Model development and evaluation

We chose the ML models multinomial logistic regression, random
forest, and XGBoost. Briefly, random forest generates multiple
random decision trees, aggregates their results, and returns the
most common prediction, whereas XGBoost sequentially generates
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decision trees where each tree attempts to correct errors by
previous trees. Prior to training, the dataset was randomly
split 80/20 for training/testing. The test set was not accessed
until final evaluation. For ML models, Scikit-learn Pipeline
function was used to link each step of training, including
CountVectorizer, TfidfTransformer, and the ML model
(Supplemental Figure 2). Pipeline hyperparameters were tuned
using fivefold cross validation with GridSearchCV, and model
hyperparameters with best F1_macro scores (unweighted macro-
average across all groups) were used for final evaluation; F1 measure
was selected as the primary performance measure due to the
imbalanced class distribution.® For LLM models, LLM tokenization
was set to padding max_length (512) and truncation, and fine-tuned
using the training dataset with Bayesian hyperparameter tuning
optimized to minimize loss function. We chose Bayesian hyper-
parameter tuning because LLM grid search was computationally
unfeasible and Bayesian approaches have been shown to perform
similarly.” See Supplemental Table 1 for hyperparameter tuning
settings.

To evaluate whether LLM’s can be used out-of-the-box or
whether expert-developed text-preprocessing rules (Supplemental
Table 2) are necessary, we fine-tuned BioBERT® using pre-processed
text (BioBERTpreprocessed) and trained BioBERT using raw text
(BioBERT,,,,) for classification. To evaluate whether biomedical
domain-specific models perform better, we fine-tuned BERT for
classification and compared it to BioBERT models.
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Results

The final dataset contained 7,527 entries and were split into the
training set with 6,021 entries and the test set with 1,506 entries; the
test set was not accessed until final evaluation. 115 of 136 (84.5%)
sites contributed at least one observation. Table 1 summarizes
the algorithms’ performances during final evaluation on the test set
(see Supplemental Figures 3-5 for confusion matrices). Error
analysis identified misspellings, sound-alike antibiotics, and
non-standard verbiage as common failure modes (Supplemental
Results).

Classification for antimicrobial susceptibility test results

The performance of the ML and LLM algorithms varied by task
(Table 1). For both antibiotic AST classification tasks, the ML
algorithm with the best performance was XGBoost (F1 scores:
ceftazidime/avibactam 0.951, ceftolozane/tazobactam 0.934),
followed by logistic regression and random forest. For both
antibiotic AST classification tasks, the LLM algorithm with the
best performance was BioBERT preprocessed (F1 scores: ceftazi-
dime/avibactam 0.986, ceftolozane/tazobactam 0.984), and the
rank order of BERT and BioBERT,,,, varied by antibiotic.
Overall, the best-performing LLM performed better than
the best ML model for both ceftazidime/avibactam classification
and ceftolozane/tazobactam classification. The results also show
performance gains using preprocessed text rather than raw text

Table 1. Classification performance on the testing set across prediction tasks and algorithms

Ceftazidime/avibactam AST classification

Logistic regression 0.928 0.919 0.938 0.985 0.972 0.969
Random forest 0.765 0.950 0.726 0.950 0.726 0.945
XGBoost 0.951 0.972 0.934 0.987 0.984 0.980
BERT 0.976 0.977 0.975 0.993 0.991 0.989
BiOBERT preprocessed 0.986 0.979 0.993 0.995 0.994 0.993
BioBERT oy 0.950 0.931 0.973 0.994 0.986 0.985
Ceftolozane/tazobactam AST classification
Logistic regression 0.892 0.889 0.897 0.987 0.984 0.967
Random forest 0.816 0.956 0.748 0.982 0.988 0.965
XGBoost 0.934 0.986 0.894 0.990 0.992 0.979
BERT 0.796 0.892 0.718 0.985 0.989 0.966
BiOBERTpreprocessed 0.984 0.992 0.977 0.997 0.996 0.993
BioBERT oy 0.889 0.924 0.873 0.990 0.985 0.969
Carbapenemase status classification
Logistic regression 0.931 0.929 0.933 0.981 0.984 0.989
Random forest 0.942 0.967 0.920 0.964 0.993 0.989
XGBoost 0.954 0.951 0.959 0.984 0.984 0.993
BERT 0.912 0.912 0.913 0.983 0.971 0.987
BioBERT preprocessed 0.907 0.943 0.876 0.960 0.995 0.987
BioBERT aw 0.924 0.924 0.926 0.991 0.977 0.989

Abbreviations: AST, antimicrobial susceptibility testing; PPV, positive predictive value; NPV, negative predictive value.
*F1 macro-averaging is reported (see Methods). F1 score is the measure of the harmonic mean of precision and recall.
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for BioBERT training, 0.986 vs. 0.950 (BioBERT  cprocessed VS
BioBERT,,,,) for ceftazidime/avibactam classification, and 0.984
vs. 0.889 for ceftolozane/tazobactam classification (Table 1).
Notably, all models performed with high specificity (range:
0.950-0.997).

Classification for carbapenemase production testing

Among ML algorithms, XGBoost had the best F1 score of 0.954, for
carbapenemase production testing classification, followed by
random forest and logistic regression with F1 scores of 0.942
and 0.931, respectively. Among the LLMs, BioBERT,,,, performed
best and followed by BERT and BioBERT  eprocessed With F1 scores
of 0924 vs. 0912 vs. 0.907, respectively (Table 1). For
carbapenemase production classification, the best-performing
ML model, XGBoost, performed better than the best-performing
LLM, BioBERT,,,, with F1 scores of 0.954 vs. 0.924, respectively.
Notably, all models performed with high specificity (range:
0.960-0.991).

Discussion

In this study, we trained and evaluated six LLM and ML models
to extract three antibiotic-resistance concepts from free-text
fields of microbiology reports, and we achieved excellent
specificity (range: 0.950-0.997), sensitivity (range: 0.718-
0.993), and F1 score (range: 0.765-0.986); F1 score is the
measure of the harmonic mean of recall (also known as
sensitivity) and precision (also known as positive predictive
value). Our main finding is that the generally favorable
performances, in particularly excellent specificity, demonstrate
that these LLMs and ML models are candidate tools for these
information extraction tasks.

This study has several strengths, including using AI/ML
algorithms rather than rule-based algorithms for information
extraction from free-text microbiology reports, evaluating models
on unseen data (ie, the test set), and evaluating three information
extraction tasks. This study builds upon prior works that developed
rule-based algorithms that ingested free-text microbiology reports
to classify whether bacteria grew in a culture, identify
methicillin-resistant Staphylococcus aureus status,” and alert
facilities in real-time of patients admitted with MDROs.5

This study is subject to several limitations. First, the study
evaluated the performance of algorithms’ classification rather than
a real-world implementation; we view this step, validation of an
algorithms’ performances on internal data, a prerequisite to
deployment. Second, we chose BERT-based language models;
it is possible that newer language models (eg, Me-LLaMA
outperformed many prior open-source LLMs)’ may achieve
better performance on our dataset. We also did not use VA GPT
(Beta), a custom-developed LLM chatbot authorized for storage,
processing, and transmission of both PII and PHI data behind
the VA firewall. We also were unable to compare training costs.
Third, our dataset size was limited due to limited annotation
time; it is possible that more data will improve performance.
Fourth, we did not compare LLM/ML approaches with alter-
natives, such as laboratory information system technicians creating
structured data fields in each EHR.

In summary, we developed and validated three LLMs (BERT,
BioBERT  eprocesseds BIOBERT ) and three ML (logistic regres-
sion, random forest, XGBoost) models to ingest free-text
microbiology reports and classify each report’s carbapenemase
resistance status and antibiotic-resistance status to the clinically
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relevant last-line antibiotics ceftazidime/avibactam and cefto-
lozane/tazobactam. Our models demonstrated excellent speci-
ficity, and acceptable sensitivity and Fl-scores, and can be
considered a successful “test case” for LLM as an Augmented
Intelligence'® system that increases efficiency of manual chart
review. Our findings support further work for more complex
chart review activities using state-of-the-art models that are
entering healthcare and potential for pilot deployment in public
health surveillance, coordination between different hospital
networks, and research model development.
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