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INVOLUTIONS OF GRAPH LINK EXTERIORS WHOSE
FIXED POINT SETS ARE CLOSED SURFACES
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Abstract

A link L in S3 possibly admits an involution of the exterior E(L) with fixed point set a closed surface,
which is not extendable to an involution of S3. In this paper, we focus on the case of graph links and show
that the genus of the surface provides a lower estimate of the number of link components.
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1. Introduction

Symmetries of links L in S3, such as periodicity, strong invertibility and strong
amphicheirality, are defined by using periodic maps f (orientation-preserving or
not) of S3 (see [2]). The fixed point set of f is a closed surface if and only if
f is a reflection in a sphere. However, the exterior E(L) of L possibly admits an
involution with fixed point set a nonspherical closed surface. For example, the two-
component link L illustrated in Figure 1(1) admits an involution of E(L) with fixed
point set a torus, which interchanges the boundary components so that a meridian of
a component is carried to a longitude of the other (see [5]). This is verified by the
satellite construction illustrated in Figure 1(2), where the involution of E(L) induces
involutions of the exteriors of the pattern and the companion. If a link L has more
than two components, E(L) possibly admits an involution f with fixed point set a
closed surface F of negative Euler characteristic. In this paper, we prove the following
theorem.

THEOREM 1.1. If the exterior of a nonsplittable graph link L in S3 admits an
involution with fixed point set a closed surface F of genus g(F), then L has at least
2g(F) components.

In Section 2 we present a method for constructing a tree with numbered and
coloured vertices for a specific submanifold of E(L) which is setwise invariant under
the involution. Section 3 is devoted to the proof of Theorem 1.1.
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FIGURE 1. A link and a torus of fixed points.

2. Tree presentation with numbered and coloured vertices

Let L be a nonsplittable graph link, and f an involution of the exterior E(L) of L
with fixed point set a closed surface F of negative Euler characteristic. We may assume
by [9, Theorem 8.6] that the Jaco, Shalen and Johannson (JSJ) system T of E(L),
which is a system of tori given by the JSJ decomposition (see [6, 8]), is (setwise) f -
invariant. For each f -invariant piece Mi , we may assume by [9, Theorem 2.2] that
f preserves the Seifert fibration of Mi . For each piece Mi which is not f -invariant,
we may assume by [7, Theorem VI.18] that f takes the Seifert fibration of Mi onto
the Seifert fibration of f (Mi ). Then F intersects each piece in a vertical or horizontal
surface if F is not disjoint from the piece. Note that a piece is f -invariant if and
only if it intersects F . Denote by M the submanifold of E(L) consisting of the
pieces intersecting F . Since the orders of the exceptional fibres in each piece in M
are pairwise coprime (see [3, Theorem 2]), f cannot interchange them. Moreover,
since f is orientation-reversing, f cannot restrict to an involution on a fibred regular
neighbourhood of an exceptional fibre. Therefore every piece in M is an n-fold
composing space, where n ≥ 2. Note that we can find a composing space not only
in the exterior of a composite link but also in the exterior of a link with parallel copies
of a component or a link with a cable around a component (see [3, 4]).

Denote by Γ the JSJ graph of M , where the vertices and edges of Γ respectively
correspond to the pieces and the tori of the JSJ decomposition of M . Colour each
vertex in white if F intersects the corresponding piece in a vertical surface, and in
black otherwise. For each vertex vi corresponding to a piece Mi , denote by ϕ(vi ) the
number of tori in Mi ∩ ∂M . Then ϕ(vi ) is an even integer such that d(vi )+ ϕ(vi )≥ 3,
where d(vi ) is the degree of vi , and that ϕ(vi )= 0 if vi is black.

If there is an edge joining two white vertices, the fibrations of the corresponding
pieces agree (up to isotopy) on the separating torus, which contradicts the property of
the JSJ decomposition. If there is an edge joining two black vertices, the restriction
of f on the corresponding torus T is impossible since f induces a nontrivial involution
on H1(T )= Z⊕ Z with three distinct eigenvectors given by F ∩ T and the fibres
of the pieces on the both sides. Therefore every edge joins a white vertex and a
black vertex.

The tree Γ obtained as above is call a tree presentation for M . For example,
Figure 2(1) illustrates a graph link L and a surface F such that E(L) admits an
involution with fixed point set F . Figure 2(2) illustrates the tree presentation for E(L).
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FIGURE 2. A graph link, a surface of fixed points and the tree presentation.

FIGURE 3. A graph link and a surface of fixed points realizing the tree presentation in Figure 2.

We can obtain L and F by the satellite construction illustrated in Figure 2(3) which is
the converse of the JSJ decomposition of E(L).

3. Number of link components

In the setting of Section 2, the number of components of L is possibly different from
the number of the boundary components of M . For example, if L is the link illustrated
in Figure 3, M is homeomorphic to the exterior of the link illustrated in Figure 2. In
this section, we show that the genus of F provides a lower estimate of the number of
components of L .

Let T be a torus in S3 bounding a solid torus V . A preferred longitude of T is a
longitude which is null-homologous in S3

− int V .

LEMMA 3.1. Let M be an n-fold composing space in S3, where n ≥ 2.

(1) Suppose that a torus T in ∂M bounds a knotted solid torus V which contains
M. Then if the fibration on T is meridional, at least one of the tori in ∂M − T
bounds a knotted solid torus outside M, and otherwise every torus in ∂M − T
bounds a knotted solid torus outside M.
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(2) There is a torus T in ∂M which bounds a solid torus outside M so that the
fibration on T is meridional or (possibly not preferred) longitudinal.

PROOF. Part (1). Let D be a meridian disk of V which intersects ∂M − T
transversally in essential loops.

Assume that the fibration on T is meridional. Since T is incompressible in M ,
D ∩ (∂M − T ) is not empty. Suppose that an innermost loop in D ∩ (∂M − T ) lies
on a torus T ′ in ∂M − T . Since T ′ is incompressible in M , T ′ bounds a solid torus V ′

outside M . Since the core of V ′ is a satellite of the core of V , V ′ is knotted.
Assume that the fibration on T is not meridional. Since every torus T ′ in ∂M − T

contains fibres, D ∩ T ′ is not empty. Therefore the conclusion follows by the same
argument as above.

Part (2). Suppose that ∂M consists of tori T1, . . . , Tn+1. Denote by Vi the solid
torus in S3 bounded by Ti , which is either a knotted solid torus containing M or a
(possibly unknotted) solid torus outside M .

Assume that some Vi contains M . Then if the fibration on Ti is meridional, the
proof of (1) implies that some another V j is a knotted solid torus outside M where the
fibration on T j is meridional. If the fibration on Ti is not meridional, the fibration of M
extends to a fibration of Vi , where any other V j but possibly one is endowed with a
trivial fibration. Therefore the fibration on T j is (possibly not preferred) longitudinal.

Assume that no Vi contains M . A result of Burde and Murasugi [1] implies that M
is regarded as the exterior of an (n + 1)-component link L consisting of fibres of
some Seifert fibration of S3, including the singular fibration corresponding to the circle
action on S3 with a circle of fixed points. Then L has at least one component l which is
a regular fibre. Hence, the conclusion follows from the fact that the fibration around l
is (preferred or not preferred) longitudinal. 2

PROOF OF THEOREM 1.1. It is enough to consider the case g(F) > 1. Let f be an
involution as in the theorem. We may assume that f leaves the JSJ system of the
exterior E(L) of L invariant and takes the fibration of each piece onto the fibration
of the corresponding piece. Let M be a submanifold of E(L) consisting of the pieces
intersecting F . For the tree presentation Γ of M , denote by β(Γ ) the number of black
vertices of Γ . Then g(F) > 1 implies β(Γ ) > 0. The proof proceeds by induction
on β(Γ ).

Assume that β(Γ )= 1. Then Γ is a star graph with a black vertex of degree d ≥ 3
and d white vertices of degree one. Suppose that M consists of pieces M0, . . . , Md
where M0 is the (d − 1)-fold composing space corresponding to the black vertex.
Since F intersects M0 in two copies of a compact planar surface F0 of Euler
characteristic χ(F0)= 2− d , we have χ(F)= 4− 2d and therefore g(F)= d − 1.
Each white vertex corresponds to at least 2-fold composing space and therefore M
has at least 2d boundary tori. Let 1≤ i ≤ d . Denote by Ti the torus separating Mi
and M0. If a component S of ∂M ∩ Mi does not separate the components of L , S
bounds a nontrivial knot exterior (the exterior of a companion of L) outside M and
so is f (S). Therefore each of S and f (S) bounds a knotted solid torus in S3 which
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contains M . Lemma 3.1 implies that Mi has a meridional fibration on S ∪ f (S), and
that there is a torus S′ in ∂Mi − S ∪ f (S) which bounds a knotted solid torus outside
Mi . Assume that S′ 6= Ti . Then S′ separates at least one component of L from the
others and so does f (S′). Then Ti separates at least two components of L from the
others. Assume that S′ = Ti . Then Ti possibly does not separate the components of L .
Since the fibration of Mi is meridional on Ti , the fibration of M0 is not. Lemma 3.1
implies that any torus in ∂M0 − Ti bounds a knotted solid torus outside M0. Therefore
each ∂M ∩ M j with j 6= i contains two tori, which are interchanged by f , and each
of which bounds a solid torus in S3 outside M . Hence, each T j separates at least two
components of L from the others. Repeating the same argument for all i , L has at least
2d − 2= 2g(F) components.

Assume that the theorem is true for 1≤ β(Γ ) < n and consider the case β(Γ )= n.
Then Γ has a white vertex w of degree d > 1. Denote by Tw = T1 ∪ · · · ∪ Td the
system of tori corresponding to the edges incident to w. Suppose that Tw splits M
into N0, . . . , Nd , where N0 corresponds to w, and where Ti separates N0 and Ni for
1≤ i ≤ d . There are two possibilities: either (1) Ti bounds a (possibly unknotted)
solid torus Vi outside Ni , or (2) Ti bounds a knotted solid torus Vi containing Ni .
Moreover, case (2) is divided into three subcases: F ∩ Ti is either (2a) meridional,
(2b) longitudinal, or (2c) nonmeridional and nonlongitudinal.

In case (1), let L i be the link which consists of the components of L outside Vi , the
core of Vi , and a loop obtained by pushing a component of F ∩ Ti into int Vi . Then
E(L i ) ∩ Vi is a 2-fold composing space. Therefore f |Ni extends to an involution of
E(L i ) with fixed point set a closed surface Fi which meets E(L i ) ∩ Vi in an essential
annulus.

In case (2a), let L i = hi (L ∩ Vi ), where hi is a homeomorphism which takes Vi
onto a regular neighbourhood W of the square knot. Then hi ◦ f |Ni ◦ h−1

i is an
involution on hi (Ni ) which extends to an involution of hi (Ni ) ∪ (S3

− int W ) with
fixed point set a closed surface Fi which meets S3

− int W in an essential annulus.
In case (2b), let L i = hi (L ∩ Vi ), where hi is a homeomorphism which takes Vi

onto an unknotted solid torus W such that the image of F ∩ Ti is a parallel copies
of a preferred longitude. Then the involution hi ◦ f |Ni ◦ h−1

i of hi (Ni ) extends to
an involution of hi (Ni ) ∪ (S3

− int W ) with fixed point set a closed surface Fi which
meets S3

− int W in a parallel copy of a meridian disk.
In case (2c), let L i be the union of hi (L ∩ Vi ), where hi is a homeomorphism which

takes Vi onto an unknotted solid torus W , the core of S3
− int W , and a loop obtained

by pushing a component of hi (F ∩ Ti ) into S3
− int W . Since E(L i ) ∩ (S3

− int W )

is a 2-fold composing space, hi ◦ f |Ni ◦ h−1
i extends to an involution of E(L i )

with fixed point set a closed surface Fi which meets the 2-fold composing space
E(L i ) ∩ (S3

− int W ) in an essential annulus.
Lemma 3.1 implies that Tw contains at least one torus in case (2a) or (2b). Since

the induction hypothesis implies that each L i has at least 2g(Fi ) components, L has
at least 2(1− d)+

∑d
i=1 2g(Fi ) components. Moreover, since F intersects N0 in

a system of essential annuli, the Euler characteristic of F is χ(F)=
∑d

i=1 χ(Fi ).
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Then g(F)= 1− d +
∑d

i=1 g(Fi ) and therefore L has at least 2g(F) components.
Hence, the proof is complete. 2

REMARK 3.2. Theorem 1.1 is true even if the fixed point set F is a surface with
nonempty boundary. This is verified as follows. Using the technique presented for
case (1) in the proof of Theorem 1.1, construct a satellite L ′ of L by gluing 2-fold
composing spaces to E(L) along boundary components of E(L) which meet F . Then
the involution f of E(L) extends to an involution f ′ of E(L ′) with fixed point set
a closed surface F ′ obtained by gluing annuli to F along the boundary. Denote
by b(F) the number of boundary components of F . Then 2g(F)= 2g(F ′)− b(F).
Theorem 1.1 implies that L ′ has at least 2g(F ′) components. Since L ′ is obtained
from L by adding b(F) components, L has at least 2g(F) components.
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