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TRANSFORMING SPATIAL POINT PROCESSES
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Abstract

Most finite spatial point process models specified by a density are locally stable, implying
that the Papangelou intensity is bounded by some integrable function β defined on the
space for the points of the process. It is possible to superpose a locally stable spatial
point process X with a complementary spatial point process Y to obtain a Poisson
process X ∪ Y with intensity function β. Underlying this is a bivariate spatial birth–
death process (Xt , Yt ) which converges towards the distribution of (X, Y ). We study
the joint distribution of X and Y , and their marginal and conditional distributions. In
particular, we introduce a fast and easy simulation procedure for Y conditional on X.
This may be used for model checking: given a model for the Papangelou intensity of the
original spatial point process, this model is used to generate the complementary process,
and the resulting superposition is a Poisson process with intensity function β if and only
if the true Papangelou intensity is used. Whether the superposition is actually such a
Poisson process can easily be examined using well-known results and fast simulation
procedures for Poisson processes. We illustrate this approach to model checking in the
case of a Strauss process.
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1. Introduction

A spatial birth–death process is a continuous-time jump process where each jump consists
of either adding or removing a point from a finite spatial point pattern. Preston [17] provided
a detailed mathematical study of such processes, and showed among other things that, under
suitable conditions, (approximate) realisations of a finite spatial point process can be obtained
by running a spatial birth–death process for a long enough time; this point was also used in
[10] and [19], and in connection to perfect simulation algorithms in [6], [11], and [12]. Spatial
birth–death processes have also been used as statistical models for geological data [7], [22]
and sand dunes [15], and for Bayesian analysis of mixture models with an unknown number of
components [21].

Preston [17] established the existence of a spatial birth–death process through a coupling
to a nonexplosive birth–death process on the nonnegative integers, which can be extended to
a ‘dominating’ spatial birth–death process. This coupling is particularly useful in connection
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with point processes that are locally stable, the latter being a property satisfied by most spatial
point process models specified by a density; this condition and other background material are
presented in Section 2. Briefly, local stability implies that the Papangelou conditional intensity
λ(x, u) is bounded from above by an integrable function β(u) defined on S, where S denotes
the state space of the points, x is any finite point pattern (i.e. a finite subset of S), and u ∈ S \x is
any point. To describe the coupling construction, consider a (dominating) birth–death process
Dt with birth rate β(u) and death rate 1 so that its equilibrium distribution is a Poisson process
on S with intensity function β. It is possible, by a dependent thinning of Dt , to obtain a
(target) birth–death process Xt with birth rate λ(x, u) and death rate 1 such that its distribution
converges towards that of X as time t tends to ∞: the dependent thinning is such that if
X0 ⊆ D0 then Xt ⊆ Dt for all t > 0 (explaining what is meant by ‘dominating’). Further
details are given in Section 2.2. This coupling construction also plays a key role in connection
with the perfect simulation algorithms of locally stable point processes given by the dominating
coupling-from-the-past (CFTP) algorithm [11], [12] and the method of clans of ancestors [6].

In this paper we study the birth–death process Yt = Dt \Xt , i.e. the points in the dominating
process Dt that are not included in the target birth–death process Xt . We refer to Yt as the com-
plementary birth–death process (to the target birth–death process Xt ). In Section 2.2 we define
the bivariate birth–death process (Xt , Yt ), and in Section 3 we establish that (Xt , Yt ) converges
towards a bivariate point process (X, Y ), where we call Y the complementary point process (to
the target point process X). In general, it seems difficult to say anything detailed about this
equilibrium distribution except in the special cases considered in Section 3 and in Appendix A.

Although the distribution of Y conditional on X = x seems complicated in general, it turns
out to be simple to simulate from this conditional distribution. In Section 4.1 we present an
algorithm which is both fast and easily implemented. In Section 4.2 we study the speed of the
algorithm, which, unlike dominating CFTP, depends only on β, i.e. it does not depend on any
(interaction or monotonicity) properties of λ, except on its upper bound β.

The algorithm may be used for model checking: given data x (a finite point pattern in S) and
a model for the Papangelou intensity of the underlying spatial point process X, this model is
used for generating a realisation y from the complementary process conditional on X = x. In
Section 5.1 we establish that the resulting superposition x∪y is a Poisson process with intensity
function β if and only if the true Papangelou intensity is used. Whether the superposition is
actually such a Poisson process can easily be examined using theoretical results for (functional)
summary statistics of Poisson processes, where quantiles of the summary statistics can be
quickly simulated. In Section 5.2 we illustrate this approach to model checking in the case of
a Strauss process [10], [23].

The above model checking procedure of superimposing the complementary point pattern on
the data pattern and checking if the resulting point pattern is Poisson has some similarities to the
approach considered by Møller and Schoenberg [14]. Their procedure is based on dependent
thinning of the data pattern x, obtaining a realisation of a Poisson process if the assumed model
for X is correct. This construction relies on an assumption of a positive lower bound on the
Papangelou intensity on S which is typically not available for most point processes of interest.

2. Preliminaries

2.1. Assumptions

For simplicity and specificity, we consider a spatial point process X defined on a Borel set
S ⊂ R

k (k ∈ {1, 2, . . . }) of finite and positive Lebesgue measure |S|, where, with probability 1,
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X is finite and simple (i.e. has no multiple points). This means that X can be considered as
a random finite subset of S. So we let the state space � of X be the set of all finite point
configurations contained in S, i.e.

� = {x ⊂ S : n(x) <∞},
where n(x) is the cardinality of x (for n(x) = 0, x = ∅ is the empty point configuration).
For measure theoretical details, see, e.g. Appendix B of [16]. The setting covers most cases of
practical interest, but our methods can easily be extended to nonsimple point processes defined
on a general state space and using an exponential state space setting [5], [17], [20]. We refer to
X as our target point process.

Let β be a nonnegative Lebesgue integrable function defined on S, denote by Poisson(S, β)

the distribution of the Poisson process on S with intensity function β, and set ν = Poisson(S, 1)

(the distribution of the homogeneous Poisson process on S with intensity 1). Note that, for any
nonnegative measurable function h defined on �,

∫
h(x) dν(x) = e−|S|h(∅)+

∞∑
n=1

e−|S|

n!
∫

S

· · ·
∫

S

h({x1, . . . , xn}) dx1 · · · dxn. (1)

We assume that X is absolutely continuous with respect to ν and denote its density by f .
We also assume that f is locally stable with respect to β, i.e. for any x ∈ � and any u ∈ S \ x,

f (x ∪ {u}) ≤ β(u)f (x). (2)

This condition is satisfied for most point process models specified by a density (where of course
the choice of β depends on the density); see [8], [16], and the references therein. Clearly, (2)
implies that the Papangelou conditional intensity defined, for any x ∈ � and any u ∈ S \ x, by

λ(x, u) = f (x ∪ {u})
f (x)

(
taking

0

0
= 0

)
(3)

is bounded by β(u). In fact, local stability also implies that many desirable properties for
simulation algorithms are satisfied; cf. [16] and the references therein. Note that

b =
∫

S

β(u) du (4)

is finite and equal to the mean number of points under Poisson(S, β). Henceforth, to avoid the
trivial case where f (x) = 0 whenever x �= ∅, we assume that b > 0.

2.2. Coupled spatial birth–death processes

We shall exploit the fact that (3) ensures a coupling of a continuous-time spatial birth–death
process {Xt : t ≥ 0} with a dominating spatial birth–death process {Dt : t ≥ 0} such that
Xt ⊆ Dt for all times t ≥ 0, where the Xt process has birth rate λ(x, u) and death rate 1, and
the Dt process has birth rate β(u) and death rate 1. Both processes are time reversible, Xt has
equilibrium density f , and the equilibrium distribution of Dt is Poisson(S, β). See [11], [12],
[16, Appendix G], and [17]. However, in general, as shown in Section 3, the coupled process
(Xt , Dt ) is not time reversible.

For later use, we now recall the details of the coupling construction, where we let the initial
states be arbitrary, except that it is assumed that X0 ⊆ D0.
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First, we generate the dominating birth–death process {Dt : t ≥ 0} as follows. We start
by generating a pure birth process on S with birth rate β(u). Viewed as a space–time point
process, this is simply a Poisson process on S×[0,∞) with intensity function ρ(u, t) = β(u).
For each space–time Poisson point (u, t), we generate a lifetime τ(u) which is exponentially
distributed with mean 1; these lifetimes are independent of the birth process, and the lifetimes
are mutually independent. In the dominating birth–death process, the point u is then included
for the time period starting at the birth time t and ending at the death time t + τ(u) (where u

is excluded).
Second, the Xt process is obtained from the Dt process by a dependent thinning. Write

Dt− and Xt− for the states of the processes just before time t . If a birth happens in the
dominating spatial birth–death process at time t > 0 so that Dt = Dt− ∪ {u}, then, conditional
on this knowledge and what previously has happened in the two processes, with probability
λ(Xt−, u)/β(u), set Xt = Xt− ∪ {u}, otherwise do nothing, i.e. Xt = Xt− is unchanged.
Moreover, if a death happens in the dominating spatial birth–death process at time t > 0 so that
Dt = Dt− \ {u}, where u ∈ Dt−, then Xt = Xt− \ {u} (of course, Xt = Xt− is unchanged if u

is not in Xt−). Finally, as a transition in the Xt process can only happen if a similar transition
happens in the Dt process, it follows that Xt ⊆ Dt for all t ≥ 0.

We call Yt = Dt \ Xt, t ≥ 0, the complementary spatial birth–death process. Note that
{(Xt , Yt ) : t ≥ 0} is a bivariate jump process such that a transition from a given state

(x, y) = ({x1, . . . , xm}, {y1, . . . , yn}) ∈ �×�

of the process (with x = ∅ if m = 0, and y = ∅ if n = 0) can be one of the following four
types. The rate of transition is

(i) λ(x, u) if (x ∪ {u}, y) is the new state, i.e. when a birth of a point u ∈ S happens in the
Dt process and it is accepted into the Xt process;

(ii) β(u)− λ(x, u) if (x, y ∪ {u}) is the new state, i.e. when a birth of a point u ∈ S happens
in the Dt process and it is not accepted into the Xt process;

(iii) 1 if (x \ {xi}, y) is the new state, i.e. when the ith point in the Xt process dies (i ∈
{1, . . . , m} and provided m > 0);

(iv) 1 if (x, y \ {yj }) is the new state, i.e. when the j th point in the Yt process dies (j ∈
{1, . . . , n} and provided n > 0).

3. The equilibrium distribution of the bivariate jump process

The (Xt , Yt ) process converges in distribution towards a unique equilibrium distribution �;
in fact, the process converges geometrically fast towards � as seen by combining the results
of [13] with those in Appendix G of [16]. Henceforth, assume that (X, Y ) follows �. We call
Y the complementary point process (to the target point process X). Note that D = X ∪ Y

follows Poisson(S, β), but what else can we say about �? Propositions 1–3 below are verified
in Appendix A.

Proposition 1. The equilibrium distribution � is absolutely continuous with respect to the
product measure ν × ν.

We need some further notation. Let π(x, y) denote the density of � with respect to ν × ν.
Recall that, for x ∈ �, n(x) denotes the cardinality of x. If n(x) = 0, set

∑
u∈x q(x, u) = 0

for any real function q(x, u).
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Proposition 2. Apart from a (ν × ν)-nullset, the equilibrium density π is the unique density
satisfying the equation

[b + n(x)+ n(y)]π(x, y)

=
∑
u∈x

λ(x \ {u}, u)π(x \ {u}, y)+
∑
u∈y
[β(u)− λ(x, u)]π(x, y \ {u})

+
∫

S

π(x ∪ {u}, y) du+
∫

S

π(x, y ∪ {u}) du (5)

for all (x, y) ∈ �×�.

We have not been able to solve (5) without imposing rather restrictive conditions, such as in
Proposition 3 below or as in the examples discussed in Appendix A.

One attempt at solving (5) is given by solving the detailed balance condition

π(x, y)λ(x, u) = π(x ∪ {u}, y), π(x, y)(β(u)− λ(x, u))π(x, y ∪ {u}), (6)

which is equivalent to time reversibility of the (Xt , Yt ) process. This is, however, only satisfied
in the following simple case.

Proposition 3. The equilibrium density π(·, ·) satisfies the detailed balance condition (6) if
and only if λ(x, u) = λ(u) does not depend on x, in which case X and Y are independent
Poisson processes on S with intensity functions λ(u) and β(u)− λ(u), respectively.

As noted in Remark 1 (Section 5.1) and in Appendix A, apart from the case where the
detailed balance condition (6) holds, the conditional distribution of Y given X = x is in
general a complicated distribution—nevertheless, we can easily simulate from this conditional
distribution, as shown in Section 4.1. So, in general, it seems difficult to explicitly evaluate the
joint density of X and Y . Also, the density of Y seems in general to be very complicated, as
discussed in Appendix A.

4. Conditional simulation of the complementary point process

4.1. Simulation procedure

The following algorithm provides an easy way to make a conditional simulation Y (x) of the
complementary point process, given that x is a realization from the target point process X.

Algorithm 1. Inputs: S ⊂ R
d , where S has a finite and positive volume; f , a locally stable

density for a target point process on S; λ, the corresponding Papangelou conditional intensity;
β(u), an upper bound on λ(·, u); x ⊂ S, a finite point configuration.

(a) Set Y (x) = ∅ and generate Z from Poisson(S, β). If Z = ∅ then set T = 0 and go to
(e).

(b) For each point u ∈ Z, generate an exponentially distributed lifetime Tu with mean 1, and
a uniformly distributed ‘mark’ Mu on [0, 1], assuming that all these times and marks are
mutually independent. Set T = max{Tu : u ∈ Z}.

(c) Set X0 = x and generate the spatial birth–death process Xt with birth rate λ and death
rate 1, stopping the generation at time T , assuming that this generation, conditional on
T , is independent of everything else in (a)–(b).
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(d) For each u ∈ Z, if Mu > λ(XTu, u)/β(u), add u to Y (x), i.e. Y (x)← Y (x) ∪ {u}.
(e) Return Y (x).

Theorem 1. The output Y (x) in Algorithm 1 is a realization from the conditional distribution
of the complementary point process Y given that X = x is a realization from the target point
process.

Proof. Intuitively, this follows by

• imagining that we have extended the (Xt , Yt ) process to al times t ∈ R such that it is in
equilibrium; this is easily done, since the (Xt , Dt ) process regenerates each time Dt = ∅

(see, e.g. Appendix G of [16]);

• observing that, by (i)–(iv) in Section 2.2, conditional on {Xt : t ∈ R}, the births in
{Yt : t ∈ R} form a space–time Poisson process B on S × R with intensity function
µ(u, t) = β(u) − λ(Xt , u), the corresponding lifetimes are mutually independent and
independent of B, and each lifetime is exponentially distributed with mean 1;

• noting that B can be obtained by an independent thinning from a space–time Poisson
process on S×R with intensity function ρ(u, t) = β(u), where the retention probability
for a space–time point (u, t) is µ(u, t)/ρ(u, t) = 1− λ(Xt , u)/β(u).

For a formal proof, it is convenient to reverse time, and to imagine that we have generated
more than is actually needed, as described in the following.

Let {D∗t : t ≤ 0} be an independent copy of the dominating spatial birth–death process
{Dt : t ≤ 0} considered backwards in time, where D∗0 = Z. We use this notation, since (as
discussed at the beginning of Section 4.2) the Dt process may instead be used when generating
the Xt process. In Algorithm 1(b), T is the largest lifetime of the points in Z; correspondingly,
let T̃ be the first time before time 0 where a point in D∗0 was born when the D∗t process is
considered forwards in time, setting T̃ = 0 if D∗0 = ∅; so −T̃ is distributed as T . Moreover,
suppose that we have generated the Xt process backwards in time t ≤ 0, independently of the
D∗t process and anything else associated to this process, as considered below, and with X0 = X.

By time reversibility, the generation of these processes is just like running them forwards
in time. To each birth time t in D∗t (considered forwards in time), we attach a mark given
by a uniformly distributed random variable Mt on [0, 1]. All these marks are assumed to be
mutually independent and independent of {(Xt , D

∗
t ) : t ≤ 0}.

Moreover, suppose that, for any time s < 0, we have generated a complementary spatial
birth–death process Y s

t forwards in time t ∈ [s, 0] in the following way. Initially, Y s
s = ∅.

Furthermore, a birth in the Y s
t process can only happen if it also happens in the D∗t process:

if D∗t = D∗t− ∪ {u} then Y s
t = Y s

t− ∪ {u} if Mt > λ(Xt , u)/β(u), and Y s
t = Y s

t− otherwise.
Similarly, a death in the Y s

t process can only happen if it also happens in the D∗t process:
if a death happens so that D∗t = D∗t− \ {u} (where u ∈ D∗t−) then Y s

t = Y s
t− \ {u}. Hence,

{(Xt , Y
s
t ) : s ≤ t ≤ 0} is seen to be a jump process with transition rates as given in (i)–(iv) in

Section 2.2. Consequently, {(Xt , Y
s
t ) : s ≤ t ≤ 0} is distributed as {(Xt , Yt ) : 0 ≤ t ≤ −s}

with X0 in equilibrium and Y0 = ∅.
Note that Y s

0 ⊆ D∗0 and whether or not a birth happens in the complementary spatial birth–
death process does not depend on the history of this process. Hence, to generate Y s

0 , if s ≤ T̃ ,
we need to only consider the death times of the points in D∗0 (when D∗t is viewed backwards
in time) and to use the states of the Xt process at these death times. So in our simulation
procedure we need only steps (a)–(e), and (X, Y (X)) is distributed as the limiting distribution
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of (X−s , Y−s) as −s →∞. Therefore, (X, Y (X)) follows �, and so Y (X) is distributed as Y

conditional on X. Thereby Theorem 1 is verified.

Remark 1. It follows from the proof of Theorem 1 that the conditional distribution of Y given
{Xt : t ≥ 0} is a Poisson process on S with intensity function

β(u)−
∞∑
i=0

(e−τi − e−τi+1)λ(Xτi
, u), u ∈ S, (7)

where τ0 = 0 and τ1 < τ2 < · · · denote the transition (or jump) times of {Xt : t ≥ 0}, and
e−τi − e−τi+1 is the probability that an exponentially distributed lifetime with mean 1 falls
in the interval from τi to τi+1 (within this interval Xt is constant). Now, Y conditional on
X = x is distributed as Y conditional on X0 = x, and the latter distribution may in principle
be obtained by considering the Poisson process on S with intensity function (7) and integrating
over all possible paths of {Xt : t > 0} when X0 = x. However, apart from the special case
where λ(x, u) = λ(u) does not depend on x, this calculation appears to be very complicated,
indicating that the conditional distribution of Y given X is in general a complicated distribution.

Remark 2. A comparison of Algorithm 1 with perfect simulation algorithms seems in order,
since the proof of Theorem 1 has some similarity to arguments used when establishing the
correctness of the CFTP algorithm in [18], the dominating CFTP algorithm in [11] and [12],
and the method of clans of ancestors in [6]. The latter two algorithms are used for perfect
simulation of a locally stable point process, using spatial birth–death processes in different
ways. As argued below, Algorithm 1 is much simpler to implement and much faster than these
perfect simulation algorithms.

The speed of the dominating CFTP algorithm depends much on the monotonicity properties
of λ(x, u) (used for generating a sequence of so-called lower and upper processes), and how
strong the interaction is between u and neighbouring points in x (a point v ∈ x is said to be a
neighbour to u if λ(x, u) depends on v). In fact, in cases where λ(x, u) can be much smaller
than β(u), the dominating CFTP algorithm can be very slow [3]. Moreover, a doubling scheme
is used in the dominating CFTP algorithm (this doubling scheme is for the abovementioned
sequence of lower and upper processes), where Berthelsen and Møller [3] recommend that
the first time in the doubling scheme should be random and distributed as T (more precisely,
this is the case if the waiting times for transitions are included; in fact, we need only consider
the jump chain in the dominating CFTP algorithm, so this partly reduces the computations).
Furthermore, the method of clans of ancestors depends on how λ(x, u) specifies which points
are neighbours (but not on how strong the interaction is), and this method can be very slow, in
fact even slower than dominating CFTP [3], [12].

In contrast, Algorithm 1 depends neither on any monotonicity property of λ(x, u), on how
strong the interaction is, nor on how λ(x, u) specifies which points are neighbours. The speed
of our simulation procedure Algorithm 1(a)–(e) depends only on b (defined in (4)), as further
discussed in Section 4.2.

Remark 3. Algorithm 1 is useful when verifying Theorem 1. In practice, it is easier to use
the following algorithm, where we exploit the fact that the actual lifetimes in Algorithm 1 are
not needed if we know the order in which the points are born and die. Moreover, we can
simultaneously generate the jumps in (b)–(d) of Algorithm 1. The output of the following
algorithm is therefore still a conditional simulation of Y given X = x.
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Algorithm 2. Inputs: S ⊂ R
d , where S has a finite and positive volume; f , a locally stable

density for a target point process on S; λ, the corresponding Papangelou conditional intensity;
β(u), an upper bound on λ(·, u); x ⊂ S, a finite point configuration.

(a) Set Y (x) = ∅ and w = x. Generate M from a Poisson distribution with mean b.

(b) While M > 0,

(i) set n = n(w) and m = M , and generate a uniformly distributed variable v on
[0, 1];

(ii) if v < m/(m+ n+ b),

(ii.1) reduce M by 1, i.e. M ← M − 1;

(ii.2) generate a point u on S with density β(·)/b;

(ii.3) with probability 1− λ(w, u)/β(u), add u to Y (x), i.e. Y (x)← Y (x)∪ {u};
(iii) if v ∈ [m/(m+ n+ b), (m+ n)/(m+ n+ b)],

(iii.1) remove a point u from w chosen uniformly at random, i.e. w← w \ {u};
(iv) if v > (m+ n)/(m+ n+ b),

(iv.1) generate a point u on S with density β(·)/b;

(iv.2) with probability λ(w, u)/β(u), add u to w, i.e. w← w ∪ {u}.
(c) Return Y (x).

4.2. The speed of the algorithm

In this section we consider the computational load of using Algorithm 2.
Inspecting Algorithm 2 we note that essentially it involves only two computational aspects:

generating a point on S with density β(·)/b and evaluating λ(w, u)/β(u). We claim that, for
most applications, the computational load of the latter is (much) higher than the former. In
particular, this is so if β(·) is constant, the calculation of λ(w, u) involves a loop over all
points in w (as, e.g. in the Strauss process considered in Section 5.2), and n(w) is not (very)
small. We quantify therefore the computational load of Algorithm 2 in terms of the number of
times λ(w, u)/β(u) is evaluated. Algorithm 2 evaluates λ(w, u)/β(u) only in step (ii.3), which
happens M times, and in step (iv.2). Letting N denote the number of times (iv.2) is evaluated,
the computational load is C = M + N . Step (iv) corresponds to a birth in the dominating
process Dt used in the (backwards) construction of Xt in step (c) of Algorithm 1. Hence, N

corresponds to the number of births in the dominating process in a time interval of random
length T , where T is defined as in Algorithm 1. For this reason, although T is not used in
Algorithm 2, the mean of T is related to the mean of C, as stated in the following proposition.

Proposition 4. The mean computational load is

E(C) = b(1− e−b)+ b E(T ), (8)

where
E(T ) = (1− e−b)

[
(1− e−b) ln(b)−

∫ b

0
ln(s)e−s ds

]
(9)

≤ (1− e−b)[(1− e−b) ln(b)+ a] (10)

and a = − ∫ 1
0 ln(s)e−s ds ≈ 0.7966.
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Proof. Conditional on T , if T = 0 then M = N = 0, and if T > 0 then M and N are
independent and Poisson distributed, with mean b and bT , respectively. Hence, as exp(−b) is
the probability that T = 0,

E(C) = E(E(1[T > 0]C | T )),

where 1[·] is the indicator function, and so we obtain (8). Furthermore, when T > 0, T is
the maximum of M independent exponential random variables with mean 1. So, for t > 0,
conditioning on M ,

P(T ≤ t | T > 0) = E((1− e−t )M) = exp(−be−t ),

so that
E(T ) = P(T > 0) E(T | T > 0)

= (1− e−b)

∫ ∞
0

P(T > t | T > 0) dt

= (1− e−b)

∫ ∞
0

(1− exp(−be−t )) dt

= (1− e−b)

∫ b

0

1− e−s

s
ds,

using the substitution s = be−t . Then integrating by parts gives (9), and (10) is easily obtained.

The integral in (9) can easily be evaluated by numerical integration, and in most applications,
the term exp(−b) appearing in (8), (9), and (10) will be effectively 0. It follows that

E(C) ≤ b + b(ln(b)+ a),

where in most applications, ‘≤’ can be replaced by ‘≈’.

5. Model checking

5.1. The random superposition procedure

Suppose that a realization x from a spatial point process X∗with ‘true’density f ∗ is observed,
and we want to check the goodness of fit for a fitted model with density f . In order to apply
Algorithm 2, assume that both f ∗ and f are locally stable with respect to (the same) β. Suppose
furthermore that we have generated a realisation of Y (X∗) using Algorithm 2 which has f (and
not f ∗ unless f = f ∗) as input. By Theorem 1, the random superposition procedure

D∗ = X∗ ∪ Y (X∗)

is a realization of Poisson(S, β) if f = f ∗. Conversely, the following theorem establishes that
if f and f ∗ do not specify the same model, then D∗ does not follow Poisson(S, β).

Theorem 2. Assume that f ∗ and f are locally stable with respect to β. Then D∗ follows
Poisson(S, β) if and only if f and f ∗ agree, except on a ν-nullset.

Proof. We have already noted that the ‘if’ part holds; to verify the ‘only if’ part, we first
observe the following. For any nonnegative measurable function h(x, y), defined for (x, y) ∈
�×�, ∫ ∑

x⊆z

h(x, z \ x) dν(z) = e|S|
∫ ∫

h(x, y) dν(x) dν(y). (11)
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To verify this, let x = {x1, . . . , xm}, y = {y1, . . . , yn}, and z = x ∪ y = {z1, . . . , zk}, and use
(1) to conclude that the right-hand side of (11) equals

∞∑
m=0

∞∑
n=0

e−|S|

m! n!
∫

S

· · ·
∫

S

∫
S

· · ·
∫

S

h(x, y) dx1 · · · dxm dy1 · · · dyn

=
∞∑

k=0

k∑
m=0

e−|S|

k!
∫

S

· · ·
∫

S

∑
{x⊆z : n(x)=m}

h(x, z \ x) dz1 · · · dzk,

which, by (1), reduces to the left-hand side of (11). Now, if X1 and X2 are spatial point processes
on S such that X1 has density π1 and X2 conditional on X1 = x has density π2(· | x), then,
using (11) with h(x, y) = π1(x)π2(y | x), we see that X1 ∪X2 has density

π(z) = e−|S|
∑
x⊆z

π1(x)π2(z \ x | x). (12)

Let
q(z) = e|S|−b

∏
u∈z

β(u)

denote the density of Z ∼ Poisson(S, β). By (a)–(c) of Algorithm 1, Y (x) has a density
g(· | x); specifically,

g(y | x) =
∫

q(y ∪ w)h(x, y, w) dν(w),

where

h(x, y, w) = E

({∏
u∈y

(
1− λ(XTu, u)

β(u)

)}{∏
u∈w

λ(XTu, u)

β(u)

})
,

with the expectation calculated conditional on X0 = x. In particular,

g(∅ | x) ≥ P(Z = ∅) = e−b > 0.

Moreover, by Theorem 1 and (12), for ν-almost all z ∈ �,

q(z) = e−|S|
∑
x⊆z

f (x)g(z \ x | x). (13)

This means that, for ν-almost all z ∈ �, f (z) is determined by q and g, since first (13) with
z = ∅ gives

f (∅) = e|S|q(∅)

g(∅ | ∅)
, (14)

and second, by induction, f (z) is given in terms of those f (x) with x strictly contained in z,
using the fact that, by (13),

f (z) = e|S|
(

q(z)− e−|S|
∑
x⊂z

f (x)g(z \ x | x)

)/
g(∅ | z). (15)

Similarly, if D∗ follows Poisson(S, β) then, for ν-almost all z ∈ �, we also obtain (13), but
with f replaced by f ∗, and, hence, (14)–(15), but with f replaced by f ∗. Hence, the ‘only if’
part is verified.

https://doi.org/10.1239/aap/1331216644 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1331216644


52 •SGSA J. MØLLER AND K. K. BERTHELSEN

Remark 4. In [14] model checking is based on a random thinning method—where it is assumed
that λ(x, u) ≥ β(u), a condition which is rarely satisfied for point process models, as discussed
in [14], and where the method of clans of ancestors (discussed in Remark 2) plays a key role.
This seems a less appealing procedure than our random superposition procedure, since the latter
is faster, simpler, and generally applicable.

5.2. Example: the Strauss process

In this section we consider an example of how to utilise Theorem 2 for model checking. The
basic idea is as follows. Given data x generated from the ‘true’ f ∗, we generate a realisation
y of Y (x) using Algorithm 2, which has f as the ‘input density’. Suppose that f and f ∗ are
locally stable. According to Theorem 2 the union x ∪ y is (approximately) a realisation of a
Poisson process on S with intensity function β if and only if f and f ∗ specify the same model;
here we write ‘approximately’ because in practice f has been estimated from the data x. The
model check consists in testing the hypothesis that x ∪ y is a realisation of a Poisson process
on S with intensity function β.

There exist numerous ways of testing if a given point pattern is a realisation of a Poisson
point process. In the sequel we assume that β is constant and restrict attention to methods based
on Besag’s L function, which is a useful transformation of Ripley’s K function [4]. Informally,
L(r) is a nonnegative functional point process summary which indicates the extent to which a
given stationary point process exhibits clustering or repulsion at an interpoint distance r > 0.
In the present context the most important property of the L function is that, for a stationary
Poisson process, L(r) = r . Furthermore, for a point process with L(r) < r , the expected
number of points within a distance r from a ‘typical point’ is lower than what is expected under
a stationary Poisson process, indicating repulsion between the points if r is small. Similarly,
L(r) > r implies that more points are expected within distance r from a typical point when
compared to a stationary Poisson process, indicating clustering between the points if r is small.
For more details, including extensions to the case where β is not constant, see [16] and the
references therein.

We let L̂(r) = L̂(r; z) denote an estimate of L based on a point pattern z obtained by
observing a stationary point process within S; see, e.g. [9] and [16]. Usually, this estimate
involves first estimating the intensity of the process; below, unless otherwise stated, we make
use of the fact that the intensity is given by β, which is assumed to be known. If z is a realisation
of a stationary Poisson process restricted to S, we expect that L̂(r; z)− r ≈ 0 for all r > 0.
Accordingly, if L̂(r; x ∪ y)− r deviates too much from 0, we have an indication that the model
specified by f is not (close to) the true model. To get a handle on the ‘too much’ part, we need
to take into account the variation in L̂. Let L(r)− r and L(r)− r denote estimated 2.5% and
97.5% quantiles for L̂(r;W)− r when W follows Poisson(S, β). These estimates are based
on independent simulations from Poisson(S, β); unless otherwise stated, we use k = 239 such
simulations W(1), . . . , W(k) so that L(r) is the fifth smallest and L(r) the fifth largest among
L̂(r;W(1)), . . . , L̂(r;W(k)). We refer to the pair of functions L(r)− r and L(r)− r as the
(pointwise) estimated 95% Poisson envelopes. If L̂(r; x ∪ y)− r deviates too much outside
these envelopes, we reject the assumed model. For more details on this test procedure, see, e.g.
Section 7.4.1 of [9].

We now consider model checking procedures based on the random superposition procedure.
For specificity, we consider a planar Strauss process with density

f (x) ∝ βn(x)γ sR(x),

where β > 0, γ ∈ [0, 1], and R > 0 are parameters, and where sR(x) is the number of point
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Figure 1: Top left: realisation x of a Strauss process on the unit square and with (β, γ, R) =
(250, 0.1, 0.05). Top right: union of x and a realisation y of the complementary process Y (x). Bottom
left: L(r; x)−r corresponding to top-left diagram (thin line). Bottom right: L(r; x∪y)−r corresponding
to top-right diagram (thin line). The thick lines in the two lower diagrams are estimated 95% Poisson

envelopes.

pairs {u, v} ⊆ x (with u �= v) separated by a distance less than R [10], [23]. The Strauss process
is often used in the spatial point process literature for illustrative purposes and we know how
to make (even perfect) simulations under this model. It is locally stable, since

λ(x, u) = βγ sR(x,u) ≤ β,

where sR(x, u) is the number of points in x within a distance R from u. Thus, β is the intensity
of the dominating Poisson process, while γ is an interaction parameter and R determines the
range of interaction in the Strauss process.

The top-left diagram of Figure 1 shows a realisation x of a Strauss process on the unit
square S = [0, 1]2 with β = 250, γ = 0.1, and R = 0.05. In the following we will refer
to this model as the true model. Here n(x) = 87 and x is a perfect simulation obtained by
the dominating CFTP algorithm described in [3]. The bottom-left diagram shows a plot of
L̂(r; x) − r compared to estimated 95% Poisson envelopes, where L and L are estimated,
assuming that β = n(x)/|S| (the maximum likelihood estimate under the stationary Poisson
process). As L̂(r; x)− r is well outside the 95% envelopes, this correctly indicates that x is
not a realisation of a Poisson process. In fact, the dip in L̂(r; x)− r around r = R indicates a
repulsive point process. We used the spatstat packages for the calculation of L̂(x); see [1]
and [2].

To illustrate the use of our random superposition procedure, let y be a realisation of Y (x)

under the true model. The top-right diagram of Figure 1 shows x ∪ y, where n(x ∪ y) = 235.
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Figure 2: Left: L̂(r; x ∪ Y (x))− r for ten independent realisations of Y (x), assuming the true model.
Right: estimated 95% envelopes for L̂(r; x ∪ Y (x))− r (thin lines), together with an estimate of E(L̂(r;
x∪Y (x))− r) (dotted line). The thick lines in the two diagrams are estimated 95% Poisson envelopes for
L̂(r;W)− r when W ∼ Poisson(S, β) (they are identical to the thick line in the bottom-right diagram of

Figure 1).

The bottom-right diagram of Figure 1 shows L̂(r; x ∪ y)− r , together with estimated 95%
Poisson envelopes. As L̂(r; x ∪ y)− r is well within these envelopes, we cannot dismiss that
x ∪ y is a realisation of a Poisson process. In turn this implies, correctly, that we cannot reject
that the assumed model is the true model.

One may be concerned by the fact that the conclusion above of course depends on the
realisation Y (x) = y. The left diagram of Figure 2 shows L̂(r; x ∪ y)− r for ten realisations
of y from Y (x) together with estimated 95% Poisson envelopes. The right diagram of Figure 2
shows estimated 95% envelopes for L̂(r; x ∪ Y (x))− r , an estimate of E(L̂(r; x ∪ Y (x))− r),
and 95% Poisson envelopes. Note that the two sets of envelopes are a close match. This is in
general not to be expected even if the estimated model equals the true model since, for a given
x, x ∪ Y (x) is in general not distributed as Poisson(S, β).

Now let us consider two misspecifications of the model. In model A we assume that x is
a realisation of a Strauss process with β = 150, γ = 0.5, and R = 0.05 (i.e. incorrect β and
γ , but correct R), and in model B we assume that x is a realisation of a Strauss process with
β = 125, γ = 0.1, and R = 0.025 (i.e. incorrect β and R, but correct γ ). Under both the true
model and the two misspecified models, the expected number of points in the point processes
are roughly the same (confirmed by simulations).

The results obtained under model A are summarised in Figure 3. Compared to Figure 2,
the realisations of L̂(r; x ∪ Y (x))− r are no longer centred around 0 and the two pairs of
envelopes in the right diagram do not match. Since most of the L̂(r; x ∪ Y (x))− r curves in
the left diagram of Figure 3 are within the 95% Poisson envelopes, and keeping in mind that
x ∪ Y (x) is not distributed as Poison(S, β), Figure 3 is not a strong indication that the model
specified in model A is wrong.

For model B, the conclusions based on Figure 4 are much clearer. The fact that both the
estimated mean and estimated 2.5% envelope for L(r; x ∪ Y (x)) − r are well outside the
Poisson envelopes for r ≈ 0.05 gives clear indications of a misspecified model. Furthermore,
the distinct V-shaped deviation from 0 in the curves in the left diagram of Figure 4 is unlikely
under a Poisson process.
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Figure 3: As in Figure 2, but β = 150, γ = 0.5, and R = 0.05 when generating Y (x) and W ∼
Poisson(S, β).
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Figure 4: As in Figure 2, but β = 125, γ = 0.1, and R = 0.025 when generating Y (x) and W ∼
Poisson(S, β).

Although we prefer model checking based on functional summary statistics as illustrated in
Figures 2–4, we now consider two one-dimensional test statistics given by

T1(z) =
∫ r̃1

0
(L̂(r; z)− r)2 dr

and
T2(z) = max

r∈(0,r̃2]
d(r; z)− min

r∈(0,r̃2]
d(r; z), (16)

where d(r; z) = (L̂(r; z)− r)/(L(r)− L(r)) and r̃i is a user-specified parameter, i = 1, 2.
Note that T1 captures the overall deviation from 0 expected if the model is correct, and T2
should capture large V-shaped deviations, as seen in Figure 4, while taking into account that the
variance of L̂(r;W)− r varies with r , where W ∼ Poisson(S, β). Based on 1000 realisations
from Poisson(S, β) we obtain, for each test statistic Ti , an estimate T̂i,c of the critical value at
the 5% significance level. For each of the misspecified models A and B, we have generated
1000 independent realisations x(1), . . . , x(1000) of X, and, for each realisation x(j), we have
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generated a realisation y(j) from Y (x(j)). For each test statistic Ti , the estimated power is given
by the fraction of the 1000 realisations where the value of Ti(x

(j) ∪ y(j)) is larger than T̂i,c.
For both models A and B and for both T1 and T2, in order to cover well the V -shaped part

of the curves in Figure 4, we have used r̃1 = r̃2 = 0.15. For model A, the estimated power is
very low: 3.7% and 7.9% respectively for T1 and T2. This is in agreement with the conclusion
above based on a visual inspection of Figure 3. For model B, the estimated power is 11.4% and
47.7% respectively for the two test statistics. Here T2 has a reasonable level of power, which is
in accordance with the conclusion based on a visual inspection of Figure 4. We expect that it is
in general difficult to find a good test statistic which captures the type of deviations in Figure 4
which we noted above.

Remark 5. One inherent limitation of our proposed model checking procedure stems from the
fact that we compare x∪y to a homogeneous Poisson process with intensity β, where b = β|S|
can be far from the maximum likelihood estimate n(x) under this Poisson process. Consider
the case where b � n(x), which is the case for point processes with strong interaction and
dense packing, e.g. a Strauss process with γ ≈ 0 and R > 0 combined with a high value of β.
Assuming b � n(x) implies that E(n(Y (x))) ≈ b � n(x), i.e. in the union x∪y we expect the
points of the complementary point process to vastly outnumber the data points—essentially the
data ‘drowns’ in the complementary point process. Consequently, the distribution of Y (x) is
very similar to Poisson(S, β) no matter what the true model is. Hence, no matter what the true
model is, the probability of rejecting a wrong model effectively equals the significance level.

Remark 6. A byproduct of Algorithm 2 is that when generating independent and identically
distributed (i.i.d.) realisations of Y (x), we obtain i.i.d. realisations of XT conditional on X0 = x.
If the model is correct, any summary of x is not expected to be extreme compared to the same
summary for realisations of XT . A simple summary would be the number of points.

Remark 7. The conventional way to use the L function for model checking is to compare
L̂(r; x)− r to estimated 95% envelopes for L̂(r;X)− r when X is distributed according to
the assumed model (see, e.g. [9] and [16]). Obtaining the envelopes typically involves either
generating i.i.d. realisations of X or subsampling from a long Markov chain converging towards
the assumed model. In general, both methods are computationally more expensive (see, e.g.
[16]) than generating both Y (x) and Poisson(S, β) used in our test. Hence, our approach has
a computational advantage compared to the more conventional approach for model checking,
but the cost of this computational advantage is a loss of power.

Remark 8. To assess the difference in power and computational load between our method and
the conventional approach sketched in Remark 7, we performed a simulation experiment as
follows. We now let X be distributed according to some assumed (wrong) model, e.g. model
A or model B, and let the envelopes L(r) and L(r) be the estimated 2.5% and 97.5% quantiles
for L̂(r;X). These envelopes are estimated as in the case of Poisson envelopes but with
W(1), . . . , W(k) replaced by k independent copies of X, denoted by X(1), . . . , X(k), k = 239.
Furthermore, let L̃(r) = ∑k

i=1 L̂(r;X(i))/k be the empirical mean estimate of E(L̂(r;X)).
Unlike in the Poisson case, we do not expect E(L̂(r;X)) to be near 0 for all values of r .
With this in mind, redefine T1 =

∫ r̃1
0 (L̂(r; z) − L̃(r))2dr and let T2 be as in (16), but

with d(r; z) = (L̂(r; z)− L̃(r))/(L(r)− L(r)). Each estimated critical value T̂i,c (i = 1, 2)
at the 5% significance level is based on 1000 independent realisations under the assumed
model. Furthermore, let X∗(1), . . . , X∗(1000) be independent copies of X∗. The power is then
estimated by the fraction of those Ti(X

∗(j)) which exceed T̂i,c. When X is specified by modelA,

https://doi.org/10.1239/aap/1331216644 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1331216644


Transforming spatial point processes SGSA • 57

the estimated power is 60.0% for T1 and 70.9% for T2. When X is specified by model B, the
estimated power is 87.4% for T1 and 99.8% for T2. Hence, as expected, the conventional
method performs better in terms of power.

We now turn to a comparison of the computational load associated with model checking
based on simulating Y (x) and the conventional model checking based on simulation of X

under the fitted model. Our procedure involves generating a single realisation of Y (x) and k

independent realisations of a Poisson process used for the estimation of the upper and lower
Poisson envelopes. A further k′, say, independent realisations of a Poisson process are needed for
estimating critical values. The conventional procedure for model checking involves generating
k realisations of X using time consuming birth–death Metropolis–Hastings simulations (in
fact, we are even using perfect simulations), and a further k′ realisations of X when estimating
a critical value. As in Section 4.2, we let the computational load be given by the number of
times the Papangelou conditional intensity λ is evaluated; in the case of birth–death Metropolis–
Hastings and perfect simulations, the computational load is also effectively given by the number
of times λ is evaluated; see, e.g. [16]. Under the true model, using (8), the mean computational
load of generating a realisation of Y (x) is 1830.4. We do not have theoretical results for the
mean computational load associated with generating a realisation from the true model using
perfect simulation; the average computational load from 1000 realisation of the true model
is 32 448.8. Although the computational load as defined here does not give the complete
picture of the practical difference in computing time, it does underline that our method for
model checking has an computational advantage. The difference in mean computational load
between generating Y (x) and X is less significant when using models A and B. For model A,
the mean computational loads for generating Y (x) and X are 1021.6 and 2980.4, respectively.
For model B, the mean loads are 828.5 and 1629.7, respectively.

In conclusion our proposed procedure is computationally advantageous compared to a more
conventional way of model checking, but it comes at the price of lower power. Moreover,
we find our proposed procedure informative when using envelopes for L̂(r; x ∪ Y (x)) − r as
exemplified in the right diagrams of Figures 2–4.

Appendix A

For n = 0, 1, . . . , define �n = {x ⊂ S : n(x) = n}. So � =⋃∞
n=0 �n. For any event

Fn ⊆ �n, if n ≥ 1,

ν(Fn) = e−|S|

n!
∫

S

· · ·
∫

S

1[{x1, . . . , xn} ∈ Fn] dx1 · · · dxn. (17)

Moreover, ν(F0) = 1[∅ ∈ F0] if F0 ⊆ �0, i.e. when either F0 is empty or it is the set consisting
of the empty point configuration ∅.

Proof of Proposition 1. By the assumption that X is absolutely continuous with respect to ν,
it suffices to verify that, for any point configuration x ∈ �m, event Fn ⊆ �n, and nonnegative
integers m and n, P(Y ∈ Fn | X = x) = 0 if ν(Fn) = 0. This follows immediately from (17)
and Theorem 1.

Proof of Proposition 2. For any events Fm ⊆ �m and Fn ⊆ �n, with m, n = 0, 1, . . . , the
total rate of moving away from any state in Fm × Fn is b + m + n; the mean of the total rate
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of moving into Fm × Fn by a birth in the Xt process is

G1(Fm × Fn) =
∫

S

· · ·
∫

S

m∑
i=1

1[{x1, . . . , xm} ∈ Fm, {y1, . . . , yn} ∈ Fn]

× λ({x1, . . . , xi−1, xi+1, . . . , xm}, xi)

× π({x1, . . . , xi−1, xi+1, . . . , xm}, {y1, . . . , yn})

× e−2|S|

m! n! dx1 · · · dxm dy1 · · · dyn

(setting G1(Fm × Fn) = 0 if m = 0); the mean of the total rate of moving into Fm × Fn by a
birth in the Yt process is

G2(Fm × Fn) =
∫

S

· · ·
∫

S

n∑
i=1

1[{x1, . . . , xm} ∈ Fm, {y1, . . . , yn} ∈ Fn]

× [β(yi)− λ({x1, . . . , xm}, xi)]
× π({x1, . . . , xm}, {y1, . . . , yi−1, yi+1, . . . , yn})

× e−2|S|

m! n! dx1 · · · dxm dy1 · · · dyn

(setting G2(Fm × Fn) = 0 if n = 0); the mean of the total rate of moving into Fm × Fn by a
death in the Xt process is

G3(Fm × Fn) =
∫

S

· · ·
∫

S

m+1∑
i=1

1[{x1, . . . , xi−1, xi+1, . . . , xm+1} ∈ Fm, {y1, . . . , yn} ∈ Fn]

× π({x1, . . . , xm+1}, {y1, . . . , yn})

× e−2|S|

(m+ 1)! n! dx1 · · · dxm+1 dy1 · · · dyn;

and the mean of the total rate of moving into Fm × Fn by a death in the Yt process is

G4(Fm × Fn) =
∫

S

· · ·
∫

S

n+1∑
i=1

1[{x1, . . . , xm} ∈ Fm, {y1, . . . , yi−1, yi+1, . . . , yn+1} ∈ Fn]

× π({x1, . . . , xm}, {y1, . . . , yn+1})

× e−2|S|

m! (n+ 1)! dx1 · · · dxm dy1 · · · dyn+1.

Consequently, by Proposition 8.1 of [17], the equilibrium distribution � is the unique distribu-
tion satisfying

(b +m+ n)�(Fm × Fn) = G1(Fm × Fn)+G2(Fm × Fn)+G3(Fm × Fn)

+G4(Fm × Fn)

for all events Fm ⊆ �m and Fn ⊆ �n, with m, n = 0, 1, . . . . This is seen to be equivalent to
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the statement in Proposition 2, since

�(Fm × Fn) =
∫

S

· · ·
∫

S

1[{x1, . . . , xm} ∈ Fm, {y1, . . . , yn} ∈ Fn]

× π({x1, . . . , xm}, {y1, . . . , yn})e−2|S|

m! n! dx1 · · · dxm dy1 · · · dyn.

Proof of Proposition 3. The ‘if’ part is easily verified, since

f (x) = exp

(
−

∫
S

λ(u) du

) ∏
u∈x

λ(u)

is the density of X, and

g(y) = exp

(
b −

∫
S

λ(u) du

) ∏
u∈y

(β(u)− λ(u))

is the density of Y . Now suppose that (6) holds. The first equation in (6) implies that
f (x)λ(x, u) = f (x ∪ {u}), which is clearly satisfied and just means that X has density f .
Thus, g(y | x) = π(x, y)/f (x) is the conditional density of Y given X = x (when f (x) > 0),
and the first equation in (6) gives

g(y | x) = g(y | x ∪ {u}) whenever f (x ∪ {u}) > 0,

meaning that X and Y are independent and g(y | x) = g(y) does not depend on x. The second
equation in (6) is then equivalent to

g(y)(β(u)− λ(x, u)) = g(y ∪ {u}),
so λ(x, u) = λ(u) does not depend on x. Consequently, by induction,

f (x) ∝
∏
u∈x

λ(u), g(y) ∝
∏
u∈y

(β(u)− λ(u)),

whereby also the ‘only if’ part is verified.

Example 1. Consider the very simple case with λ(∅, u) = β > 0 and λ(x, u) = 0 whenever
n(x) > 0, that is,

f (∅) = e|S|

1+ b
, f ({u}) = βe|S|

1+ b
, f (x) = 0 whenever n(x) > 1,

meaning that n(X) ≤ 1 and, with probability b/(1 + b), n(X) = 1, in which case X consists
of a uniformly distributed point in S. Note that b = β|S|, and, by Algorithm 1 and Theorem 1,
conditional on X = x, the points in Y (x) are independent and uniformly distributed in S.
Thus, conditional on (n(X), n(Y )) = (m, n), the m + n points in X and Y are independent
and uniformly distributed in S. So the joint distribution of X and Y is effectively given by the
distribution of (n(X), n(Y )). Defining

πm,n = P(n(X) = m, n(Y ) = n), m, n ∈ {0, 1, . . . },
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we have, for any (x, y) with (n(x), n(y)) = (m, n),

πm,n = |S|
m+ne−2|S|

m! n! π(x, y)

and πm,n = 0 if m ≥ 2. Hence, (5) is seen to be equivalent to

π0,0 = e−b, π1,n = bn+1

(n+ 1)!e
−b − π0,n+1, (b + n)π0,n = π1,n + (n+ 1)π0,n+1,

where the two first equations follow from the fact that n(X)+ n(Y ) is Poisson distributed with
parameter b, and the last equation follows since (5) gives

(b + n)
0! n!
|S|ne2|S|π0,n = 0+ 0+ |S| 1! n!

|S|n+1e2|S|π1,n + |S| 0! (n+ 1)!
|S|n+1e2|S|π0,n+1.

Consequently, the πm,n are determined by π0,1, since π1,n is determined by π0,n+1 for n =
0, 1, . . . , and π0,n+1 is determined by π0,1 for n = 1, 2, . . . , since

π0,n+1 = 1

n

[
(b + n)π0,n − bn+1

(n+ 1)!e
−b

]
, n = 1, 2, . . . . (18)

Using induction, it follows easily from (18) that

π0,n+1 =
[ n∏

i=1

b + i

i

][
π0,1 − e−b

n+1∑
i=2

b

i(i − 1)

i−1∏
j=1

b

b + j

]
, n = 1, 2, . . . , (19)

which can be rewritten as

π0,n+1 = 
(b + n+ 1)


(n+ 1)
(b + 1)

×
[
π0,1 − b−b

(

(b + 1, b)− 
(b + n+ 1, b)
(b + 1)


(b + n+ 1)

)

− e−bb

(
1− bn
(b + 1)

(n+ 1)
(b + n+ 1)

)]
, n = 1, 2, . . . , (20)

where 
(a, x) = ∫∞
x

ta−1e−t dt is the incomplete gamma function which has the property that

(a, x) = (a − 1)
(a − 1, x)+ xa−1e−x .

As n → ∞, we have π0,n+1 → 0. Since
∏n

i=1(b + i)/i →∞ as n → ∞, (19) implies
that

π0,1 = e−b
∞∑
i=2

bi

i(i − 1)


(b + 1)


(b + i)
.

Using a similar argument, but taking (20) as the starting point, we obtain

π0,1 = b−b(
(b + 1, b)− 
(b + 1))+ e−bb.

Inserting this into (20) and noting that

P(n(Y ) = n) = π0,n + π1,n = π0,n + bn+1

(n+ 1)!e
−b − π0,n+1,
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we find that the marginal distribution of n(Y ) is given by

P(n(Y ) = n) = b1−b(
(b + n)− 
(b + n, b))


(n+ 1)
, n = 1, 2, . . . .

Example 2. The case above extends to when λ(x, u) = µn(x) depends only on the number of
points in x, where, for n = 0, 1, . . . , 0 ≤ µn ≤ β and if µn = 0 then µn+1 = 0. Again,
conditional on (n(X), n(Y )) = (m, n), the m + n points in X and Y are independent and
uniformly distributed in S, and solving (5) becomes equivalent to solving

(b +m+ n)πm,n = λm−1πm−1,n + (b − λm)πm,n−1 + (m+ 1)πm+1,n + (n+ 1)πm,n+1

for m, n = 1, 2, . . . , where λm = |S|µm, π−1,n = 0, and πm,−1 = 0. It follows by induction
that the π0,n, n = 0, 1, . . . , determine all the πm,n, m, n = 1, 2, . . . . We know that π0,0 = e−b

but, in general, for n ≥ 1, we do not have a simple recursion for the π0,n; this is in contrast to
(18). So finding an expression for π0,n when n ≥ 1 seems now to be a much harder problem.

In conclusion, apart from the rather trivial case where X and Y are independent Poisson
processes (see Proposition 3), the joint distribution of X and Y seems to be complicated.
Furthermore, apart from simple cases (such as Example 1), the marginal distribution of Y also
seems to be very complicated.
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