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Abstract. In this work, oscillatory and asymptotic behaviours of all solutions
of higher-order neutral differential equations are compared with first-order delay
differential equations, depending on two different ranges of the coefficient associated
with the neutral part. Some simple examples are given to compare our results with the
existing results in the literature and to illustrate the significance and applicability of
our new results. Our results generalise, improve and correct some of the existing results
in the literature.
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1. Introduction. In the natural sciences, technology and population dynamics,
neutral delay differential equations find many application fields. For instance neutral
delay differential equations appear in modelling of the networks containing lossless
transmission lines (as in high-speed computers in which the lossless transmission lines
are used to interconnect switching circuits), in the study of vibrating masses attached
to an elastic bar, as Euler-type equations in some variational problems, in the theory
of automatic control and in neuro-mechanical systems in which inertia plays a major
role (see [10]). The readers are referred to [1, 7, 9, 10, 12] for fundamental results on
the oscillation theory of differential equations.

In this paper, we consider the higher-order neutral differential equations of the
following type:

[x(t) + p(t)x(τ (t))](n) + q(t)x(σ (t)) = 0 for t ∈ [t0,∞), (1)

where t0 ∈ �, p ∈ C([t0,∞), �), q ∈ C([t0,∞), �+) and τ, σ ∈ C([t0,∞), �) satisfy
limt→∞ τ (t) = limt→∞ σ (t) = ∞ and τ (t), σ (t) ≤ t for all t ∈ [t0,∞). In the sequel,
we consider the following two ranges of the coefficient p:

(R1) p ∈ C([t0,∞), �+) satisfies �p := lim supt→∞ p(t) < 1,
(R2) p ∈ C([t0,∞), �−) satisfies �p := lim inf t→∞ p(t) > −1.

In a very recent paper [28], the authors applied a new method to obtain the
following result for (1) with even order.
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THEOREM A [28, Theorem 1]. Let p ∈ C([t0,∞), �+) satisfy 0 ≤ p(t) ≤ 1 for all
sufficiently large t. If there exists a constant λ0 ∈ (0, 1) such that every solution of the
first-order delay differential equation

y′(t) + λ0

(n − 1)!
(σ (t))n−1[1 − p(σ (t))]q(t)y(σ (t)) = 0 for t ∈ [t0,∞) (2)

is oscillatory, then every solution of (1) with even order is also oscillatory.

The proof of the theorem stated above is very nice and simple for even-order neutral
differential equations; however, for odd-order and/or higher-order neutral differential
equations with the ranges (R1) and/or (R1), the proof is not straightforward. For
odd-order delay differential equations, the readers may find very interesting results in
the papers [2, 4, 5, 8, 20, 27], and we wish to point out here that all these mentioned
papers study (1) with (R2). To the best of our knowledge, [6, 15–19] are the only
papers including some results for (1) for arbitrary-order neutral delay differential
equations. Since the conditions in the papers mentioned above are different from ours,
our technique is completely different, and it is indeed interesting to point out that our
results are not directly comparable with their results. However, we provide two simple
examples such that almost all of the results of these mentioned papers fail to apply; we
therefore feel that our results are a little bit weaker in a sense in some cases.

In the sequel, we need to state a modification of the most suitable results in [6,
15–19] for (1) to compare our results.

THEOREM B (see [15, Theorem 3.5] and [19, Theorem 2]). Assume that p
satisfies (R1) or (R2). Then every bounded solution of (1) oscillates or tends to zero
asymptotically if

∫ ∞ sn−1q(s) ds = ∞ holds. However, the conclusion holds only with
oscillation when n is even and p satisfies (R1).

THEOREM C (see [15, Theorem 3.6]). Assume that p holds one of the conditions
(R1) or (R2). Then every solution of (1) oscillates or tends to zero asymptotically if∫ ∞ sn−2q(s) ds = ∞ holds. This conclusion holds only with oscillation when n is even and
p satisfies (R1).

Set t−1 := inf t∈[t0,∞){τ (t), σ (t)}. A function x is called to be solution of (1) provided
that x ∈ C([t−1,∞), �), x + p(t)x ◦ τ ∈ Cn([t0,∞), �), and x satisfies (1) identically on
[t0,∞). In the sequel, for convenience, we only restrict our attention to solutions of
(1), which does not vanish on any sub-half-line of [t0,∞). As is customary, a solution
x of (1) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called
non-oscillatory; and (1) is called oscillatory if all its solutions are oscillatory and almost
oscillatory if all its solutions are oscillatory or convergent to zero asymptotically.

This paper is arranged in the following form: in Section 2, we give some useful
lemmas; in Section 3, we state our main results on (1) with p satisfying the condition
(R1) and/or the condition (R2); in Section 4, we give some applications; finally, in
Section 5, we make our final comments to finalise the paper.

2. Auxiliary lemmas. The Kneser’s theorem is stated below, the readers may find
this result in [1, Lemma 2.2.1] and [12, Lemma 5.2.1], which is one of the most useful
tools in the oscillation of higher-order delay equations.

LEMMA 1 (Kneser’s theorem). Let f ∈ Cn([t0,∞), �) be a function of fixed sign
such that f (n) is of fixed sign and not identically zero on a subray of [t0,∞). Then, there
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exist m ∈ � and t1 ∈ [t0,∞) such that 0 ≤ m ≤ n − 1, and (−1)n+mff (n) ≥ 0,

ff (j) > 0 for j = 0, 1, . . . , m − 1 when m ≥ 1

and

(−1)m+jff (j) > 0 for j = m, m + 1, . . . , n − 1 when m ≤ n − 1

hold on [t1,∞).

The following lemma is taken from [1, Lemma 2.2.3].

LEMMA 2. Let f be a function as in Kneser’s theorem. If limt→∞ f (t) 
= 0, then for
every λ ∈ (0, 1), there exists t2 ∈ [t1,∞) such that

|f | ≥ λ

(n − 1)!
tn−1|f (n−1)|

holds on [t2,∞). Here, t2 = t2(λ) → ∞ as λ → 1.

Next, we prove the following useful lemma, which helps us in our proofs.

LEMMA 3. Let f and g ∈ C([t0,∞), �) and α ∈ C([t0,∞), �) satisfies
limt→∞ α(t) = ∞ and α(t) ≤ t for all t ∈ [t0,∞); further suppose that there
exists h ∈ C([t−1,∞), �+), where t−1 := mint∈[t0,∞){α(t)}, such that f (t) = h(t) +
g(t)h(α(t)) holds for all t ∈ [t0,∞). Suppose that �f := limt→∞ f (t) exists and
�g := lim inf t→∞ g(t) > −1. Then �h := lim supt→∞ h(t) > 0 implies �f > 0.

Proof. Let t1 ∈ [t0,∞) and 0 ≥ mg > −1 satisfy g(t) ≥ mg for all t ∈ [t1,∞); then
we may pick an increasing divergent {ξk}k∈� ⊂ [t1,∞) such that limk→∞ h(ξk) = �h

holds. First, we shall consider the case that h is unbounded; then we may suppose
that x(ξk) = max{x(t) : t ∈ [t1, ξk]} holds for all k ∈ �. Then, we have f (ξk) ≥ h(ξk) +
mgh(α(ξk)) ≥ (1 + mg)h(ξk) for all k ∈ �, which implies �f = ∞ by letting k tend to
infinity. Next, let h be bounded; then we may suppose that limk→∞ h(α(ξk)) = Lh for
some Lh ≥ 0. Note that Lh ≤ �h is true. Therefore, following similar arguments as that
in the previous case, we have �f ≥ �h + mgLh ≥ �h(1 + mg) > 0. The proof is hence
completed. �

3. Main results.

THEOREM 1. Assume that p satisfies the condition (R1), and (2) is oscillatory for
some λ0 ∈ (0, 1). Then (1) is almost oscillatory.

Proof. Let x be a non-oscillatory solution of (1), which does not tend to zero
asymptotically. Clearly, x can be assumed to be eventually positive without loss of
generality, since (1) is linear. Say x(t), x(τ (t)), x(σ (t)) > 0 for all t ∈ [t1,∞) for some
sufficiently large t1 ∈ [t0,∞). Set

yx(t) := x(t) + p(t)x(τ (t)) for t ∈ [t1,∞). (3)

Then, we see that

y(n)
x (t) = −q(t)x(σ (t)) ≤ 0 for all t ∈ [t1,∞), (4)
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which indicates that y(j)
x is strictly monotonic and of single sign on [t2,∞) for j =

0, 1, . . . , n − 1, where t2 ∈ [t1,∞) is sufficiently large. By Lemma 3, we have �
(0)
y > 0,

where �
(j)
y := limt→∞ y(j)

x (t) for j = 0, 1, . . . , n. Now, we prove that yx is increasing on
[t2,∞). Suppose the contrary that yx is decreasing on [t2,∞), which indicates that �

(0)
y

is a positive constant and �
(j)
y = 0 for j = 1, 2, . . . , n. As yx ≥ x holds on [t2,∞), it

follows that

x(t) ≥
(

1 − p(t)
yx(τ (t))

yx(t)

)
yx(t) for all t ∈ [t2,∞). (5)

Using (5) in (4), we have

y(n)
x (t) + q(t)

(
1 − p(σ (t))

yx(τ (σ (t)))
yx(σ (t))

)
yx(σ (t)) ≤ 0 for all t ∈ [t2,∞). (6)

Integrating (6) from t to ∞ for a total of (n − 1) times and integrating the resulting
inequality from t2 to ∞, we have

∫ ∞

t2

(s − t2)n−1

(n − 1)!
q(s)

(
1 − p(σ (s))

yx(τ (σ (s)))
yx(σ (s))

)
yx(σ (s)) ds ≤ (−1)n(�y − yx(t2)

)
< ∞,

which implies together with �
(0)
y > 0 and (R1) that

∫ ∞

t2

sn−1q(s)[1 − p(σ (s))] ds < ∞

by the result in [13, p. 193], and this indicates
∫ ∞

t3

(σ (s))n−1q(s)[1 − p(σ (s))] ds < ∞. (7)

However, since every solution of (2) is oscillatory, [14, Theorem 2.6] ensures
∫ ∞

t3

(σ (s))n−1q(s)[1 − p(σ (s))] ds = ∞,

which contradicts (7); thus we conclude that yx is increasing on [t2,∞). From the
increasing nature of yx, (5) and Lemma 2, we get

x(t) ≥ [1 − p(t)]y(t) ≥ λ0

(n − 1)!
tn−1[1 − p(t)]y(n−1)

x (t) for all t ∈ [t2,∞). (8)

Plugging (8) into (1), we get

y(n)
x (t) + λ0

(n − 1)!
(σ (t))n−1[1 − p(σ (t))]q(t)y(n−1)

x (σ (t)) ≤ 0 for all t ∈ [t2,∞). (9)

Since y(n−1)
x is eventually positive by the Kneser’s theorem, we learn from [9,

Corollary 3.2.2] that the corresponding differential equation (2) of inequality (9) also
has an eventually positive solution. This contradicts the fact that every solution of (2)
is oscillatory. The proof is therefore completed. �

https://doi.org/10.1017/S0017089509990188 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990188


COMPARISON THEOREMS ON NEUTRAL DIFFERENTIAL EQUATIONS 111

REMARK 1 (see [28, Theorem 1]). In addition to the assumptions of Theorem 1
suppose that n is even; then (1) is oscillatory.

Now, we can give the following corollaries.

COROLLARY 1 (see [9, Theorem 3.1.1] and [11]). Assume that p satisfies the condition
(R1). If

lim sup
t→∞

∫ t

σ (t)

1
(n − 1)!

(σ (s))n−1[1 − p(σ (s))]q(s) ds > 1

or

lim inf
t→∞

∫ t

σ (t)

1
(n − 1)!

(σ (s))n−1[1 − p(σ (s))]q(s) ds >
1
e

holds, then (1) is oscillatory when n is even and almost oscillatory when n is odd.

THEOREM 2. Assume that p satisfies the condition (R2), and

y′(t) + λ0

(n − 1)!
(σ (t))n−1q(t)y(σ (t)) = 0 for t ∈ [t0,∞) (10)

is oscillatory for some λ0 ∈ (0, 1). Then (1) is almost oscillatory.

Proof. Let x be a non-oscillatory solution of (1), which does not tend to zero
asymptotically. Without loss of generality, we may assume that x is eventually positive.
Say x(t), x(τ (t)), x(σ (t)) > 0 for all t ∈ [t1,∞) for some sufficiently large t1 ∈ [t0,∞),
and set yx for t ∈ [t1,∞) as in (3). Then, we see that (4) holds for all t ∈ [t1,∞),
which indicates that y(j)

x is strictly monotonic and of single sign on [t2,∞) for j =
0, 1, . . . , n − 1, where t2 ∈ [t1,∞) is sufficiently large. From Lemma 3, we learn that
�

(0)
y > 0 holds, where �

(0)
y := limt→∞ yx(t), since x does not tend to zero asymptotically.

Taking the property yx ≤ x into account and proceeding as in the proof of Theorem 1,
we obtain

y(n)
x (t) + λ0

(n − 1)!
(σ (t))n−1q(t)y(n−1)

x (σ (t)) ≤ 0 for all t ∈ [t2,∞). (11)

Since y(n−1)
x is eventually positive by Kneser’s theorem, we see from [9, Corollary 3.2.2]

that the corresponding differential equation (10) of inequality (11) has an eventually
positive solution too. This contraction completes the proof. �

REMARK 2. In addition to the assumptions of Theorem 2 suppose that n is even,
and there exists an increasing divergent sequence {ξk}k∈� ⊂ [t0,∞) such that p(ξk) = 0
holds for all k ∈ �, then (1) is oscillatory.

COROLLARY 2 (see [9, Theorem 3.1.1] and [11]). Assume that p satisfies the condition
(R1). If

lim sup
t→∞

∫ t

σ (t)

1
(n − 1)!

(σ (s))n−1q(s) ds > 1
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or

lim inf
t→∞

∫ t

σ (t)

1
(n − 1)!

(σ (s))n−1q(s) ds >
1
e

holds, then (1) is almost oscillatory.

REMARK 3. Under the assumptions of Theorem 1 and/or Theorem 2, we infer
that every unbounded solution of (1) is oscillatory.

REMARK 4. In Corollary 1 and/or Corollary 2, the iterative criteria in [21] can also
be applied to improve their results.

4. Applications. Now, we give the following simple examples to illustrate the
significance of our results.

EXAMPLE 1. Let n ≥ 2, p ∈ [0, 1), q ∈ (0,∞) and τ, σ ∈ [1,∞), and consider the
following higher-order neutral delay differential equation:

[x(t) + px(t/τ )](n) + q
tn

x(t/σ ) = 0 for t ∈ [1,∞). (12)

Clearly, Theorem B is applicable and Theorem C fails. Indeed, we have
∫ ∞

sn−1 q
sn

ds =
∫ ∞ q

s
ds = ∞ and

∫ ∞
sn−2 q

sn
ds =

∫ ∞ q
s2

ds < ∞.

Hence, we get the concussion of Theorem B that (12) is almost bounded oscillatory.
And one can check that [15, Theorems 3.6 and 3.7], [16, Theorems 2.2 and 2.7], [17,
Theorem 2.4] and [18, Theorem 2.3] all fail to deliver with unbounded solutions of
(12). From Corollary 2, we see that (12) is almost oscillatory provided that

lim inf
t→∞

∫ t

t/σ

1
(n − 1)!

(
s
σ

)n−1

[1 − p]
q
sn

ds >
1
e

or simply

ln σ

σ n−1
>

(n − 1)!
e[1 − p]q

.

EXAMPLE 2. Consider the equation in Example 1 with p ∈ (−1, 0]; then we see
from Corollary 2 that (12) is almost oscillatory provided that

ln σ

σ n−1
>

(n − 1)!
eq

.

Hence, we again see that Theorem B applies with bounded solutions, and Theorem C
fails to apply. Again, all the results [15, Theorems 3.6 and 3.7], [16, Theorems 2.2
and 2.7], [17, Theorem 2.4] and [18, Theorem 2.3] fail to apply to (12). When n is odd,
all the results in [2, 4, 5, 8, 20, 27] do not apply because of the delay’s form; however,
[6] is the only paper that includes applicable results for this equation in some cases.
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5. Final comments. In this section, we talk about some remarks and extensions
for the results given in the previous sections.

Our results in Section 3 can also be applied to half-linear equations of the form

[x(t) + p(t)x(τ (t))](n) + q(t)|x(σ (t))|α−1x(σ (t)) = 0 for t ∈ [t0,∞), (13)

where n ≥ 2 is an integer p, q, τ, σ as stated before and α > 0 is a real number. For such
type of equations, one can easily relate oscillatory and/or almost-oscillatory nature
of (13) with the same type of first-order equations. The readers may find oscillation
results for sub-linear and/or super-linear in [7, 22–24] to give explicit results on (13).

Finally, we would like to point out that [2, Theorems 3 and 4] are not always
true; indeed these results always hold only for strictly homogeneous equations (the
authors need to assume that the forcing term is eventually non-negative and tends
to zero at infinity when giving the proof for eventually negative solutions), and [14,
Theorems 2.1–2.3] do not hold for arbitrary delays; i.e. these results hold only for linear
delays of slopes not exceeding 1, similar to those in [14, Theorems 2.4–2.6] because
of the application of [14, Lemma 1.5] in the proof of [14, Theorem 2.1] (the author
had to apply the chain rule, which yields the mistake). Lemma 3 partially salvages [26,
Lemma 1], and thus one can easily correct the results in [3, 25, 26] obtained for the
oscillation of second-order neutral delay differential equations.
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