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We study theoretically and experimentally the propagation of two bubbles in a Hele-
Shaw cell under a uniform background flow. We consider the regime where the bubbles
are large enough to be flattened by the cell walls into a pancake-like shape, but small
enough such that each bubble remains approximately circular when viewed from above.
In a system of two bubbles of different radii, if the smaller bubble is in front, it will
be overtaken by the larger bubble. Under certain circumstances, the bubbles may avoid
collision by rolling over one another while passing. We find that, for a given ratio of the
bubble radii, there exists a critical value of a dimensionless parameter (the Bretherton
parameter) above which the two bubbles will never collide, regardless of their relative size
and initial transverse offset, provided they are initially well separated in the direction of
the background flow. Additionally, we determine the corrections to the bubble shape from
circular for two bubbles aligned with the flow direction. We find that the front bubble
flattens in the flow direction, while the rear bubble elongates. These shape changes are
associated with changes in velocity, which allow the rear bubble to catch the bubble in
front even when they are of the same size.

Key words: bubble dynamics, microfluidics, Hele-Shaw flows

1. Introduction
Over the past few decades, there has been significant and growing interest in the field of
microfluidics and in the development of lab-on-a-chip devices (see, for example, Beebe,
Mensing & Walker 2002; Stone, Stroock & Ajdari 2004; Squires & Quake 2005; Dittrich
†
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& Manz 2006; Sackmann, Fulton & Beebe 2014; Nguyen, Wereley & Shaegh 2019; Battat,
Weitz & Whitesides 2022). In particular, microfluidic devices are often used to generate
and manipulate arrays of bubbles or droplets (see Anna 2016; Zhu & Wang 2017) that
are completely surrounded by an immiscible liquid. We study bubbles in Hele-Shaw
geometries that are flattened by the channel walls and thus assume pancake-like shapes
(Zhu & Gallaire 2016) with thin liquid films separating the bubble from the walls. We
focus on bubbles that are small enough such that, due to the effects of surface tension,
they remain approximately circular when viewed from above. This regime is relevant to
many practical Hele-Shaw geometries (see, for example, Maxworthy 1986; Beatus, Tlusty
& Bar-Ziv 2006; Huerre, Miralles & Jullien 2014; Shen et al. 2014; Gnyawali et al. 2017).

A general model for the motion of such bubbles in a uniform background flow was
developed by Booth, Griffiths & Howell (2023), who presented results for the motion
of isolated bubbles and arrays of identical bubbles. This model was later generalised to
the case of buoyancy-driven flow and extended to allow for bubble deformation (Wu et al.
2024). In the present paper, the model is applied to study the hydrodynamic interactions of
a pair of bubbles of arbitrary radii. Understanding and characterising two-body problems
is a common starting point in the study of suspensions (see, for example, Frankel
& Andreas 1967). In dilute suspensions, pairwise hydrodynamic interactions between
particles are of principal importance, and they are used to construct first approximations of
an effective viscosity (Batchelor & Green 1972; Batchelor 1977). Moreover, studies of two
particles have provided significant insight into the collision, aggregation and coalescence
of particles (see, for example, Stoos, Yang & Leal 1992; Leal 2004; Arp & Mason 1977a),
processes that have a significant impact on the composition of suspensions over time.
We analyse two phenomena involving pairs of bubbles that are relevant both for the
propagation of bubble suspensions in narrow channels and for the control of bubble arrays
in microfluidic channels.

The first phenomenon concerns a pair of circular bubbles of different radii. Since the
larger bubble travels faster than the smaller one (Booth et al. 2023; Wu et al. 2024), the
distance between the bubbles decreases when the larger bubble is behind the smaller one.
As the larger bubble approaches the smaller one, hydrodynamic interactions cause them
to roll over each other and avoid contact under certain circumstances. This is similar to
how lubrication forces prevent the contact of rigid spheres and cylinders approaching
each other in shear flow (Bartok & Mason 1957; Darabaner, Raasch & Mason 1967; Arp
& Mason 1977b). However, for the model that we examine, there are circumstances in
which two bubbles will collide. Our analysis of the ‘rollover’ phenomenon includes an
investigation of the conditions under which it may fail and the bubbles collide instead.
The second phenomenon concerns two bubbles on the same streamline. When they are
in close proximity, they deform so that the rear bubble becomes elongated and the front
bubble becomes flattened. This shape change affects the bubble velocities, resulting in the
eventual contact and coalescence of the bubbles. Analogous bubble phenomena, including
deformation and coalescence of bubble pairs and smaller bubbles being ‘swept around’
larger ones, have been observed at low Reynolds numbers for buoyancy-driven bubbles in
unconfined geometries in both experiments and numerical simulations (Manga & Stone
1993). In Hele-Shaw geometries, deformation and pairing of single bubbles have been
previously studied by Maxworthy (1986). Shen et al. (2014) report observations and
numerical simulations of pairs of droplets of different sizes reorienting themselves and
aligning with the flow direction.

The interaction forces between circular bubbles or droplets in a Hele-Shaw cell
are commonly approximated using a superposition of dipole solutions (see, for
example, Beatus et al. 2006), which is valid provided the bubbles are well separated.
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Sarig, Starosvetsky & Gat (2016) obtained exact solutions for the interaction forces of
two closely spaced circular droplets of arbitrary radii, relative position and velocities in a
uniform background flow and additionally analysed the case in which the droplet velocities
were determined by a force balance involving a free parameter describing the contribution
of the droplets’ internal friction. Green (2018) approximated the results of Sarig et al.
(2016) in order to develop a description of arbitrary numbers of identical circular droplets
moving at the same velocity. In the present work, we examine the effect of the thin films
above and below the bubble, resulting in a model with no free parameters. Using this
model, we investigate the hydrodynamic interactions between pairs of circular bubbles of
arbitrary radii. Particular attention is paid to the rollover phenomenon, which emerges as
a result of these interactions under certain conditions.

We also investigate the deformation of a pair of bubbles that are aligned with the
flow direction due to their hydrodynamic interactions. Generally, two identical circular
bubbles or droplets in a Hele-Shaw cell aligned in the direction of the background flow are
expected to travel together at some doublet velocity, which approaches that of an isolated
bubble as the separation between the bubbles grows large (Sarig et al. 2016; Green 2018;
Booth et al. 2023). Analogous behaviour is seen for pairs of solid spheres (Happel &
Brenner 2012). However, when deformable droplets or bubbles are in close proximity,
they each experience distortions induced by the other (Manga & Stone 1993, 1995). Such
deformations break fore–aft symmetry and the reversibility of Stokes flow, leading to
qualitatively different dynamics, some of which will be explored in our work. Irreversible
particle interactions such as those we report would have significant implications on the
microstructure and rheology of a suspension (Leighton & Acrivos 1987; Davis 1993;
Wilson & Davis 2000), as well as on the structure of bubble arrays propagating in
microchannels.

The structure of this paper is as follows. In § 2, we summarise the general model
developed by Booth et al. (2023) for the motion of a system of approximately circular
pancake bubbles in a Hele-Shaw cell. In § 3, solutions are presented for the motion of a
pair of circular bubbles of arbitrary radii. Experimental methods are described in § 4, and
we present experimental and theoretical results for the motion of a pair of circular bubbles
in § 5. In § 6, we focus on a pair of bubbles aligned in the flow direction and present the-
oretical and experimental results on the deformation of each bubble induced by the other.
Finally, in § 7, we summarise our findings and discuss potential extensions of our work.

2. Mathematical modelling

2.1. Governing equations
As in Booth et al. (2023), we consider the motion of two bubbles in a Hele-Shaw cell
of height ĥ parallel to the (x̂, ŷ)-plane. Here, ĥ is assumed to be much smaller than the
horizontal dimensions of the cell and the bubbles, so we can employ lubrication theory.
The bubbles are flattened by the cell walls above and below into pancake-like shapes
with approximately circular profiles when viewed from above (figure 1), whose radii are
denoted by R̂1 and R̂2, where R̂1,2 � ĥ. We prescribe a uniform unidirectional flow with
velocity Û i in the far field (where i denotes the unit vector in the x̂-direction). The viscos-
ity of the liquid and the liquid–air surface tension are denoted by μ̂ and γ̂ , respectively.

We non-dimensionalise the system by scaling lengths with R̂1, velocities with Û , the
fluid pressure p̂ with 12μ̂Û R̂1/ĥ2 and the pressure inside the kth bubble, p̂k , with 2γ̂ /ĥ,
where γ̂ is the surface tension. This procedure gives the following dimensionless model,
in which dimensionless variables are denoted without hats:
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1

Uniform flow

Ω

σ

φ

R

y

x

∂Ω2

∂Ω1

Figure 1. Schematic of the dimensionless two-bubble problem. The fluid domain is denoted by Ω and the the
bubble surfaces are ∂Ω1,2. We supply a uniform outer flow far from the bubbles. The bubble centre–centre
distance is σ and the angle the bubbles make to the direction of the outer flow is φ.

∇2 p = 0 in Ω, (2.1a)
n · ∇ p = −Un,k on ∂Ωk, (2.1b)

pk − 3Ca
ε

p = 1 + Ca2/3β
(
Un,k

) (
Un,k

)2/3 + επ

4
κk on ∂Ωk, (2.1c)

∇ p → −i as x2 + y2 → ∞. (2.1d)
Here, Ω is the fluid domain, while ∂Ωk , κk and Un,k are the boundary, in-plane curvature
and local normal velocity of the interface of the kth bubble, respectively (k = 1, 2), and β
is the Bretherton coefficient, whose value depends on whether the meniscus is advancing
or retreating (Bretherton 1961; Wong, Radke & Morris 1995; Halpern & Jensen 2002)

β
(
Un,k

)=
{
β1 ≈ 3.88 when Un,k > 0,
β2 ≈ −1.13 when Un,k < 0.

(2.2)

The boundary condition (2.1c) was proposed by Meiburg (1989) and later derived by
Burgess & Foster (1990). In (2.1b) we neglect to include the contribution due to leakage
into the thin films because this effect is always subdominant. However, this effect could
easily be included in the model (see, for example Burgess & Foster 1990; Peng et al. 2015;
Wu et al. 2024).

The system (2.1) contains two dimensionless parameters: the bubble aspect ratio and the
capillary number, defined by

ε = ĥ

2R̂1
, Ca = μ̂Û

γ̂
, (2.3)

respectively, both of which are assumed to be small. Specifically, in the distinguished
limit Ca = O(ε3), the viscous pressure balances the pressure drop across the menisci (the
second and fourth terms in (2.1c)). In this regime, both bubbles remain circular to leading
order, so Un,k = Uk · n and p is therefore fully determined by the problem (2.1a), (2.1b)
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and (2.1d) (up to an irrelevant constant) once the bubble velocities Uk are specified. As a
shortcut to determine the bubble velocities we perform an effective net force balance by
integrating (2.1c) around each bubble (see, for example, Booth et al. 2023), to obtain

Uk

|Uk |1/3 = δ

πRk

∮
∂Ωk

−pn ds, (2.4)

where Rk is the dimensionless radius of the kth bubble. The resulting problem contains a
single dimensionless group, the Bretherton parameter, defined by

δ = 1
η

Ca1/3

ε
= 2
η

R̂1

ĥ

(
μ̂Û

γ̂

)1/3

, (2.5)

which is assumed to be O(1) while ε and Ca both tend to zero. The numerical constant

η= (β1 − β2)Γ (4/3)
3
√
πΓ (11/6)

≈ 0.894 (2.6)

incorporates the Bretherton pressure drops (2.2) across the advancing and retreating
menisci (Bretherton 1961; Wu et al. 2024).

The Bretherton parameter is a dimensionless parameter that compares the magnitudes
of the viscous pressure from the flow around the bubble and of the Bretherton pressure, or
the pressure drop across the thin films surrounding the bubble. As δ increases to infinity,
the viscous pressure dominates over the Bretherton pressure. In this limit, we recover the
result due to Taylor & Saffman (1959) that the bubble moves at twice the background
flow velocity, which was obtained while disregarding the thin film drag. Booth et al.
(2023) showed that an isolated circular bubble travels parallel to the background flow
with velocity Ub = Ub i , where Ub is a monotonically increasing function of δ, satisfying
Ub → 0 as δ→ 0 and Ub → 2 as δ→ ∞. Importantly for this work, it follows that larger
bubbles travel faster than smaller ones when all other parameters are fixed, since δ ∝ R̂1.
This conclusion may also be drawn using dimensional analysis, through which it can be
shown that the driving force due to the background flow is proportional to R̂2

1 and the drag
force due to the thin films is proportional to R̂1.

2.2. Complex variable formulation
We now reformulate the problem (2.1) in terms of complex variables. At leading order
we have two circular bubbles whose centroids are at positions (x1, y1) and (x2, y2) in
the (x, y)-plane, with a uniform velocity in the far field of unit magnitude. We label
the bubbles such that the smaller bubble is located at (x1, y1) and the dimensionless
radii of the two bubbles are thus R1 = 1 and R2 = R, where R � 1 is the radius ratio
of the two bubbles. As shown schematically in figure 1, the problem is instantaneously
characterised by the length σ of the vector joining the smaller bubble centre to the larger
bubble centre, the angle φ that it makes with the x-axis (which is parallel to the background
flow direction), and the radius ratio R.

Since the flow is governed by Laplace’s equation, we can formulate this as a problem for
the complex potential w(z)= −p + iψ , where ψ is the streamfunction, and z = x + iy.
Then w(z) is holomorphic in the region Ω outside the two bubbles and satisfies the
boundary conditions

Im[w(z)] = Q1 + Im
(U1z

)
on |z − z1| = R1 = 1, (2.7a)

Im[w(z)] = Q2 + Im
(U2z

)
on |z − z2| = R2 = R � 1, (2.7b)

w(z)∼ z + o(1) as z → ∞, (2.7c)
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where, for k ∈ {1, 2}, we denote by zk = xk + iyk and Uk = Uk + iVk the complex
representations of the kth bubble position and velocity, respectively, and the Qk are a
priori unknown constants. The over-bars denote complex conjugation. Note that (2.7a)
and (2.7c) are the complex representations of the kinematic boundary conditions (see, for
example, Crowdy 2008).

Once we have solved forw(z), to close the system we evaluate the effective force balance
(2.4) on each bubble, which in complex variables becomes

1
iπ

∮
∂Ω1

w(z) dz = −U1 + 1
π

∮
∂Ω1

pi dz = −U1 + U1

δ |U1|1/3
, (2.8a)

1
iπ

∮
∂Ω2

w(z) dz = −R2U2 + 1
π

∮
∂Ω2

pi dz = −R2U2 + RU2

δ |U2|1/3
. (2.8b)

Here ∂Ωk is the boundary of the kth bubble, given by |z − zk | = Rk .
The problem for the pressure field generated by two bubbles of unequal radii was

solved by Sarig et al. (2016) using a bipolar coordinate transformation, resulting in infinite
series solutions for the interaction forces between the bubbles. Instead, using our complex
variable formulation facilitates the evaluation of the integrals (2.8) in the force balance in
closed form.

3. Solution for two bubbles of arbitrary radii
To begin we define the conformal map

z = z1 + eiφ
(

1 + aζ

ζ + a

)
, (3.1)

from the the concentric annulus A = {ζ : X � |ζ |� 1} onto the solution domain Ω (see
figure 2 for a schematic overview of the conformal mapping procedure), where

a = σ 2 − R2 + 1 −√
(σ 2 − R2 + 1)2 − 4σ 2

2σ
, (3.2a)

X = a2 + (R − 1)a(a + 1)(σ − R − 1)
σ (σ − R − a)

. (3.2b)

Note that a2 � X < a < 1. The conformal map is derived by first translating the fluid
domain such that one of the bubbles is centred at the origin, then rotating so both bubble
centres lie on the real axis, and finally applying a Möbius transformation to map the
domain to a concentric annulus. In the mapping, the point at infinity in the z-plane maps
to −a in the ζ -plane, and X is the inner radius of the annulus.

We then define w(z)= z + W (ζ ), where W (ζ ) is holomorphic on the annulus, A, and
satisfies the conditions

Im[W (ζ )] = q1 + Im
[
α1

(
1 + aζ

ζ + a

)]
on |ζ | = 1, (3.3a)

Im[W (ζ )] = q2 + Im
[
α2

(
1 + aζ

ζ + a

)]
on |ζ | = X, (3.3b)

with αk = (Uk − 1)eiφ , and qk = Qk − Im[(Uk − 1)z1].
Now we express W (ζ ) as a Laurent expansion on A, i.e.

W (ζ )=
∞∑

n=−∞
cnζ

n, (3.4)
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1

Ω

1

0

Im ζ

A

X−a
Re ζ

z (ζ)

Im z

R

z2

∂Ω2

∂Ω1

z1

Re z

Figure 2. Schematic of the conformal map (3.1) from the annulus A = {ζ : X � |ζ |� 1} in the ζ -plane to the
fluid region Ω in the z-plane.

and use the boundary conditions (3.3) to calculate the coefficients cn . On |ζ | = 1 we have
ζ = 1/ζ so we can rearrange boundary condition (3.3a) to

Im[W (ζ )] = Im[c0] + Im

[ ∞∑
n=1

(cn − c−n)ζ
n

]

= q1 − Im[α1a] − Im

[
α1

∞∑
n=1

(1 − a2)(−a)n−1ζ n

]
on |ζ | = 1. (3.5)

It follows from (3.5) that

cn − c−n = α1(1 − a2)(−a)n

a
(n � 1), (3.6)

and, without loss of generality, we can choose q1 = Im[α1]a, so c0 = 0.
We progress similarly on |ζ | = X , where now ζ = X2/ζ . The boundary condition (3.3b)

can be rewritten as

Im[W (ζ )] = Im

[ ∞∑
n=1

(c−n − X2ncn)ζ
−n

]

= q2 − Im
[
α2

a

]
− Im

[
α2

a

∞∑
n=1

(1 − a2)

(−X2

a

)n

ζ−n

]
on |ζ | = X,

(3.7)

and it follows that

X2ncn − c−n = α2

a
(1 − a2)

(−X2

a

)n

, (3.8)

and q2 = Im(α2/a). We simultaneously solve equations (3.6) and (3.8) to find that the
complex potential W (ζ ) is given by
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W (ζ )= (1 − a2)

a

∞∑
n=1

Xn

1 − X2n

[(
α1

(−a

X

)n

− α2

(−X

a

)n)
ζ n

+
(
α1 (−aX)n − α2

(−X

a

)n)
ζ−n

]
. (3.9)

The equations of motion for the bubbles can be found from (2.8) via

1
iπ

∮
∂Ω1

w(z) dz = (1 − a2)eiφ

iπ

∮
|ζ |=1

W (ζ ) dζ
(ζ + a)2

, (3.10a)

− 1
iπ

∮
∂Ω2

w(z) dz = (1 − a2)eiφ

iπ

∮
|ζ |=X

W (ζ ) dζ
(ζ + a)2

. (3.10b)

The integrand in (3.10a) has poles at ζ = −a and 0, whereas (3.10b) only has a pole at
ζ = 0. The residue due to the pole at ζ = 0 is the same for both integrals and can be
calculated to give

Res
[

W (ζ )

(ζ + a)2
; ζ = 0

]
= 1 − a2

a2

∞∑
n=1

nX2n

1 − X2n

[
(U2 − 1)e−iφ

a2n
− (U1 − 1)eiφ

]
. (3.11)

The residue at ζ = −a is given by

Res
[

W (ζ )

(ζ + a)2
; ζ = −a

]
= 1 − a2

a2

∞∑
n=1

nX2n

1 − X2n

[
(U1 + U2 − 2)eiφ

− (U1 − 1)e−iφ
( a

X

)2n − (U2 − 1)e−iφ

a2n

]
. (3.12)

Thus, by Cauchy’s residue theorem, we find

1
iπ

∮
∂Ω1

w(z) dz = f1(σ, R)(U2 − 1)e2iφ − f2(σ, R)(U1 − 1), (3.13a)

1
iπ

∮
∂Ω2

w(z) dz = f1(σ, R)(U1 − 1)e2iφ − f3(σ, R)(U2 − 1), (3.13b)

where

f1(σ, R)= 2(1 − a2)2

a2

∞∑
n=1

nX2n

1 − X2n
= 2(1 − a2)2

a2

Ψ ′
X2(1)

4 log2 X
, (3.14a)

f2(σ, R)= 2(1 − a2)2

a2

∞∑
n=1

nX2n

1 − X2n

( a

X

)2n = 2(1 − a2)2

a2

Ψ ′
X2

(
log a
log X

)
4 log2 X

, (3.14b)

f3(σ, R)= 2(1 − a2)2

a2

∞∑
n=1

nX2n

1 − X2n

(
1
a

)2n

= 2(1 − a2)2

a2

Ψ ′
X2

(
log(X/a)

log X

)
4 log2 X

, (3.14c)

and Ψq is the q-digamma function (Salem 2012), defined by

Ψq(ξ)= 1
Γq(ξ)

dΓq(ξ)

dξ
, (3.15)
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Bubbles

Flow

Liquid inlet Bubble inlet Outlet

Figure 3. Diagram of the Hele-Shaw cell including bubbles of typical size.

where Γq is the q-gamma function (Askey 1978). Recall that a and X are given in terms
of σ and R by (3.2). These formulae provide closed forms for the infinite series solutions
derived by Sarig et al. (2016).

The equations of motion for the bubbles are given by (2.8), which reduces to

f1(σ, R)(U2 − 1)e2iφ − f2(σ, R)(U1 − 1)= −U1 + U1

δ |U1|1/3
, (3.16a)

f1(σ, R)(U1 − 1)e2iφ − f3(σ, R)(U2 − 1)= −R2U2 + RU2

δ |U2|1/3
. (3.16b)

For general R, both σ and φ vary with time, t , which is made dimensionless using the
advective time scale R̂1/Û . At each instant, the system (3.16) is solved for Uk (k = 1, 2),
using Newton’s method, and the bubble positions zk = xk + iyk are then updated using

dzk

dt
= Uk . (3.17)

We solve (3.17) using a forward Euler discretisation with a time step of 0.01, which
was found to achieve a relative error of approximately 10−5 in the bubble positions (by
comparison with solutions obtained with a smaller time step).

If the bubbles are identical (R = 1), then (3.2b) implies that X = a2 so equations (3.16)
are equivalent, and it follows that U1 = U2 ≡ Up. Therefore, the two bubbles move at the
same velocity, and the values of σ and φ remain fixed for all time, a result that is expected
for pairs of identical circular bubbles in a Hele-Shaw cell at low Reynolds number (Happel
& Brenner 2012; Sarig et al. 2016; Green 2018). The trajectories of non-identical circular
bubbles are also expected to be reversible and fore-aft symmetric, which is indeed what
our model predicts.

Having established our theoretical model for the motion of a pair of bubbles in a Hele-
Shaw cell, we next describe the setup used for our experiments.

4. Experimental methods
Experiments were performed in a Hele-Shaw cell constructed using two 12.7 mm thick cast
acrylic plates. A section shaped like an elongated hexagon was sealed by a gasket along its
perimeter, and a uniform distance between the plates was maintained using plastic spacers.
The plan view layout of the cell is shown in figure 3.

Flow in the channel was manipulated using a series of circular holes cut into the top
plate. Liquid was injected into and removed from the cell through 4 mm diameter holes

1010 A19-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.322


D.J. Booth, K. Wu, I.M. Griffiths, P.D. Howell, J.K. Nunes and H.A. Stone

ĥ [mm] ŵ [mm] Û [mm/s] R̂1 [mm] Ca × 104 ε × 102 δ R px/mm

2.4 2.6 8.1 1.17 2.05
I 0.42 65 6.1 172.0 10.6 0.90 2.32

1.3 5.4 3.3 2.7 2.86 1
II 0.29 90 1.3 4.8 3.3 3.0 2.55 1.23 54

2.6 2.9 6.6 5.0 1.94 1.65

Table 1. Experimental parameters: the channel height ĥ, the channel width ŵ, the depth-averaged background
flow velocity Û , the effective bubble radius of the smaller bubble R̂1, the capillary number Ca = µ̂Û/γ̂ , the
bubble aspect ratio ε = ĥ/2R̂1, the Bretherton parameter δ = Ca1/3/ηε, the radius ratio R and image resolution
reported in pixels per mm. Parameters are shown for experiments investigating interactions (I) between nearly
circular bubbles with an initial offset in the y-direction as discussed in § 5, and (II) between bubbles in a line
parallel to background flow as discussed in § 6.

whose centres were located at opposing vertices of the hexagon. Bubbles were manually
introduced using a syringe connected to a 1 mm diameter hole located downstream of the
main inlet. The bubble inlet was sealed when not in use to limit fluctuations in pressure
and flow rate during measurements. The components of the cell were cleaned with ethanol
and distilled water prior to assembly and experiments.

The viscous liquid used in experiments was silicone oil (Sigma Aldrich, Product No.
317 667). According to information provided by the manufacturer, its kinematic viscosity
was ν̂ = 5 mm2s−1, and its dynamic viscosity was μ̂= 4.6 mPa s. The surface tension
was measured using the pendant drop method to be γ̂ = 18.2 mN m−1. The bubbles were
composed of air. Flow was generated by driving oil into the cell at a constant volumetric
flow rate, Q̂, through the liquid inlet using a syringe pump (Harvard Apparatus, PHD
Ultra). Oil ejected from the cell was collected, filtered then reused. Blockage effects due to
the presence of the bubbles were not taken into account, and the background flow velocity
was estimated to be Û = Q̂/ŵĥ (where ŵ and ĥ are the dimensional cell width and height).
The Reynolds numbers Re = 2Û R̂1ε

2/ν̂ calculated using the smaller bubble radius ranged
from 7.2 × 10−3 to 1.7 × 10−2.

Experiments were recorded using a DSLR camera (Nikon) positioned to capture the plan
view of the Hele-Shaw cell. The cell was illuminated from above, and a light-absorbing
black background was used to enhance contrast. Reflections of light from the bubble
interfaces caused the plan view shapes of the bubbles to appear as white outlines. Videos
were acquired at 30 frames per second, and calibration was performed using an object of
known size in the focal plane.

Table 1 shows a summary of the experiments presented in this work. Experiments were
performed to investigate the interactions (I) between two nearly circular bubbles with an
initial offset in the y-direction, which exhibit the rollover phenomenon introduced in § 5,
and (II) between two bubbles in a line parallel to the background flow, which induce shape
deformations in each other as discussed in § 6. The Hele-Shaw cell used to investigate
(I) had a rectangular section 19 cm long, and the one used to investigate (II) was 22 cm
long. In the rollover experiments (I), the bubbles were slightly flattened in the direction
of the flow with aspect ratios typically within 5 % of circularity, which is consistent with
the shape perturbations predicted by Wu et al. (2024) for isolated bubbles in uniform flow.
Thus, they were tracked by fitting ellipses onto their outlines in the images. The bubble
velocities were obtained using central finite differences with forward and backward finite
differences applied at the two endpoints. In experiments investigating the deformation of
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Experiments:

Theory:

t = 0 t = 4.0 t = 7.8 t = 12.7

Figure 4. Two-bubble rollover with δ = 1.17 and R = 2.05 at different dimensionless times t = t̂Û/R̂1. (top)
Experimental images are compared with (bottom) simulations of the dimensionless dynamical system (3.17)
with the same initial conditions at t = 0. The background flow is from left to right. Experimental images have
been rescaled by the rear bubble radius, R̂1 = 2.6 mm, for comparison with the theory.

two bubbles aligned with the flow (II), bubble shapes were extracted by obtaining an array
of points on the closed contour on which the pixel intensity was maximised in grey-scale
images. In all cases, the radius of a circle of equivalent area for each bubble was used
as the effective radius of the bubble for scaling and further data reduction. We observed
that bubbles decreased in size slightly as they travelled downstream, which we attribute to
the diffusion of air from the bubble into the silicone oil (Chuan & Yurun 2011). Over the
course of an experiment, whose typical duration was 15 s, bubbles experienced an average
decrease in their effective radius by approximately 2 %. Measurements are reported using
the time-averaged bubble size.

5. Bubble rollover

5.1. Observed behaviour
In this section, we consider situations involving two nearly circular bubbles in which the
larger bubble is initially far behind the smaller one and offset in the y-direction by a
distance less than the sum of the two bubble’s radii, such that x1 − x2 � 1 and 0< |y2 −
y1|< 1 + R. As explained in § 2.1, the larger bubble at the rear is expected to travel faster
than the bubble at the front (Booth et al. 2023). Thus, the bubbles would collide if they
only moved parallel to the background flow. However, for a range of starting positions,
we find that the nonlinear hydrodynamic interaction between the bubbles allows them to
avoid collision by rotating around one another. Lubrication forces prevent the collision of
the nearly circular bubbles in a manner that is analogous to how they cause rigid spheres
or cylinders to rotate around and pass each other without contact in shear flow (see, e.g.
Arp & Mason 1977b). As the larger bubble approaches from behind, it continues along a
relatively straight trajectory. It overtakes the smaller bubble, which manoeuvres out of the
way to let the larger bubble pass.

In figure 4, we show experimental images demonstrating this rollover effect for a
system of two approximately circular bubbles with δ = 1.17 and R = 2.05 (see movie 1
provided in the Supplementary Material). The larger bubble catches up to the smaller one,
which evades contact by rolling over the larger one. In the lower plots, we demonstrate
good qualitative agreement with solutions of the dynamical system (3.17) for the same
parameter values and initial conditions. Movies 2–7 in the Supplementary Material show
additional instances of the two-bubble rollover phenomenon, serving as evidence that it is
reproducible for various combinations of bubble sizes and initial conditions.
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Figure 5. The instantaneous bubble velocity components (Uk , Vk) (top and bottom, respectively) versus
dimensionless time t for (a) δ = 1.17 and R = 2.05, (b) δ = 0.90 and R = 2.32. Solid lines show theoretical
predictions and points show experimental data. The bubble of unit dimensionless radius (k = 1) is shown in
blue (circles), and the bubble of radius R (k = 2) is shown in red (triangles). In each plot, the time at which
x1 = x2 is shown with a vertical line. Error bars are comparable to the size of the markers and are thus omitted.

In figure 5, the instantaneous bubble velocity components (Uk, Vk) are plotted for the
same experiment as shown in figure 4 and for another example in which δ = 0.90 and
R = 2.32 (see movie 2 provided in the Supplementary Material). The model predicts that
the smaller bubble decelerates in the x-direction as the large bubble approaches from
behind, while also translating in the y-direction such that |y2 − y1| is increasing. The
time at which the pair of bubbles is aligned perpendicularly to the background flow (i.e.
when x1 = x2) coincides with when the axial velocity of the smaller bubble, U1, reaches a
minimum and when V1 = V2 = 0. We observe reasonable agreement between theory and
experiment. However, in experiments, the velocity components U1 and V1 of the smaller
bubble are generally biased to reduce the distance between the bubble centres.

In figure 6, we compare the experimental and theoretical results for the (x, y)-positions
of the bubble centres. In both cases, we observe that the motion of the larger bubble
is largely unaffected by the interaction while the smaller bubble is displaced in the
y-direction such that the bubbles avoid contact as the larger one passes. The final distance
in the y-direction between the bubbles in experiments is significantly smaller than what
is theoretically predicted. The bubbles also become slightly closer in the x-direction in
experiments as compared with theory. The small discrepancies between the theoretical
and experimental velocities shown in figure 5 accumulate over time and lead to noticeable
differences between the theoretical and experimental bubble trajectories.

Finally, in figure 7 we plot the trajectories of the centre of the larger bubble relative to
that of the smaller one (i.e. z2 − z1) calculated using (3.17). Any trajectory entering the
solid grey region |z2 − z1|� 1 + R corresponds to a collision between the bubbles. Points
extracted from the experiments are superimposed on the theoretically determined bubble
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Figure 6. The positions of the bubble centres (x, y) (top and bottom, respectively) versus dimensionless time
t for (a) δ = 1.17 and R = 2.05, (b) δ = 0.90 and R = 2.32. Solid lines show theoretical predictions, and points
show experimental data. The bubble of unit radius (k = 1) is shown in blue (circles), and the bubble of radius
R (k = 2) is shown in red (triangles). In each plot, the time at which x1 = x2 is shown with a vertical line. Error
bars are comparable to the size of the markers and are thus omitted.
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Figure 7. Trajectories for the two-bubble dynamical system (3.17) in the reference frame of the smaller bubble,
with (a) δ = 1.17 and R = 2.05, (b) δ = 0.90 and R = 2.32. The blue vectors show the predicted trajectories of
the centre of the larger bubble relative to the smaller one, and the red points show the experimentally measured
bubble positions. Error bars are comparable to the size of the markers and are thus omitted. Any trajectories
entering the solid grey region |z2 − z1|� (1 + R) are such that the two bubbles will collide. The solid black
region |z2 − z1|� 1 represents the smaller bubble.

trajectories. We observe that in experiments, the larger bubble initially follows a trajectory,
then departs from that trajectory when the two bubbles are close. This departure is likely
to be due to interactions between the bubbles that are not included in the model. Finally,
as the bubbles separate, the larger bubble once again closely follows a trajectory, albeit a
different trajectory from the one on which the bubble started.

While the x-positions of the bubble centres are well captured by the theory, there is a
significant disagreement between the predicted and observed y-positions of the smaller
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bubble during and after the rollover (see figure 6). In the experiments, the smaller bubble
appears to be entrained behind the larger bubble such that the distances between their
centres in both the x- and y-directions are smaller than the corresponding theoretical
trajectories. This process breaks the fore–aft symmetry that is predicted by (3.17), and
indeed which would be expected in Stokes flow for circular bubbles. However, as noted
in § 4, there are perturbations to the bubble shape due to the background flow, which
also happen to be fore–aft asymmetric due to the differences between the advancing and
retreating menisci (Wu et al. 2024). Deformations due to interactions between bubbles are
known to cause asymmetric trajectories for unconfined bubbles rising due to buoyancy.
Experiments and numerical simulations performed at low Reynolds numbers have shown
that a smaller bubble tends to align itself behind a larger bubble and even accelerate
towards it so that the two bubbles collide, all while both bubbles undergo significant
deformations (Manga & Stone 1993, 1995). It is possible that small inertial effects also
play a role: experiments and numerical simulations have shown that a deformable bubble
rising due to buoyancy behind another one tends to get drawn into the wake of the latter
(Crabtree & Bridgwater 1971; Katz & Meneveau 1996; Bunner & Tryggvason 2003;
Huisman, Ern & Roig 2012). In § 6, we investigate the deviations in the bubble shape
of two bubbles in a line parallel to the background flow.

5.2. Do the bubbles collide?

5.2.1. Conditions for a bubble collision
In § 5.1 we found that the bubbles can avoid colliding by rolling over one another. By
analysing the dynamical system (3.17), we can predict when or if the bubble rollover effect
will occur. We note that the following analysis of bubble–bubble collisions is conducted
within the context of the Hele-Shaw model. The Hele-Shaw model will break down when
the bubbles are close to contact, in which case a three-dimensional analysis would be
needed to achieve a complete description of the dynamics.

At each instant in time, (3.16) determines U1 and U2 as functions of σ and φ. We can then
update σ and φ using U2 − U1 = (σ̇ + iσ φ̇)eiφ (where the dot represents differentiation
with respect to t). In figure 8, we plot the phase space showing the resulting trajectories
of the larger bubble relative to the smaller one, i.e. z2 − z1 = σeiφ . In this figure, we take
R = 2 for illustration. The solid grey region, 1< |z2 − z1|� (1 + R), corresponds to the
region of intersection between the bubbles. The rollover effect occurs on any trajectory
that starts from x1 − x2 � 1 with 0< |y2 − y1|< 1 + R and that does not enter the solid
grey region, and the likelihood of observing the effect depends strongly on the value of δ.
In figure 8(a), we show a case where δ is large, and all suitable initial conditions satisfying
the inequalities stated above will give rise to the rollover effect. In this case, the bubbles
repel each other so strongly that collision between the bubbles is impossible. On the other
hand, in figure 8(b), we show that a smaller value of δ leads to much weaker interaction
between the bubbles, such that the trajectories remain almost parallel to the flow. In this
case, the rollover effect can occur only for a very narrow band of initial conditions, and
we are much more likely to observe the bubbles colliding with each other. To understand
the underlying physical mechanisms, we recall that δ is a dimensionless parameter that
compares the relative magnitudes of the viscous pressure and of the Bretherton pressure,
and that in this system δ is defined using the radius of the smaller bubble, whose motion
is essential to successful rollover. As δ increases, the magnitude of the viscous pressure
dominates that of the Bretherton pressure, so the motion of the smaller bubble is less
hindered by the Bretherton drag, and collision is less likely.
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Figure 8. Trajectories for the two-bubble dynamical system (3.17) in the reference frame of the smaller bubble,
with R = 2 and (a) δ = 5, (b) δ = 1/2. Any trajectories entering the solid grey region |z2 − z1|� (1 + R) are
such that the two bubbles will collide. Stationary points are shown in red. The solid black region |z2 − z1|� 1
represents the smaller bubble.

In this section, we consider conditions under which the bubbles will collide. First,
we observe that there are stationary points (saddle points, located at φ = 0 and φ = π ,
shown in red) in figure 8(a) but not in figure 8(b). The existence of such stationary points
outside of the solid grey region as in figure 8(a) implies that two aligned bubbles (i.e. with
y1 = y2) will never collide. The stable manifolds of the two saddle points coincide with
the horizontal axis, y1 − y2 = 0, so a point on the horizontal axis also lies on the stable
manifold of one of the stationary points. Therefore trajectories beginning on the horizontal
axis converge to a stationary point without entering the solid grey region. Furthermore, we
find that, in figure 8(a), the trajectories on the surface |z2 − z1| = 1 + R with x2 > x1 (the
larger bubble in front) are directed inwards (into the solid grey region) and for x2 < x1 are
directed outwards. In this case, bubbles may only collide if they are initially close to each
other, and the larger bubble is ahead of the smaller one when the collision occurs. The
reverse is true in figure 8(b), in which the surface |z2 − z1| = 1 + R is entirely outside of
the separatrix connecting the two stationary points.

Motivated by these observations, we examine the following two conditions on the flow:

(i) The stationary points of the dynamical system (3.17) in the reference frame of the
smaller bubble are in the region |z2 − z1|� 1 + R.

(ii) In a neighbourhood of x1 = x2, the trajectories point into the region |z2 − z1|� 1 + R
for x2 > x1 and out of the region |z2 − z1|� 1 + R for x2 < x1.

In § 5.2.2 and § 5.2.3, for each condition k ∈ {1, 2}, we will find a critical minimum value
of δ = δk(R). Then, for δ < δ1, we argue that there is always a range of initial conditions
with x1 − x2 � 1 and |y2 − y1|< 1 + R such that the bubbles collide (including the case
y2 = y1 where the bubbles are aligned). On the other hand, for δ > δ2, it is impossible for
bubbles that start far apart in the x-direction to collide, regardless of their initial transverse
separation.

Note that there exists a third critical value of δ = δc(R) satisfying δ1 � δc � δ2, at
which the separatrix connecting the two stationary points is tangent to |z2 − z1| = 1 + R.
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Figure 9. Position of the stationary point, σs , as a function of the Bretherton parameter, δ, for radius ratios
R = 1.5 (red), 2 (blue), 2.5 (purple). The dashed black curve shows where σs = 1 + R.

This critical value provides a sharp bound on δ above which collision between two bubbles
that are initially well separated in the x-direction (the direction of the background flow) is
impossible. However, δc is delicate to compute numerically as it depends on the global
properties of the flow whereas, as we will show, the critical values δ1 and δ2 can be
determined from purely local information about the normal velocity Un at the collision
boundary |z1 − z2| = 1 + R.

5.2.2. Condition i: stationary points
If this condition is satisfied, then two aligned bubbles will never collide. By analysing
(3.16), we can find the stationary points by solving for U1 = U2 ≡ U and for (σ, φ)≡
(σs, φs) at a fixed δ. Since each fk in (3.14) is real, by symmetry we find that U = U ∈R

and φs = 0 or π . We focus on the case φs = 0 since by symmetry the stationary points are
at (±σs, 0). Thus, for given δ and R we find U and σs by solving the nonlinear algebraic
equations

( f1(σs, R)− f2(σs, R))(U − 1)= −U + U 2/3

δ
, (5.1a)

( f1(σs, R)− f3(σs, R))(U − 1)= −R2U + RU 2/3

δ
, (5.1b)

numerically, using Newton’s method.
The position of the stationary point, σs , is plotted as a function of the Bretherton

parameter, δ, in figure 9. The black dashed curve shows where σs = 1 + R. For each fixed
value of R we observe that, for suitably small δ, there are no stationary points in the
region |z2 − z1|� 1 + R. As δ is increased, there exists a first value δ = δ1(R) at which a
stationary point appears at σs = 1 + R. Then, for δ > δ1, σs is a monotonically increasing
function of δ.

We can find δ1(R) by substituting σs = 1 + R in (5.1) and solving for U and δ1; the
details of this calculation may be found in Appendix A. We plot δ1 as a function of the
bubble radius ratio, R, in figure 10. We observe that δ1 is a monotonically decreasing
function of R, which means that for larger values of R the stationary points are present for
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Figure 10. Minimum values δ1(R) (dashed) and δ2(R) (solid) of the Bretherton parameter, δ, satisfying
conditions i (see § 5.2.2) and ii (see § 5.2.3), respectively.
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Figure 11. Trajectories for the two-bubble dynamical system (3.17) in the frame of the smaller bubble, with
R = 2 and (a) δ = δ1(2), at which the stationary points (shown as red points) lie on the surface |z2 − z1| =
1 + R, (b) δ = δ2(2), above which the separatrix encloses the region |z2 − z1|< 1 + R (solid grey fill). The
solid black region |z2 − z1|� 1 represents the smaller bubble.

smaller values of δ. We also observe that, as R → 1+, δ1(R) tends to a finite value that is
approximately 2.37.

In figure 11(a), we plot the phase space showing the resulting trajectories of the larger
bubble relative to the smaller bubble with R = 2 for δ = δ1(2). We observe that the
stationary points of the system occur on the real axis at σs = 1 + R (shown by red points);
however, there are still trajectories that enter the solid grey region |z2 − z1|� 1 + R.
Hence the bubbles can still collide.

5.2.3. Condition ii: normal velocity
Condition ii concerns the sign of the normal relative velocity of the two bubbles in a
neighbourhood of the two points where z2 − z1 = ±i(1 + R). When this condition is
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satisfied, the only trajectories that result in a collision of the bubbles are ones in which
the bubbles are initially close to one another, and collisions always occur when the larger
bubble is ahead of the smaller bubble. If the larger bubble is initially behind the smaller
one, the bubbles will rotate around one another before colliding. We define the normal
velocity by Un = (U2 − U1) · n, where here n is the outward unit normal of the smaller
bubble at the point where the bubbles are touching. When the separatrix encloses the
region |z2 − z1|� 1 + R, we have Un > 0 for x2 < x1, meaning the bubbles separate when
the larger bubble is behind, and Un < 0 for x2 > x1, meaning the bubbles collide when the
larger bubble is ahead. For condition ii, we find the value of δ at which Un is stationary at
x1 = x2, i.e., ∂Un/∂φ = 0 at σ = 1 + R, φ = ±π/2. The details of the calculation can be
found in Appendix A.

We plot δ2 as a function of the bubble radius ratio, R, in figure 10. We observe that
δ2(R) is a monotonically decreasing function of R. We also observe that as R → 1+,
δ2(R) tends to a finite value δ∗ ≈ 3.10. For all R, we have δ2(R) > δ1(R), as expected,
and we know that the critical value δc(R) lies somewhere between these two curves. In
figure 11(b), we plot the phase space showing the resulting trajectories of the larger bubble
relative to the smaller bubble with R = 2 for δ = δ2(2). We observe that the separatrix fully
encloses the region |z2 − z1|< 1 + R and hence it is impossible for the bubbles to collide
whenever they start far apart. Hence, we find that for any value of R and |y2 − y1|> 0, if
δ � δ∗ ≈ 3.10 (this is not a sharp bound), then any trajectory with the larger bubble initially
far behind will result in the bubbles rolling over one another instead of colliding.

5.3. Do the bubbles collide in finite time?
In figure 8(b), we observe trajectories that enter the solid grey region |z2 − z1|� 1 + R,
which suggests that the bubbles collide. To show that a collision occurs in finite time, we
calculate the relative normal velocity Un of the two bubbles in in the limit when they are
touching as σ → 1 + R (see Appendix A for the behaviour of the functions fk given by
(3.14) in this limit). If Un < 0, the bubbles collide in finite time if they start sufficiently
close. We plot Un as a function of φ in figure 12(a) for R = 2 and various values of δ.
Figure 12(b) shows a schematic of the two bubbles touching with the definitions of n
and φ.

We find three possible regimes:

(i) If δ � δc (see § 5.2), then when a trajectory starts inside the separatrix with a non-zero
offset in the y-direction, it will result in a collision in finite time (see figure 8a).

(ii) If δ1 < δ < δc, we are in an intermediate regime where Un > 0 for parts of both φ ∈
(0, π/2) and φ ∈ (π/2, π) and the separatrix does not completely enclose the region
|z2 − z1|� 1 + R. In this regime, the stationary points of (3.17) are in the region
|z2 − z1|> 1 + R. Hence, there exist trajectories with the larger bubble beginning
far behind the smaller one (x1 − x2 � 1) that result in collision in finite time.

(iii) If δ � δ1, we have Un < 0 for φ ∈ (π/2, π). Thus, in configurations where the larger
bubble is behind the smaller one (x1 > x2), they collide in finite time provided that
the initial value of |y2 − y1| is not too large. Example trajectories of this kind are
observed in figure 8(b).

In figure 12(a) we observe that the values of δ1 and δ2 can be determined by the local
information about the normal velocity Un . The first critical value, δ1 is the value of δ at
which Un = 0 at φ = 0 and π , and the second critical value, δ2, is the value of δ at which
∂Un/∂φ = 0 at φ = π/2.
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φ/π

Increasing δ

Un δ

R
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Figure 12. (a) The relative normal velocity, Un , of the two bubbles as a function of the polar angle, φ, for a fixed
R = 2 and δ shown by the colour bar. The dotted and dashed curves show Un as a function of φ at δ = δ1(2), and
δ = δ2(2), respectively (see § 5.2). (b) Schematic of two bubbles touching showing the definitions of n and φ.

(0, 0)

Ω

∂Ω2∂Ω1

(σ, 0)

Figure 13. Schematic of the two-bubble deformation problem. The background flow is from left to right.

It should be noted that we would expect our model to break down in the moments
preceding the collision because the squeezing and drainage of liquid out from between
the bubbles significantly influences the bubble dynamics (see, for example, Crabtree
& Bridgwater 1971; Chauhan & Kumar 2020; Ohashi, Toramaru & Namiki 2022).
Furthermore, when the distance between the bubble interfaces is of the order of the gap
height, we expect additional three-dimensional effects to become important.

6. The deformation of two bubbles

6.1. Asymptotic expansions
In this section, we calculate the first-order corrections in ε, the bubble aspect ratio (2.3),
to the shapes of a pair of bubbles, each of which undergoes deformations induced by the
presence of the other. For simplicity, we consider two bubbles aligned in the direction
of the flow with centres at positions (0, 0) and (σ, 0), respectively, in the (x, y)-plane
(see figure 13). At leading order, the bubbles are circles of radii R1 = 1, and R2 = R,
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with velocities U1 = U1 and U2 = U2 given by (3.16), respectively. We assume that the
deformations occur faster than the time scale, 1/|U1 − U2| for the relative motion of the
two bubbles, which means we can treat the deformations as quasi-steady, with σ assumed
to be a known constant.

To find the corrections to the bubble shapes, we return to the dynamic boundary
condition (2.1c) and expand the curvatures and bubble pressures in powers of ε as

κk ∼ 1
Rk

+ εκk1 + · · · , (6.1a)

pk ∼ 1 + πε

4Rk
+ ε2 pk2 + · · · , (6.1b)

for k ∈ {1, 2}. Note that, for completeness, one should also expand the complex potential,
w(z), and the bubble velocities, U1 and U2, as asymptotic series in powers of ε. However,
to find the first-order shape correction we only need the leading-order solutions (3.9) and
(3.16), and so for ease of notation we do not include an additional subscript 0 for these
variables. We note that our analysis does not at present determine the first corrections to
the bubble velocities due to the deformations.

6.2. Deformation of the rear bubble
For the first bubble, the dynamic boundary condition (2.1c) at O(ε2) reads

κ11 = 4p12

π
+ 12δ3η3

π
Re
[

z + W

(
1 − az

z − a

)]
− 4δ2η2U 2/3

1
π

β(i · n)|i · n|2/3, (6.2)

on |z| = 1. We define polar coordinates centred at (0, 0), so the bubble surface is given by
r = 1 + εg1(θ), where θ is the polar angle. The dynamic boundary condition (6.2) in polar
coordinates is given by

−g′′
1− g1 = 4p12

π
+ 12δ3η3

π
Re
[

eiθ + W

(
1 − aeiθ

eiθ − a

)]
− 4δ2η2U 2/3

1
π

β(cos θ)| cos θ |2/3.
(6.3)

We determine p12 by enforcing conservation of bubble area, i.e.∫ 2π

0
g1 dθ = −

∫ 2π

0
κ11 dθ = 0. (6.4)

We solve (6.3) by expanding g1 as the Fourier cosine series

g1(θ)= c0

2
+

∞∑
n=1

cn cos nθ. (6.5)

By the area conservation condition (6.4), we find that c0 = 0. We further fix the centroid of
the bubble at the origin, which corresponds to c1 = 0. The remaining coefficients (n � 2)
are determined by

cn = 1
(n2 − 1)

∫ 2π

0

12δ3η3

π2 Re
[

W

(
1 − aeiθ

eiθ − a

)]
cos nθ dθ − 4δ2η2U 2/3

1 bn

π(n2 − 1)
, (6.6)
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(a) (b) (c)t = 0 t = 1.0 t = 1.9

Figure 14. Experimental bubble shapes (black solid), asymptotic solution (6.5) and (6.8) (red dashed) dashed
for R = 1, δ = 2.86 and σ = (a) 2.68, (b) 2.56, (c) 2.43. The corresponding different dimensionless times
t = t̂Û/R̂1 are shown above for the experiments. The background flow is from left to right. Experimental
images have been rescaled by the rear bubble radius, R̂1 = 5.4 mm, for comparison with the theory. The bubble
shapes from experiment and asymptotics are aligned so that the centroids of the bubble pairs coincide.

where the bn are the Fourier coefficients of β(cos θ)| cos θ |2/3 and are given by

bn =
Γ
(

5
3

)
Γ
(

n
2 − 1

3

)
4π22/3Γ

(
n
2 + 4

3

) [((√3 + 1)β1 + (
√

3 − 1)β2

)
(−1)

⌊
n−1

2

⌋

−
(
(
√

3 − 1)β1 + (
√

3 + 1)β2

)
(−1)� n

2 �
]
. (6.7)

Equation (6.5) then determines the first-order shape correction of the rear bubble ∂Ω1.

6.3. Deformation of the front bubble
We proceed similarly with the second bubble. By defining polar coordinates centred at
(σ, 0), we find that the bubble surface is given by r = R + εg2(θ), where g2(θ) is given
by the Fourier series

g2(θ)= d0

2
+

∞∑
n=1

dn cos nθ. (6.8)

By area conservation, we find that d0 = 0. We further fix the centroid of the bubble at
(σ, 0), which corresponds to d1 = 0. The remaining coefficients (n � 2) are determined by

dn = R2

(n2 − 1)

∫ 2π

0

12δ3η3

π2 Re
[

W

(
1 − a(σ + Reiθ )

(σ + Reiθ )− a

)]
cos nθ dθ − 4R2δ2η2U 2/3

1 bn

π(n2 − 1)
.

(6.9)
This then determines the first-order shape correction of the front bubble ∂Ω2.

6.4. Results

6.4.1. Identical bubbles (R = 1)
In figure 14, we show example solutions for the bubble shapes at different separations,
σ , calculated using (6.5) and (6.8), with R = 1, δ = 2.86 and ε = 0.027, alongside
experimental measurements under the same conditions. We observe good agreement
between theory and experiments. The bubble in front flattens in the direction of motion
(left to right), and the bubble behind elongates. In the theoretical plots, we use σ as a proxy
for time, because we assume that the deformations are quasi-steady.

To quantify our results, we define the in-plane bubble aspect ratios as

Ak = 2Rk + ε(gk(0)+ gk(π))

2Rk + 2εgk(π/2)
∼ 1 + ε

2Rk
(gk(0)+ gk(π)− 2gk(π/2)), (6.10)
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1.1

1.0

0.9

0.8

2.0 2.1 2.2 2.3 2.4 2.5

Ak

σ

Figure 15. The in-plane bubble aspect ratios, Ak , versus separation, σ , for the rear bubble (k = 1, dashed curve
and open markers) and the front bubble (k = 2, solid curve and filled markers), with δ = 2.86 and ε = 0.027.
The points show experimental measurements and the curves are the asymptotic predictions (6.10). The different
marker shapes (triangle, circle, diamond) represent distinct pairs of bubbles that were tracked and measured
as the rear bubble caught up and collided with the front bubble. The error between experiment and theory is
approximately 6 %–10 %.

for k ∈ {1, 2}. In figure 15, we plot A1,2 versus bubble separation, σ , for a fixed value of δ.
We observe that, as the bubbles become close, the disparity between their aspect ratios
increases: the bubble in front becomes more flattened, while the rear bubble develops
a more pronounced elongation. There is good agreement between the predicted and
experimentally measured aspect ratio A2 of the front bubble, however, there is a constant
offset of approximately 0.06, which induces an approximate 6%–10% error between the
theory and experiments. The model generally over-predicts the degree of flattening of the
front bubble. For the aspect ratio A1 of the rear bubble, there is a discrepancy between
theory and experiments. In the experiments, A1 is approximately constant, however, our
model predicts this to be a monotonically decreasing function, and thus under-predicts the
elongation of the rear bubble. In the experiments, the two bubbles become very close and,
in this limit, we expect the theory may break down due to the three-dimensional effects in
the fluid flow between the two bubbles. In addition, our dynamic boundary condition (2.1c)
is strictly valid only when the normal velocities at corresponding points on the front and
rear menisci are equal and opposite; when the bubbles deform significantly this is no longer
true and we should incorporate the full Burgess & Foster (1990) boundary conditions
on the bubble surface. Furthermore, bubbles in Hele-Shaw cells that are approaching or
separating experience additional stresses due to their relative motion (Bremond, Thiam &
Bibette 2008; Lai, Bremond & Stone 2009; Chan, Klaseboer & Manica 2010) that have
not been included in our analysis.

In § 3 we found that, if R = 1, the bubbles travel at the same velocity at leading order
in ε. However, in experiments, we observe that the bubbles approach each other while
deforming, due to O(ε) corrections to the velocities which we currently do not calculate.
Ultimately, the bubbles collide and coalesce when σ < 1 + R, a range that is inaccessible
with our current analytical methods.

Wu et al. (2024) found that, if an isolated bubble is flattened in the direction of motion,
then the leading-order solution over-predicts the bubble velocity, and vice versa if the
bubble is elongated. The same line of reasoning here would suggest that the velocity of
the bubble at the front is over-predicted by (3.16), while the velocity of the bubble behind
is under-predicted by (3.16). Thus, the bubble behind would travel faster than the bubble
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(a) (b) (c)

(d ) (e) ( f )

t = 0

t = 0

t = 0.4

t = 3.6

t = 0.8

t = 7.2

Figure 16. Experimental bubble shapes (black solid), asymptotic solution (6.5) and (6.8) (red dashed) for
(a–c) R = 1.23, δ = 2.55 and σ = (a) 2.39, (b) 2.34, (c) 2.28, (d–f ) R = 1.65, δ = 1.94 and σ = (d) 3.45,
(e) 3.23, ( f ) 2.94. The corresponding different dimensionless times t = t̂Û/R̂1 are shown above for the
experiments. The background flow is from left to right. Experimental images have been rescaled by the rear
bubble radii, R̂1 = (a–c) 2.9 mm and (d–f ) 4.8 mm, for comparison with the theory. The bubble shapes from
experiment and asymptotics are aligned so that the centroids of the bubble pairs coincide.

in front, resulting in the collision of bubbles of equal size. Similar behaviour has been
observed experimentally and computationally for a pair of unconfined bubbles rising at
low Reynolds numbers due to buoyancy (Manga & Stone 1993, 1995). As a result of the
interaction between the bubbles, the leading bubble flattens in the direction of motion
while the bubble behind elongates, and the distance between them decreases until they
collide. Our results establish that there is an analogous mechanism for bubble collision in
Hele-Shaw cells.

6.4.2. Bubbles of different radii (R �= 1)
In the absence of shape deformation, larger bubbles are expected to travel faster than
smaller ones (Booth et al. 2023). For this case, conditions were derived in § 5.2 under
which a larger bubble can catch and collide with a smaller bubble in finite time. In § 6.4.1,
we presented suggestions of a further mechanism arising from shape deformation by which
two bubbles of equal size can collide. Here, we show that shape deformations and the
resulting effects on the surrounding flow can be strong enough to enable a smaller bubble
to catch a larger bubble.

We show example solutions for the bubble shapes given by (6.5) and (6.8) alongside
experimental images with, R = 1.23 and δ = 2.55 in figures 16(a)–16(c) and R = 1.65
and δ = 1.94 in figures 16(d)–16( f ). Similarly to the examples of the bubbles with the
same leading-order radius (see figure 14), the leading bubble flattens in the direction
of motion, whereas the rear bubble elongates. To quantify this observation, we plot the
bubble aspect ratios A1,2 versus separation, σ , in figure 17. We observe good agreement
between theory and experiments. In particular, we correctly predict that A1 > A2. Again,
there is a discrepancy between the experimentally measured aspect ratios and theoretical
predictions, which we attribute to the same reasons as discussed in § 6.4.1. Nevertheless,
these results hint that, although the smaller rear bubble is expected to lag behind the larger
front bubble when they are both circular, deformations may allow for a region of parameter
space in which a smaller bubble can catch up to a larger one. Several collisions of this type
have been observed experimentally, and the progression of shape deformation for a few
examples is shown in figure 16. To establish this result theoretically, one would need to
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Figure 17. The bubble aspect ratios, Ak , versus separation, σ , for the rear bubble (k = 1, dashed curve and
open markers) and the front bubble (k = 2, solid curve and filled markers), with (a) R = 1.23, δ = 2.55 and
ε = 0.03 (b), R = 1.65, δ = 1.94 and ε = 0.05. The points show experimental measurements, and the curves
are the asymptotic predictions (6.10). The error between experiment and theory is approximately (a) 5 %–7 %
and (b) 10 %–13 %.

find the perturbation to the bubble speeds, for example by performing a complex variable
analysis similar to that done by Wu et al. (2024). We leave such analysis for future work.

7. Conclusions
In this paper we analyse a model and present new experimental results for the motion of
two bubbles in a Hele-Shaw cell. The mathematical model depends on two dimensionless
parameters, the bubble aspect ratio ε and the capillary number Ca, both of which are
assumed to be small. Specifically, we consider the asymptotic distinguished limit in
which Ca = O(ε3) and the bubbles are circular to leading order. Through the use of
complex variable methods, we derive analytical equations of motion for the two bubbles.
In general, the instantaneous bubble velocities are obtained by solving the system of
nonlinear algebraic equations (3.16).

For two non-identical bubbles such that the larger bubble is initially far behind the
smaller bubble with a small transverse offset, there are two possible outcomes. The first is
that the bubbles collide, while in the second, due to the nonlinear interactions, instead of
colliding they rotate around each other. Which behaviour occurs depends on the value of
the Bretherton parameter δ. For each bubble radius ratio, R, there exists a first critical
Bretherton parameter, δ1(R), above which it is impossible for two aligned bubbles to
collide. Then there exists a second critical Bretherton parameter, δ2(R), above which
any trajectory in which the bubbles are initially far apart in the x-direction results in the
bubbles rotating around one another, and if the bubbles are initially close with the larger
bubble behind, the bubbles will rotate around one another and then collide with the large
one in front. We find that if δ � δ∗ ≈ 3.10 then the bubbles must always rotate around one
another regardless of their radii if the smaller bubble is initially in front. Furthermore, we
establish that, if the bubbles collide, they do so in finite time.

Finally, we find the leading-order perturbations to the bubble shapes for a pair of bubbles
in a Hele-Shaw cell aligned with a uniform background flow. If the bubbles are the same
size, we observe that the bubble in front flattens in the direction of motion, while the
bubble behind elongates. By analogy with the results for an isolated bubble obtained by
Wu et al. (2024), we argue that these deformations permit the bubble behind to catch
and collide with the bubble in front, despite the leading-order solution predicting that two
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identical bubbles should travel at the same velocity. Furthermore, this same pattern of
deformation is seen in systems of two bubbles with a larger bubble in front, suggesting
that we could see a smaller bubble catch a larger one. Such collisions are indeed observed
in experiments. It is the subject of future work to calculate the perturbations to the bubble
velocities and thus confirm these observations theoretically.

As one possible application, the work presented in this paper provides a foundation for
studying the interactions among suspensions of bubbles in microfluidic configurations.
As is common in the study of suspensions, the analytical results obtained here for the
motion of two bubbles can be used to derive an approximate pairwise interaction model.
Such a model will accurately capture situations in which two bubbles become close,
where the commonly used dipole model (Beatus et al. 2006, 2012; Green 2018) breaks
down.

Supplementary movies. Supplementary movies are available at https://doi.org/:10.1017/jfm.2025.322.
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Appendix A. Small separation asymptotics and computation of δ1 and δ2

A.1. Small separation asymptotic expansions
In § 5.2, we find two conditions, one necessary and one sufficient, for the dividing
trajectory to completely enclose circle σ = 1 + R and thus prevent collision between two
initially separated bubbles. For each condition we find a value of δ = δk , for k ∈ {1, 2}, at
which condition k is first satisfied (see § 5.2). We will show how to calculate the values of
δ1 and δ2 in the sections below.

First, we calculate the behaviour of the functions fk defined by (3.14) in the limit σ →
1 + R, namely

f1(σ, R)∼ π2 R2

3(1 + R)2
+ O

(√
σ − 1 − R

)
, (A1a)

f2(σ, R)∼ 2R2

(1 + R)2
Z
(

2,
R

1 + R

)
+ O

(√
σ − 1 − R

)
, (A1b)

f3(σ, R)∼ 2R2

(1 + R)2
Z
(

2,
1

1 + R

)
+ O

(√
σ − 1 − R

)
, (A1c)

where Z(s, b) is the Hurwitz zeta function (Kanemitsu, Katsurada & Yoshimoto 2000)
given by

Z(s, b)=
∞∑

n=0

1
(n + b)s

. (A2)

A.2. Computation of δ1

To find the value of δ1 at which the stationary points exist on the surface |z1 − z2| = 1 + R,
we use the behaviour of fk (A1) in the limit σ → 1 + R to obtain the system
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2R2

(1 + R)2

(
π2

6
−Z

(
2,

R

1 + R

))
(U − 1)= −U + U 2/3

δ1
, (A3a)

2R

(1 + R)2

(
π2

6
−Z

(
2,

1
1 + R

))
(U − 1)= −RU + U 2/3

δ1
. (A3b)

We can easily eliminate δ1 from the (A3) by subtracting the two equations, which leaves a
linear equation for U . The solution for U is then substituted back into one of the equations
to obtain an explicit (though unpleasant) formula for δ1(R).

We observe that δ1 tends to a finite constant as R → 1+. To find the value of this constant
we have to be careful because the equations have a one-parameter family of solutions when
R = 1, as the bubbles travel at the same velocity. To find the limiting value we let R =
1 + ε, where 0< ε� 1, and expand U ∼ U (0) + εU (1) + · · · and δ1 ∼ δ

(0)
1 + εδ

(1)
1 + · · · .

At O(1) both equations in (A3) give

π2

6

(
1 − U (0)

)
= −U (0) +

(
U (0))2/3
δ
(0)
1

, (A4)

which gives us a one-parameter family of solutions. To find the relevant solution, we need
to use a solvability condition. To that end we subtract (A3b) from (A3a) and divide by
R − 1 before expanding as above to obtain

7
2
Z(3)

(
1 − U (0)

)
+ 2U (0) =

(
U (0))2/3
δ
(0)
1

, (A5)

where Z(s)=Z(s, 1) is the Riemann zeta function. Solving (A4) and (A5) simultaneously
gives

U (0) = 1 + 6
21Z(3)− π2 − 6

≈ 1.64, δ
(0)
1 =

(
U (0))2/3

U (0) + π2/6
(
1 − U (0)

) ≈ 2.37. (A6)

In the other extreme as R → ∞, as suggested by figure 10, it may be shown that δ1(R)
tends to a finite positive limit, namely 2−1/3 ≈ 0.79.

A.3. Computation of δ2

To find the value of δ2, we need to determine when ∂Un/∂φ = 0 at σ = 1 + R, φ = π/2,
which can be written as

∂V1

∂φ
− ∂V2

∂φ
+ U2 − U1 = 0. (A7a)

From (3.16) we obtain

2R2

(1 + R)2

(
π2

6
(U2 − 1)+Z

(
2,

R

1 + R

)
(U1 − 1)

)
= U1 − U 2/3

1
δ2

, (A7b)

2R2

(1 + R)2

(
π2

6
(U1 − 1)+Z

(
2,

1
1 + R

)
(U2 − 1)

)
= R2U2 − RU 2/3

2
δ2

, (A7c)

1010 A19-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.322


Journal of Fluid Mechanics

at (σ, φ)= (1 + R, π/2). By differentiating (3.16) with respect to φ and taking the
imaginary part we obtain

2R2

(1 + R)2

(
π2

6

(
∂V2

∂φ
− 2(U2 − 1)

)
−Z

(
2,

R

1 + R

)
∂V1

∂φ

)
= −∂V1

∂φ

(
1 − 1

δ2U 1/3
1

)
,

(A7d)

2R2

(1 + R)2

(
π2

6

(
∂V1

∂φ
− 2(U1 − 1)

)
−Z

(
2,

1
1 + R

)
∂V2

∂φ

)
= −∂V2

∂φ

(
R2 − R

δ2U 1/3
2

)
.

(A7e)

These equations (A7) form a closed system of five nonlinear equations for five unknowns
{δ2,U1,U2, ∂V1/∂φ, ∂V2/∂φ}, which can be solved numerically via, for example,
Newton’s method.
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