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Abstract

We consider a multicommodity flow problem on a complete graph whose edges have
random, independent, and identically distributed capacities. We show that, as the number
of nodes tends to infinity, the maximum utility, given by the average of a concave function
of each commodity flow, has an almost-sure limit. Furthermore, the asymptotically
optimal flow uses only direct and two-hop paths, and can be obtained in a distributed
manner.
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1. Introduction

Flow maximisation on a graph is a central problem in graph theory and optimisation. The
single-source, single-sink flow problem has been studied extensively and several algorithms
have been developed for obtaining the maximum flow. An important flow problem that can be
used to model realistic networks is the multicommodity flow, in which there is simultaneous flow
between each source-destination pair. In this paper we consider an edge-capacitated undirected
graph. We associate a utility to the flow between each source-destination vertex pair, and seek
to optimise the average utility of the flows. We first describe the problem and its solution.
Towards the end of this section we indicate how our problem arises in practice.

For a given source v and destination w, the associated flow between them is conserved at
all vertices except v and w. Writing ϕvw(e) as the absolute value of this flow on an edge e, the
volume of this vw flow is given by

fvw =
∑

{e : e incident on v}
ϕvw(e) =

∑
{e : e incident on w}

ϕvw(e).

Assume that each pair of vertices of the graph forms a source-destination pair with the source-
destination labelling chosen arbitrarily. Then, given capacities C(e) for edges e, we say that

Received 5 October 2009.
∗ Postal address: Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012,
India.
This work was supported by the Department of Science and Technology under grant DSTO748, and by the University
Grants Commission under grant Part (2B) UGC-CAS-(Ph.IV).
∗∗ Email address: mustafa@ece.iisc.ernet.in
∗∗∗ Email address: rajeshs@ece.iisc.ernet.in

201

https://doi.org/10.1239/jap/1269610826 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610826


202 M. KHANDWAWALA AND R. SUNDARESAN

the flow profile {fvw}v,w obtained via {ϕvw(e)}e,v,w is feasible if

∑
{v,w}

ϕvw(e) ≤ C(e) for all e.

We consider the complete n-vertex graphGn with random edge capacities, and quantify the
behaviour of the average utility as n → ∞. Such a model was studied by Aldous et al. [1]
under the setting of a uniform multicommodity flow, where all flows are required to be of the
same volume. We interchangeably use the notation C(e) or Cvw for the capacity of an edge e
incident on vertices v andw. We assume that the capacitiesCvw are independent and identically
distributed (i.i.d.) copies of a reference random variable C that takes values in a set C ⊆ R

+
and satisfies 0 < E[C] < ∞.

For a given feasible flow profile {fvw}v,w, we define the utility of the flow profile to be

Un = 1

an

∑
{v,w}

ζ(fvw),

where ζ : R
+ → R ∪ {−∞} is a strictly concave, increasing utility function with a continuous

first derivative, ζ(x) > −∞ if x > 0, and an = (
n
2

)
is the number of edges. The maximum

utility is denoted by

ρn = sup{Un | {fvw}v,w feasible}.
Examples of such utility functions are the so-called α-fair utility functions [10]

ζα(x) =
⎧⎨
⎩
x1−α

1 − α
, α ∈ [0,∞), α �= 1,

log x, α = 1.

As α → ∞, we have

lim
α→∞U

1/(1−α)
n = min{v,w} fvw,

and the problem reduces to the uniform multicommodity flow of Aldous et al. [1]. The solution
to this problem may be thought of as a max–min fair solution. Aldous et al. [1] showed that

• ρn for the uniform flow case converges in probability to a constant that depends on the
distribution of C;

• each flow may be routed through only direct and two-hop paths.

Their proof technique does not appear to be amenable to a distributed implementation.
Instead of choosing arbitrary source-destination labellings for a given pair of vertices as in

our model, Aldous et al. [1] considered every ordered pair as a source-destination pair. We can
frame our problem in that context by interpreting fvw as the volume of flow from v to w and
fwv as the volume of flow from w to v, and using ordered pairs (v,w) in the definition of Un.
However, concavity of ζ implies that flows in either direction should be equal for optimality. We
therefore do not distinguish between fvw and fwv , and we let fvw denote the net flow between
v and w with one of them arbitrarily taken as the source and the other as the destination.
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Our main results are the following.

• ρn converges with probability 1 to a constant E[ζ(h(C))],where h is the piecewise linear
function truncated at a and saturated at b:

h(x) =

⎧⎪⎨
⎪⎩
a, x ≤ a,

x, a ≤ x ≤ b,

b, x ≥ b.

The constants a and b depend on the distribution of C.

• Each flow fvw in the asymptotically optimal flow profile is given by h(Cvw), a function
of the capacity of the direct edge alone.

• Each flow requires only direct paths and two-hop paths.

• Our solution to find the flow profile is amenable to a distributed implementation.

Multicommodity flow problems were introduced in [9], and an algorithm for obtaining max–
min fair optimal flow was described. Such problems arise in computer communication and
wireless networks. Algorithms for solving multicommodity flow problems with fixed demands
and capacities were described in [6] and [8]. Flows over networks with random edge capacities,
where the capacities form a stochastic process with time as a parameter, were studied in the
monograph [3] and the references therein. One objective that was considered was to maximise
the sum of concave utilities [10] arising from flow values. See [7] for a nonrandom version where
there is only one route per flow. Georgiadis et al. [3] considered several generalisations with
multiple routes, dynamic routeing, random arrivals, and queues. The problem considered by
Aldous et al. [1] and ours in this paper may be regarded as an asymptotic version of the simplest
of these problems, with no queues and no time variations, but with the network size growing to
infinity and one commodity per pair of vertices. This tractable asymptotic version may provide
useful bounds for other intractable problems. Related problems along these asymptotic lines
are those of flows between the top and bottom surfaces of a lattice with random edge capacities
[2], [4], [11].

The rest of the paper is organised as follows. In Section 2 we solve the problem when ζ is
linear. In Section 3 we provide conditions that ensure achievability of a utility when ζ is strictly
concave, and we describe a distributed method to obtain the corresponding feasible flow. We
optimise the lower bound subject to these conditions in Section 4, and prove that this is, in fact,
optimal in Section 5. Some final remarks in Section 6 conclude the paper.

2. Linear utility

In this section we consider the linear utility function ζ(x) = x. Note that this is not strictly
concave. However, it turns out that the optimal flow profile for this problem is also optimal for
some strictly concave ζ s, as will be highlighted later.

Theorem 1. If ζ(x) ≡ x then ρn → E[C] as n → ∞ with probability 1.

Proof. Let fvw = Cvw for all {v,w}. This flow profile is clearly feasible because each flow
uses only the direct link to its capacity. For this allocation,

Un = 1

an

∑
{v,w}

Cvw. (1)
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Next, let {ϕvw(e)}e,v,w form a feasible flow. The capacity constraints are

∑
{v,w}

ϕvw(e) ≤ C(e) for all e.

Summing over all edges e and interchanging the summations, we obtain

∑
{v,w}

∑
e

ϕvw(e) ≤
∑
e

C(e). (2)

We also have

fvw =
∑

{e : e incident on v}
ϕvw(e) ≤

∑
e

ϕvw(e) for all {v,w}.

Summing over all pairs {v,w} and using (2), we obtain, after dividing by an,

Un = 1

an

∑
{v,w}

fvw ≤ 1

an

∑
e

C(e) (3)

for any feasible flow. From (1), the upper bound in (3) is achievable, and, hence,

ρn = 1

an

∑
e

C(e),

which converges to E[C] as n → ∞ with probability 1.

3. Achievability of the flow

When ζ is linear, we showed in Section 2 that the optimal flow is achieved by using only the
direct link for each flow at its capacity. While this yields an efficient solution, the flow profile
can be unfair. On the other hand, as proved in [1], the maximally fair asymptotically optimal
flow profile is obtained using only direct and two-hop links. As such, it seems natural that the
optimal flow in the case of a concave utility function, which enables operations between the
two extremes, need not use more than two hops.

Now suppose that the flow volume fvw depends only on the capacity of the direct link Cvw
for all pairs {v,w}, i.e. fvw = h(Cvw) for some h : C → R

+. In this section we obtain a
sufficient condition (see (13), below) for such a flow to be feasible. Asymptotic optimality of
such a flow is established in Section 5.

For the uniform flow case, we set h(Cvw) = φ for all {v,w} and remark that condition (13),
below, reduces to the necessary and sufficient condition for the feasible uniform flow, as proved
in [1]. Thus, the uniform multicommodity flow arises as a special case and the proof here
serves as an alternative to the proof of achievability given by Aldous et al. [1]. Our proof is
elementary and is amenable to a distributed implementation.

3.1. Feasibility of certain integer flows

Here we show the achievability of certain integer flows with integer capacity constraints.
This serves as the primary tool used to prove the main result of this paper. The proof is a
modification of a procedure of Aldous et al. [1].
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Lemma 1. Let C and F be random variables taking only nonnegative integer values. Let
M < ∞ be an upper bound for both C and F . Let {(Cvw, Fvw)}v,w be a set of i.i.d. pairs of
random variables with each pair having the distribution of (C, F ). If

E[(C − F)+] − 2 E[(F − C)+] > 0, (4)

the flow onGn obtained by setting fvw = Fvw for all {v,w} is feasible for all but finitely many
n, with probability 1.

Proof. Let C and F be such that (4) holds.
If Cvw ≥ Fvw for a given pair {v,w}, we use only the direct edge vw for the flow fvw.

Then, Cvw − Fvw is the remaining capacity along edge vw. If Fvw > Cvw, we use the entire
capacity Cvw of the direct edge for a part of fvw. Then, Fvw − Cvw is the remaining flow
demand between v and w.

We decompose the original problem into M separate flow problems by constructing M
graphs P1, P2, . . . , PM , each with n vertices, as follows. For each vertex pair {v,w}, such that
Fvw > Cvw, choose anFvw−Cvw size subset S1 of {1, 2, . . . ,M} uniformly and independently
of other vertex pairs. For each i ∈ S1, put a scarlet edge between v andw in graphPi . Similarly,
for each pair {v,w}, such thatCvw ≥ Fvw, choose aCvw−Fvw size subset S2 of {1, 2, . . . ,M}
uniformly and independently of other vertex pairs. For each i ∈ S2, put a blue edge between v
and w in graph Pi .

Now focus on one particular graph Pi . For a fixed vertex pair {v,w}, there is a scarlet edge
between v and w in Pi with probability ps given in (5), below, a blue edge with probability pb
given in (6), below, and no edge with the remaining probability 1−ps −pb. Also, this happens
independently for all vertex pairs. As

(
M−1
j−1

)
/
(
M
j

) = j/M is the probability that a particular
i ∈ S1 given |S1| = j , and analogously for i ∈ S2 given |S2| = j , we have

ps =
M∑
j=1

Pr{Fvw − Cvw = j} j
M

= E[(F − C)+]
M

, (5)

pb =
M∑
j=0

Pr{Cvw − Fvw = j} j
M

= E[(C − F)+]
M

. (6)

By the assumption in (4) we have pb > 2ps .
In the graph Pi , a scarlet edge between vertices v and w indicates a yet to be fulfilled unit

demand for the vw flow, and a blue edge between v and w indicates the availability of unit
capacity along the edge vw. Thus, if in all the Pi, i = 1, 2, . . . ,M , the demands along scarlet
edges can be satisfied via the available capacities along blue edges, the flow {fvw = Fvw}v,w
can be achieved.

Such a problem is solved in [1] using a packing result to form edge-disjoint triangles, each
containing one scarlet and two blue edges, which cover all scarlet edges. Here we use an
alternate method. The argument proceeds roughly as follows. A blue edge vw can potentially
serve a vz flow for a vertex z if vz is a scarlet edge and wz is a blue edge. Similar is the case
when wz is scarlet but vz is blue. By the nature of the colouring, the number of such vertices
is a random variable having binomial distribution with parameters (n − 2, 2pspb). The flow
between two vertices having a scarlet edge between them can be served via a vertex connected
to both by blue edges. The number of such vertices is a random variable having binomial
distribution with parameters (n− 2, p2

b). Dividing the flow across all such two-hop routes and
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using the concentration of the binomial distribution, we can get the required flows with high
probability if p2

b > 2pspb.
Formally, let vw be a blue edge. Define Nvw as the number of vertices t �= v,w such that t

is connected to v and w by one scarlet and one blue edge.
Now, consider a scarlet edge vz. For all vertices w �= v, z connected to v and z by two blue

edges, allocate a fractional flow of 1/max(Nvw,Nzw) through the two-hop path v−w− z. Do
this for all scarlet edges. Then the flow through any blue edge is not greater than 1. The flow
allocated for the scarlet vz is given by the random variable

Rvz =
∑
w �=v,z

1{vw=blue} 1{zw=blue}
1

max(Nvw,Nzw)

≥ Jvz
1

maxw �=v,z{max(Nvw,Nzw)} , (7)

where Jvz = ∑
w �=v,z 1{vw=blue} 1{zw=blue} is a binomial random variable with parameters

(n − 2, p2
b). Note that, for a fixed scarlet vz and fixed w with blue vw and zw, Nvw − 1

is a binomial (n − 3, 2pspb) random variable, conditioned on z contributing 1 to the Nvw
count.

Since pb > 2ps , we have p2
b − 2pspb > 0. Choose ε such that 0 < ε ≤ (p2

b − 2pspb)/2.
Then,

p2
b − ε

2pspb + ε
≥ 1. (8)

From (7) and (8), the event

{Rvz < 1} �⇒ {Jvz ≤ (n− 2)(p2
b − ε)} ∪

{
max
w �=v,z{max(Nvw,Nzw)} ≥ (n− 2)(2pspb + ε)

}
.

(9)
By Bernstein’s inequality [5, p. 31],

Pr{Jvz ≤ (n− 2)(p2
b − ε)} ≤ e−(n−2)ε2/4. (10)

Noting that
(n− 2)(2pspb + ε)− 1 ≥ (n− 3)

(
2pspb + 1

2ε
)

for all n > 3 + 2/ε, we obtain

Pr
{

max
w �=v,z{max(Nvw,Nzw)} ≥ (n− 2)(2pspb + ε)

}
≤ 2(n− 2)e−(n−3)ε2/16 (11)

by the application of Bernstein’s inequality and the union bound. Using (10) and (11) in (9),
we obtain

Pr{Rvz < 1} ≤ e−(n−2)ε2/4 + 2(n− 2)e−(n−3)ε2/16 ≤ 2ne−(n−3)ε2/16.

Since there are a maximum n(n− 1)/2 ≤ n2/2 scarlet edges, we have

Pr{Rvz < 1 for some scarlet edge vz} ≤ n2

2
2ne−(n−3)ε2/16.

https://doi.org/10.1239/jap/1269610826 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610826


Optimal multicommodity flow 207

Using the same procedure over all M graphs, and denoting by An the event that the flow
profile {fvw = Fvw}v,w on Gn is not feasible, i.e. there is some scarlet edge vz in one of the
M graphs with Rvz < 1, we obtain

Pr{An} ≤ Mn3e−(n−3)ε2/16. (12)

From (12),
∑∞
n=1 Pr{An} < ∞. This ensures, by the Borel–Cantelli lemma [5, p. 288], that

the probability of An occurring infinitely often is 0. Hence, the flow {fvw = Fvw}v,w onGn is
feasible for all but finitely many n, with probability 1.

3.2. Sufficient condition for a feasible flow

Lemma 2. Let h : C → R
+ be a function such that infx∈C h(x) > 0 and supx∈C h(x) < ∞.

If
E[(C − h(C))+] − 2 E[(h(C)− C)+] ≥ 0 (13)

then lim infn→∞ ρn ≥ E[ζ(h(C))] with probability 1.

Proof. First observe that the expectation in (13) exists and is finite because E |h(C)−C| ≤
E h(C)+EC, both of which exist and are finite. The expectation E[ζ(h(C))] exists by Jensen’s
inequality and the assumption on ζ that ζ(x) > −∞ if x > 0.

Choose δ such that 0 < 2δ < infx∈C h(x), and choose an integer k large enough that k > 2/δ
and k > supx∈C h(x). Define the random variables

C(k) = 1

k

min(kC, k2)� (14)

and

F (k) = 1

k

kh(C)− kδ − 1�. (15)

Observe that
0 ≤ C(k) ≤ C

and

0 ≤ F (k) ≤ 1

k
(kh(C)− kδ − 1) ≤ k − δ. (16)

Moreover, (kC(k)vw, kF
(k)
vw ) are i.i.d. nonnegative integer quantities, so we are in a position to

apply Lemma 1 if we can verify (4) for (C(k), F (k)). To do this, we may write the expectation
in (4) as an integral over {C ≤ k} and {C > k}, and use (14) and (16) to obtain

E[(C(k) − F (k))+ − 2(F (k) − C(k))+]
≥ 1

k

∫
c≤k

[((kc − 1)− (kh(c)− kδ − 1))+ − 2((kh(c)− kδ − 1)− (kc − 1))+] dµ(c)

+
∫
c>k

[(k − k + δ)+ − 2(k − δ − k)+] dµ(c)

=
∫
c≤k

[(c − h(c)+ δ)+ − 2(h(c)− δ − c)+] dµ(c)+
∫
c>k

δ dµ(c)

≥
∫
c≤k

[(c − h(c))+ − 2(h(c)− c)+ + δ] dµ(c)+
∫
c>k

δ dµ(c)

=
∫
c≤k

[(c − h(c))+ − 2(h(c)− c)+] dµ(c)+ δ, (17)

https://doi.org/10.1239/jap/1269610826 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610826


208 M. KHANDWAWALA AND R. SUNDARESAN

where the second inequality follows because

(x + δ)+ − 2(x + δ)− ≥ x+ − 2x− + δ for all x ∈ R.

By the dominated convergence theorem,

lim
k→∞

∫
c≤k

[(c − h(c))+ − 2(h(c)− c)+] dµ(c) = E[(C − h(C))+ − 2(h(C)− C)+] ≥ 0.

So choose k large enough that∫
c≤k

[(c − h(c))+ − 2(h(c)− c)+] dµ(c) > −δ.

Its substitution into (17) implies that

E[(C(k) − F (k))+ − 2(F (k) − C(k))+] > 0.

Hence, by Lemma 1, the flow {fvw = kF
(k)
vw }v,w is feasible for all but finitely many n, with

probability 1 when we have integer capacities {kC(k)vw}v,w. Scaling by 1/k and noting that
C(k) ≤ C, the flow {fvw = F

(k)
vw }v,w is feasible for all large enough k and all but finitely many n,

with probability 1. For this flow profile, the utility is

U(k)n = 1

an

∑
{v,w}

ζ(F (k)vw ).

Since F (k) ≥ h(C)− 2δ > 0, as is easily verified, and ζ is an increasing function,

U(k)n ≥ 1

an

∑
{v,w}

ζ(h(Cvw)− 2δ)

≥ 1

an

∑
{v,w}

[ζ(h(Cvw))− 2δζ ′(h(Cvw)− 2δ)]

≥ 1

an

∑
{v,w}

[
ζ(h(Cvw))− 2δζ ′( inf

x∈C
h(x)− 2δ

)]
.

The second inequality above follows from the strict concavity of ζ . Since

δζ ′( inf
x∈C

h(x)− 2δ
)

→ 0

as δ → 0, we have

U(k)n ≥ 1

an

∑
{v,w}

ζ(h(Cvw))− ε

for any ε > 0. Noting that ρn ≥ U
(k)
n , the event

Bε :=
{

lim inf
n→∞ ρn ≥ E[ζ(h(C))] − ε

}

occurs with probability 1. Consequently, the event

B =
∞⋂
m=1

B1/m =
{

lim inf
n→∞ ρn ≥ E[ζ(h(C))]

}

also occurs with probability 1.
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3.3. A distributed implementation

The proofs of Lemma 1 and Lemma 2 provide a randomised algorithm to obtain the feasible
flow, which can be implemented in a distributed manner. The first step is to obtain an integer
approximation as defined in (14) and (15). We may need to choose k large enough to get a
utility sufficiently close to E[ζ(h(C))]. Then, we use the algorithm in the proof of Lemma 1 to
obtain a routeing for this flow. Note that randomisation arises from the choice of the subsets
that determine the edge colours in the M subgraphs. Here, we highlight the distributed nature
of this algorithm.

The information available at an edge is assumed to be available also at its endvertices. These
include the capacity C(k), the flow requirement F (k), the presence or absence of the edge in
each of theM graphs, and their colours. Fix one of theM graphs. Then each vertex will query
each of its neighbours to obtainNvw for each vertex w such that vw is blue. Then v exchanges
the information on edge colours with each vertex z with vz scarlet to determine the vz flow on
the path v − w − z where vw and wz are both blue. This happens for each of the M graphs.
Even though every node exchanges data with every other node, the graph is complete, the flow
values and routes are determined based on locally available information.

4. Optimisation of the lower bound

Having found a sufficient condition (13) for feasible flow in Lemma 2, we optimise the utility
over all such functions h. Recall that ζ is a strictly concave function. Consider the following
functional optimisation problem:

max
{h : C→R+}

E[ζ(h(C))] (18)

subject to E[(C − h(C))+] − 2 E[(h(C)− C)+] ≥ 0.
Let h∗ be the optimising function. We will show that, under the stated assumptions on ζ , h∗

exists, so that the use of max in (18) is justified.
Let θ = limx↓0 ζ

′(x) and θ = limx↑∞ ζ ′(x). We have 0 ≤ θ ≤ θ , and we may assume that
θ < ∞ and θ > 0. Define

ψ(h) = E[ζ(h(C))]
and

ξ(h) = E[(C − h(C))+] − 2 E[(h(C)− C)+]. (19)

Proposition 1. If θ ≤ 2θ then h∗(c) = c for all c ∈ C.

Proof. Choose λ > 0 such that
θ

2
≤ λ ≤ θ. (20)

Consider the function

w(h, λ) = ψ(h)+ λξ(h)

= E[ζ(h(C))+ λ(C − h(C))+ − 2λ(h(C)− C)+]. (21)

We first maximise w(h, λ) over all functions h : C → R
+ for a fixed λ. Let the optimising

function exist and be given by hλ, and suppose that λ is such that ξ(hλ) = 0. Then, since
w(hλ, λ) ≥ w(h, λ), we have ψ(hλ) + λξ(hλ) ≥ ψ(h) + λξ(h). Thus, ψ(hλ) ≥ ψ(h) +
λξ(h) ≥ ψ(h) over all functions h that satisfy ξ(h) ≥ 0. Thus, hλ is the optimising h∗ for
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problem (18). We now prove the existence of such a λ and hλ. We may write (21) as

w(h, λ) =
∫

C
[ζ(h(c))+ λ(c − h(c))+ − 2λ(h(c)− c)+] dµ(c).

Maximising w(h, λ) is equivalent to maximising the integrand ζ(h(c)) + λ(c − h(c))+ −
2λ(h(c)− c)+ pointwise for each c ∈ [0,∞). Thus, writing h(c) = f , we look to maximise

ζ(f )+ λ(c − f )+ − 2λ(f − c)+ (22)

over f ≥ 0 for a fixed c.
Define

g1(f ) = ζ(f )− 2λ(f − c) (23)

and
g2(f ) = ζ(f )+ λ(c − f ). (24)

The maximum value of (22) can be written in terms of g1 and g2 as

max
{

sup
0≤f<c

g2(f ), sup
f>c

g1(f ), ζ(c)
}
. (25)

The functions g1(f ) and g2(f ) are strictly concave functions in f . By the conditions on the
slopes in the hypothesis and by (20), we have g′

1(f ) ≤ 0 and g′
2(f ) ≥ 0; so g1(f ) is maximised

at f = 0 and g2(f ) is maximised at f = ∞. Because of the concavity of g1(f ) and g2(f ),
we have

g1(0) ≥ g1(c) = ζ(c) ≥ g1(f ) for c ≤ f ,

g2(∞) ≥ g2(c) = ζ(c) ≥ g2(f ) for 0 ≤ f ≤ c.

The above equations imply that sup0≤f<c g2(f ) ≤ ζ(c) and supf>c g1(f ) ≤ ζ(c). Thus, for
each fixed c, the optimal value of (22) is ζ(c) and it is achieved by setting f = c. Hence,
the optimisation function hλ(c) = c for all c ∈ C and any λ that satisfies (20). Furthermore,
ξ(hλ) = 0, and, hence, h∗(c) ≡ c is the optimising function.

For the other case, θ > 2θ , we need the following definition. Define

SAT(c, a, b) = min(max(a, c), b)

for given a ≤ b and
pλ = SAT(c, ζ ′−1

(2λ), ζ ′−1
(λ))

for λ ∈ [θ, θ/2].
Proposition 2. If θ > 2θ then

h∗(c) = pλ∗ ,

where λ∗ ∈ [θ, θ/2] ∩ [0,∞) is such that ξ(pλ∗) = 0.

Proof. Choose λ > 0 such that θ ≤ λ ≤ θ/2. We proceed as in the proof of Proposition 1
to maximise (22) for a fixed c ∈ [0,∞).

In this case, g1(f ) and g2(f ), defined in (23) and (24), have unique maxima g1(f1) and
g2(f2) obtained at f1 = ζ ′−1

(2λ) and f2 = ζ ′−1
(λ), respectively. Observe that f1 < f2.
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Because of the concavity of g1(f ) and g2(f ), we have the following inequalities under the
specified cases on c:

g1(f1) ≥ g1(c) = ζ(c) ≥ g1(f ) for f1 ≤ c ≤ f , (26)

g2(f2) ≥ g2(c) = ζ(c) ≥ g2(f ) for f ≤ c ≤ f2. (27)

For f ≤ c ≤ f1, and since f1 ≤ f2, we have, from (27), the condition

g1(f1) ≥ ζ(c) ≥ g2(f ) for f ≤ c ≤ f1. (28)

Analogously, for f2 ≤ c ≤ f , and since f1 ≤ f2, we have, from (26), the condition

g2(f2) ≥ ζ(c) ≥ g1(f ) for f2 ≤ c ≤ f . (29)

For c < f1, f ∗ = f1 maximises (25) because of (28). Similarly, for c > f2, f ∗ = f2
maximises (25) because of (29). For f1 ≤ c ≤ f2, f ∗ = c maximises (25) because of (26) and
(27). Hence, hλ = pλ maximises w(h, λ).

We next check that there exists a λ∗ ∈ [θ, θ/2] with ξ(hλ∗) = 0. Note that

ξ(hλ) =
∫

C
[(c − ζ ′−1

(λ)) 1{c>ζ ′−1(λ)} −2(ζ ′−1
(2λ)− c) 1{c<ζ ′−1(2λ)}] dµ(c), (30)

which is a continuous function in λ. Also, ξ(hθ ) ≤ 0 and ξ(hθ/2) ≥ 0. Hence, there exists
a λ∗ ∈ [θ, θ/2] such that ξ(hλ∗) = 0. Note that if θ = ∞ then limλ↑∞ ξ(hλ) = E[C] > 0.
Thus, the λ∗ that solves ξ(hλ) = 0 is finite.

Using the observations of the above propositions with Lemma 2, we have the following
result.

Theorem 2. Let U∗ be the optimal solution to (18). Then, lim infn→∞ ρn ≥ U∗ with proba-
bility 1.

Proof. Suppose that θ ≤ 2θ . Then, by Proposition 1, h∗ solving (18) is h∗(c) = c. In this
case, U∗ = E[ζ(C)] can be achieved via the flow profile {fvw = Cvw}v,w, which is shown to
be feasible in Theorem 1.

Now, suppose that θ > 2θ . We saw in Proposition 2 that there exists a

λ∗ ∈ [
θ, 1

2θ
] ∩ [0,∞)

with ξ(hλ∗) = 0, and

h∗(c) = hλ∗(c) = SAT(c, ζ ′−1
(2λ∗), ζ ′−1

(λ∗)).

Suppose that λ∗ ∈ (θ, θ/2). Then, the optimising function h∗(c) is bounded below by
ζ ′−1

(2λ∗) > 0 and is bounded above by ζ ′−1
(λ∗) < ∞. Then, by Lemma 2, the corresponding

U∗ is achievable.
If λ∗ = θ then ζ ′−1

(λ∗) = ∞. Then, using (30), we have

ξ(hλ∗) = 0 �⇒ Pr{C < ζ ′−1
(2λ∗)} = 0.

In this case, h∗(c) = c over a set with probability 1. Similarly, if λ∗ = θ/2 then ζ ′−1
(2λ∗) = 0,

and, therefore, by (30), we have

ξ(hλ∗) = 0 �⇒ Pr{C > ζ ′−1
(λ∗)} = 0.

In this case also, h∗(c) = c over a set with probability 1. Hence, in the above two cases, U∗ is
achievable via the flow profile {fvw = h∗(Cvw)}v,w, which is feasible with probability 1.
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5. Converse

In this section we prove the converse of Theorem 2.

Theorem 3. Let U∗ be the optimal solution to (18). Then, lim supn→∞ ρn ≤ U∗ with proba-
bility 1.

Proof. First, we proceed as in [1] to get a necessary condition for any flow (see (33), below).
Consider an arbitrary capacity realisation {Cvw}v,w. For any pair {v,w}, we have

fvw =
∑

{e : e incident on v}
ϕvw(e),

and, therefore, ∑
e

ϕvw(e) ≥ fvw. (31)

For pairs {v,w} such that fvw > Cvw, since at least fvw −Cvw flow has to be carried by a path
of length two or more, we have the stronger condition

∑
e

ϕvw(e) ≥ Cvw + 2(fvw − Cvw). (32)

Combining (31) and (32) we have

∑
e

ϕvw(e) ≥ min{fvw, Cvw} + 2(fvw − Cvw)
+.

Summing over all {v,w} pairs and using (2), we obtain

∑
e

C(e) ≥
∑
{v,w}

(min{fvw, Cvw} + 2(fvw − Cvw)
+).

Division by an and rearrangement yields

1

an

∑
{v,w}

((Cvw − fvw)
+ − 2(fvw − Cvw)

+) ≥ 0, (33)

a necessary condition for any flow {fvw}v,w to be feasible. This was obtained by Aldous et
al. [1] in the context of uniform multicommodity flow with fvw = φ for all {v,w}. But we see
that (33) holds for any feasible flow.

It follows that ρn is always less than or equal to the solution of the following optimisation
problem:

max
1

an

∑
{v,w}

ζ(fvw)

subject to
1

an

∑
{v,w}

((Cvw − fvw)
+ − 2(fvw − Cvw)

+) ≥ 0.
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Let Û be the optimal solution to this problem. Let f = {fvw}v,w, and define

ψ̂(f ) = 1

an

∑
{v,w}

ζ(fvw), (34)

ξ̂ (f ) = 1

an

∑
{v,w}

((Cvw − fvw)
+ − 2(fvw − Cvw)

+). (35)

For λ > 0, independent of the realisation, define ŵ(f, λ) = ψ̂(f )+ λξ̂(f ). We first optimise
ŵ(f, λ) for a fixed λ > 0.

Using (34) and (35), we obtain

ŵ(f, λ) = 1

an

∑
{v,w}

(ζ(fvw)+ λ(Cvw − fvw)
+ − 2λ(fvw − Cvw)

+).

The maximisation of ŵ(f, λ) is separable in {v,w}, and, therefore, we optimise the summand
for each {v,w} by choosing an appropriate fvw.

Comparing with the optimisation of w(h, λ) in Section 4, the optimising flow fλ is of the
same form, i.e. fλ,vw = hλ(Cvw).

If θ ≤ 2θ then, for λ such that θ/2 ≤ λ ≤ θ , fλ is given by fλ,vw = Cvw for all {v,w}, as
obtained in the proof of Proposition 1. In this case, ξ̂ (fλ) = 0 and

ψ̂(fλ) = 1

an

∑
{v,w}

ζ(Cvw).

Thus,

lim sup
n→∞

ρn ≤ lim sup
n→∞

1

an

∑
{v,w}

ζ(Cvw).

The right-hand side is almost surely E[ζ(C)], which is equal to U∗ in this case, and so
lim supn→∞ ρn ≤ U∗ with probability 1.

If θ > 2θ , chooseλ = λ∗ ∈ [θ, θ/2] ∩ [0,∞) so that ξ as defined in (19) satisfies ξ(hλ∗) = 0
(note the distinction between ξ and ξ̂ ). As discussed in Proposition 2, such a λ∗ exists and
is independent of the realisation with which we are now working. With this λ∗, fλ∗,vw =
hλ∗(Cvw) = h∗(Cvw).

Now,
ŵ(fλ∗ , λ∗) ≥ ŵ(f, λ∗),

which implies that
ψ̂(fλ∗)+ λ∗ξ̂ (fλ∗) ≥ ψ̂(f )+ λ∗ξ̂ (f ),

and, therefore,
ψ̂(f ) ≤ ψ̂(fλ∗)− λ∗(ξ̂ (f )− ξ̂ (fλ∗)).

Hence, for all flow profiles f that satisfy ξ̂ (f ) ≥ 0, we have

ψ̂(f ) ≤ ψ̂(fλ∗)+ λ∗ξ̂ (fλ∗),

which implies that
ρn ≤ Û ≤ ψ̂(fλ∗)+ λ∗ξ̂ (fλ∗). (36)
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Note that

ψ̂(fλ∗) = 1

an

∑
{v,w}

ζ(h∗(Cvw)),

which converges to E[ζ(h∗(C))] = U∗ with probability 1. Also,

ξ̂ (fλ∗) = 1

an

∑
{v,w}

((Cvw − h∗(Cvw))+ − 2(h∗(Cvw)− Cvw)
+),

which converges to

E[(C − h∗(C))+ − 2(h∗(C)− C)+] = ξ(h∗) = 0,

with probability 1. Thus, taking lim sup in (36), we have lim supn→∞ ρn ≤ U∗, and the proof
is complete.

6. Conclusion

We studied the asymptotic behaviour of optimal flows on the complete graph. The optimal net
utility converges with probability 1 to a value that depends on the distribution ofC. Interestingly,
the volume of each flow depends only on the capacity of the corresponding direct link via a
simple function. More precisely, we have shown the following.

1. If the slope of the utility function ζ at the origin is less than twice the slope at infinity,
i.e. θ ≤ 2θ , then limn→∞ ρn = E[ζ(C)] with probability 1, and it is optimal to route
each flow entirely via the direct link.

2. If θ > 2θ then limn→∞ ρn = E[ζ(h∗(C))] with probability 1, where

h∗(c) = SAT(c, ζ ′−1
(2λ∗), ζ ′−1

(λ∗))

and λ∗ solves
E[(C − h∗(C))+] − 2 E[(h∗(C)− C)+] = 0.

The flow for each pair {v,w} is h∗(Cvw) and is routed through only direct and two-hop
routes. The resultant flow profile can be obtained through a simple distributed algorithm
that requires information sharing only among links that share a vertex.
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