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Abstract

We present a general closed 4-point quadrature rule based on Euler-type identities. We
use this rule to prove a generalization of Hadamard’s inequalities for (2r)-convex functions
(r=1.

2000 Mathematics subject classification: primary 26D15, 26D20.
Keywords and phrases: Euler formulae, quadrature rules, Hadamard’s inequalities, convex
functions.

1. Introduction

Let f be a convex function on [a, #] C R, a # b. The following double inequality:
b 1 b b
f a+t < / fdx < M .y
2 b—-a/J, 2

is known in the literature as Hadamard’s inequalities (see for example [10, page 137])
for convex functions.
Hadamard’s inequalities can be generalized in the following way.

THEOREM 1.1. Let f : [a,b] — R be a convex function. Then for every x €
la, (@ +b)/2]

b 1 b
f(a);f()_b_a/ o
b —
zﬁ/ f(r)dz—f(")+f(2"+b 2 (12)
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and for every x € [(3a + b)/4, (a + b)/2)

b
171—5/ f(t)dt—f(x)+f(2a+b—x)20. (1.3)

PROOF. Letx € {a, (a + b)/2]. Since f is convex on [a, b], the right-hand side of
(1.1) gives

1 b
b-—a/a f@)dtr

1 x a+b-x b
=——-[/ f(t)dt+/ f(t)dt+/ f(t)dt]
b—-a a x a+b—x

S_1__[(x—a)w+(a+b_2x)f(.x.')+f(a+b__x)
b—a D) >
TSGR f(b)]
1[x— b
25[«2 a(f(a)+f(b))+———x-(f(x)+f(a+b—-x))], (1.4)
—a b—a

Since f is convex on {a, b], for any A > 0 and x|, x, € [a, b] such that x; < x, we
have (see, for example, [11, pages 5,6])

fri+h— flx) < fOa+h) - f(x). (1.5)

Consider now x € [a, (a + b)/2]. If we apply (1.5)on h = x — @, x; = a and
x, = a + b — x, we obtain

fx)— fla) < fb) ~ fla+b—x). (1.6)

Forx € {a, (a + b)/2] we have a + b — 2x > 0, so for such x the inequality (1.6) can
be rewritten as

(a+b—2x)w S(a+b_2x)f(b)_f(a+b—x),
b—a b—a
that is,
(a+b—2x)M+(2x_a_b)f(b)—f(a+b—x) 0.
b—a b—a

From this, a simple calculation gives us

2(x —a) 2%b ~ x)

S f@+ fO)]+ = f @) + fa+b~-x)]

Sf@+fO)+ f@)+ fla+b~x). 1.7)
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Combining (1.4) and (1.7) we obtain

f@+ f®)+ fx)+ fla+b—x)
; :

1 b
m/; f@)ydr <

from which we get

b b
f@+f® 1 / Foyde > 1 [ f(t)dt—f(x)+f(a+b_x),
b—aJ, b—al,

2 2

and this completes the proof of (1.2).
Now let x € [(Ba + b)/4, (a + b)/2]. Since f is convex on [a, b], the left-hand
side of (1.1) gives

1 b 1 (a+b)/2 b
—/ f(t)dt:—[f f(t)dt+/ f(t)dt]
b—alJ, b—all, (@+b)/2
1 b—a 3a+b b—a a+3b
zb—a[2 f( 2 )+ 2 f( 4 )]

1 3a+b a+3b
ApERe)

If we apply (1.5) againonh = (4x —3a — b)/4,x, = Ba + b)/4and x, = a+b—1x,

we obtain
3a+b 3b
-7 (*52) <5 (S52) - ra+b-x,
that is,
£ +.f(a+b—x)sf(“ :3b)+f(3“:b>. (1.9
Combining (1.9) with (1.8) we obtain
b
_1__/ f(t)dtzf(x)+f(a+b_x),
b—all, 2
so the inequality (1.3) is proved. g

REMARK 1. If in (1.2) and (1.3) we let x = (a + b)/2, we obtain

f@@)+ fb) 1 4 1 b a+b
2 _b_a/‘:f(f)dtzi;_—a/a f(t)dt—f(T>20’

which is one of Bullen’s results from [3]. His result was generalized for (2r)-convex
functions (r € N) in [6].
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The goal of this paper is to obtain a variant of Inequalities (1.2) and (1.3) for
(2r)-convex functions (r € N). To achieve this goal we will construct a general
closed 4-point rule based on Euler-type identities established in [4].

We recall that a function f : [a, b] — R is said to be n-convex on [a, b] for
some n > 0 if for any choice of n + 1 points xy, ..., x, from [a, b] we have
[xo, ..., x,)f = 0, where [xo, ..., x,]f is the n-th order divided difference of f.
If f is n-convex, then f"~? exists and is an convex function in the ordinary sense.
Also, if f™ exists, then f is n-convex if and only if f® > 0. For more details see
for example [10].

It should be noted that each continuous n-convex function on [a, b] is the uniform
limit of a sequence of the corresponding Bernstein’s polynomials (see, for example,
[10, page 293]). Bernstein polynomials of any continuous n-convex function are
also n-convex functions, so when stating our results for a continuous (2r)-convex
function f without any loss in generality we may assume that @ exists and is
continuous. Actually, our results are valid for any continuous (2r)-convex function f.

In Section 2 we present a general closed 4-point quadrature rule based on the ex-
tended Euler formulae and we also give two estimations of the remainder. In Section 3
we use the obtained results to prove a generalization of Hadamard’s inequalities for
(2r)-convex functions (r € N).

2. General closed 4-point quadrature rule

In the paper [4] two identities, named the extended Euler formulae, have been
proved. They are given in the following theorem.

THEOREM A. Let f : [a, b] — R be such that f"~V is a ¢ontinuous function of
bounded variation on [a, b] for some n € N. Then for every x € [a, b]

b
fx) = ;—i; f f@) dt + T,(x) + RL(x) @1)
and

1 b
f&xy= b_—_a/ f@)dt + T,_,(x) + RA(x), (22)

where

m PRy _
T, (x) = Z b k?) B, <Z — Z) [f(k-l)(b) _ f(k—l)(a)] , (2.3)
k=1 :

— "_l —
R(x) = _u_/ B (x t)df("'l)(t),
{a,b]

n! b—a
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Rz(x)-:__(b_i_l/ B:(x_-t — B, (x_a> df("_l)(t).
" n! [a.b] b-a b—a

Here, as in the rest of the paper, the functions B;(-) (k > 0) are the Bernoulli
polynomials, B, are the Bernoulli numbers and B;(-) are periodic functions of period
one, related to the Bernoulli polynomials as

Bi(x) = By(x), 0=x<1,
Bi(x+1)=B;(x), xeR.

and

In this paper we write f[a, . g(t) dp(t) to denote the Riemann-Stieltjes integral of
a function g : [a, b] — R with respect to a continuous function ¢ : [a, b] — R of
bounded variation, and we write fa b g(t) drt for the Riemann integral.

To make reading easier, let us recall some of the properties of the Bernoulli poly-
nomials (see, for example, [1, 23.1] or [2]). The Bernoulli polynomials are uniquely
determined by the following identities:

Bo(x) =1, xeR,

B(x) =kBei(x), k=1,

By(x + 1) — By(x) = kx*', k>0.

From that we have B, (x) = x —1/2, B,(x) = x>*—x+1/6, B3(x) = x*—3x%/2+x/2,
so that By and B} are discontinuous functions with jumps of —1 at each integer. Also,
it follows that B, (1) = B,(0) = By for k > 2, so that B} are continuous functions for
k > 2. From this we get (B})' (x) = kB ,(x), k = 1, foreveryt € Rif k > 3 and
foreveryr e R\ Zifk =1, 2.

Here we list some of the properties of the Bernoulli polynomials which will be used
in this paper (see, for example, [1] or [2]):

Bi(l —x) =(—1)'Be(x), n=0, xeR,
Bi(1/2) =~-(1-2"%B,, n=>0,
Bu-1(1/2) = By—1 =0, k=1,
B, (0) = Bi(1), k=2,
(—D*Bur(x) >0, k21, x €(0,1/2),
(=1)*'By >0, r=>0.

For k > 1 and fixed x € [a, (a + b)/2] we define functions G; and F]| as
x—t at+b—-—x—1t a—t b—t
G;(t) =B/ | —— B} | ——m8 B { —— B | ——
< "(b—a)+ < b—a )+ k(b—a)+ ‘(b—a)
x—t a+b—x—1t a-—t
= B} B { —— 2B;
*(b—a>+ ( b—a )+ k(b—a)
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and F}(r) = Gi(r) — By, forall 1 € R, where

Bf = B, (Z ‘“) + Bk(z_x) + By (0) + By(1)

—da

=1+ (=] [Bk (Z :Z) + Bk] .

Of course, if k > 2 we have E,f = [1 4+ (=D*IB((x — a)/(b — a)) + 2B,. Using the
properties of the Bernoulli polynomials which were mentioned in the introduction, we
can easily see that for any x € [a, (a + b)/2]

B =Gi(a), k=2, Bi_,=0, r=>1,

~ X —a
B;r=2[32r(b_a)+32r]a rZI,

Fy ) =Gy (), i=1,

X —

a
F, (1) = G5, (1) _2[BZr 5 a) + BZr]7 rz1,

Fi(a)=F®)=0, k=>1,

X —
b —

Gi(a):Gz(b)=[1+(—1)"]Bk( Z>+2Bk, k>1.

We can also easily check that for all r > 1

FX

a+b . [(a+b
21 (T)=G2r-—l( 2 >=0
a+b 1 x-—a 1
G =2B, | = — 2B, | =),
H(570) =2 (3575 2 5)
=3By (2 =229} - B, (222%) 4B, () - B
- 2r 2 b—a 2r b—a 2r 2 2r
1 x-—a x—a
=2|B, (- — — By |—— ) +2Q "~ 1B, |.
2|: 2r(2 b—a) 2 (b—a>+ (2 ) 2]

Now let f : [a,b] — R be such that f”~ exists on [a, b] for some n > 1. We
introduce the following notation for each x € [a, (a + b)/2]:

D(x)=[f(x)+ f(a+b—x)+ f(a)+ f())/4.
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Furthermore, we define

To(x) =0,

T, (x) = %[Tm(x) +Tu(a+b—x)+Tu(@) +T,(b)), 1<m<n,

where T, is given by (2.3). It can be easily checked that

m — )
T.(x) = i > —(b—‘-'l-—B;: [fE0®) - ¢ P@)].

= k!

For further use we will denote

_ ~r Ta@) + To(b
T, (x) + Tp(a + b — x) and TF = (@) + T (b) .

2 m 2
Obviously, 7,,(x) = (i,,v x) + T,f }/2.

7,:():) =

THEOREM 2.1. Let [ : {a,b] — R, a < b, be such that for some n € N, the
derivative ™V is a continuous function of bounded variation on [a, bl. Then for
every x € [a, b]

b
-b—i—; f f@)dt = D(x) = T,(x) + R!(x) and (2.4)
1t ~ ~
b_:_a/ f@ydt = D(x) = T,y (x) + RX(x), (2.5)
where
_ n-1
R =z f GX(1)df""(t) and
4n! (a.b]
- n—1
R) = (”_4‘1,)—. / FX(nydf "= ().
n. [a,b]

PROOF. Put x = x,a + b — x, a, b in the formula (2.1) to get four new formulae.
Then multiply these formulae by 1/4 and add. The result is (2.4), and (2.5) is obtained
from (2.2) by the same procedure. O

REMARK 2. If in Theorem 2.1 we choose x = a we obtain the Euler trapezoidal
rule {5}, and if we choose x = (a + b)/2 we obtain the Euler bitrapezoidal rule [6].

Our next goal is to give an estimation of the remainder ﬁf(x). For the sake of
simplicity we will temporarily introduce two new variables:
x—a t—a

= d = .
§=p, ad 5=y,
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It can be easily seen that for x,t € [a, b] we have &,5 € [0,1]. Using direct
calculations, for each & € [0, 1/2] we obtain
—4S + 1, 0 S § S Ss
Gi(s)=Fi(s)={-4s+2, £<s<1-§,
—4s+3, l—-§E<s <1,
(452 — 25 + 282 — 26 +2/3, 0<s <§,

G5(s) = {4s? —4s + 2% +2/3, E<s<1—E,
457 —6s +262 —26 +8/3, 1-€ <s <1,
45 —2s, 0<s<§,

Fi(s)={4s? —4s+2¢, &£ <s<1—¢,
(452 —65+2, 1—& <5<,

[ —45% 4352 — 25(3E2 — 3t + 1), 0<s<E§,
G5(s) = { —4s® + 652 — 25(3E% + 1) + 3£2, E<s<1-—E&,
—45% 4952 —25(3E2 —3E+4) + 652 —6E+3, 1—£ <5 <1,
= Fi(s).

Next we present some properties of the functions Gi and F,f . First we prove that
the functions G; and F} are symmetric for even k and skew-symmetric for odd k with
respectto 1/2.

LEMMA 2.2, Let & € [0, 1/2] be fixed. Fork > 2 and s € [0, 1], we have
Gi(1 —5) = (—=1)*Gi(s) and F}(1 —s) = (—1)FF}(s).
PROOF. As stated at the beginning of this section, fork > 2 and s € [0, 1], we have

Gi(1 —5)
= B} — 1 +5) 4 B} (—=£ +5) + 2B} (s5)
BiE+s)+B(1—-&+5)+2B(s), 0=s5<E§,

= 1 Bu(§ + 5) + Bu(—& +5) + 2Bi(s), E<s<1-E§,
By —145)+ Bi(=&E+5)+2B(s), 1—-&<s5<1,
Bi(1 — & —5) + Bi(§ — 5) + 2B (1 — ), 0<sc<§,

=(D*3B(1—&—5)+ Bu(1+&—s)+2B,(1—s), E<s<1-k&,
Bi2-&-5)4+B(1+&—-5)+2B(1—-5s), 1—&E<s <1,
= (=1)*G; (s),
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which proves the first identity. Further, we know that F} (s) = Gi(s) — G(0). If
k=2i—1,i >2,then G5_,(0) = G5_,(1) =0, so we immediately have

Fo(1=9) =G ,(1—5) = (=D*7'G}_,(9) = (=D)* ' F_,(5).
On the other hand, if k = 2i,i > 1, then (—1)¥ = 1, so we obtain
Fi(1—5) = G5,(1=5) +G3,(0)
= (=1)*G5,(s) + (=1)¥G5,(0) = (-1)* F5,(s),
and this proves the second identity. d

REMARK 3. It is obvious that analogous assertions hold true for the functions G
and F}, k > 2. In other words, if x € [a, (@ + b)/2] and t € [a, b] we have

Gi(b—1t) = (=1))Gi(t) and Fi(b—1)=(—D'F@).
LEMMA 2.3. I[f§ € [0, 1/2—1/(4/6)), then forall s € (0, 1/2), Gi(s) < 0. Also

Gy ®(5) <0, s (0,1/2)\ (3/8),
Gy’ (s) <0, s¢€(0,1/4),
G/*(s) >0, se(1/4,1/2).

PROOF. For the sake of simplicity we will denote

—4s3 + 352 — 25(3E2 - 36 + 1), 0<s <E§,
G5(s) = { —4s + 652 — 25(3E% + 1) + 382, £E<s<1-§,
—453 4957 —25(3E2 -3 +4) +6E2 -6 +3, 1—E<s <1,
Hi(s), 0<s<§,

= Hze(s), E<s<1-§,

Hf(s), l-&<s<l.

If we write Hf (s) as H (s) = s[ — 4s5% + 35 — 2(3E2 — 3¢ + 1)], we can see that
H(0) = 0 and that H'(§) = &(~10£2 + 9& — 2), so if for a given & € [0, 1/2]
the number —10£2 + 9 — 2 is negative it means that the joining point (E, Hf (5)2 =
(£, H; (£)) is under the x-axis. This will be true for £ € [0,2/5). The sign of H; (s)
is determined by the sign of the function y(s) = —4s? + 3s — 2(38? — 3§ + 1).
This function will have zeros s, = 3/8 — (\/5)/8 and s, = 3/8 + («/5)/8 if

= —96£2 + 96¢ — 23 > 0, that is, if £ € [1/2 — 1/(4+/6), 1/2]. Furthermore,
y(0) = —2(3£2 — 3¢ + 1) < 0 which means that (if they exist) both zeros s, and
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s, are positive. Of course, if £ = 1/2 ~ 1/(4+/6) the function y has only one zero
s = 3/8. We want to know if it is possible for £ € (1/2 — 1/(4+/6),2/5) to have
& < s (because this will imply that Hf (5) < Oforall 0 <s < §). This in fact is not
possible because if £ < s; then we have £ < 3/8,and 3/8 < 1/2 — 1/(4«/6). This
means that Hf (s) £ Oforall s € (0, &) can be true only if D < 0, and this will be
true for & € [0, 1/2 — 1/(4+/6)] € [0, 2/5).
Now we must check Hf forsuch &§. If & < s < 1/2 we have

H'(s) = —125% + 125 —2(3¢% + 1),

H;"(s) = =245 +12 = 12(1 ~ 2s) > 0,
which means that Hf is convex for any choice of such &. Since Hf (§) < 0 and
H§(1/2) = 0, we can deduce that Hf (s) < Oforall s € (£, 1/2). This means that if
£ e [O, 1/2 - 1/(4\/6)), then Gg(s) <0,s€(0,1/2),and for§ =1/2 — l/(4\/6)
we have Gi(s) < 0,s € (0, 1/2) \ {3/8}.

On the other hand, if § € (2/5, 1/2] the joining point (§, H; (§)) = (£, H (§)) is
above the x-axis, and we want Hf (s) to be positive for all s € (0, £). This, of course,
cannot be true because (2/5, 1/2] C (1/2 — 1/(4V6), 1/2], which means that H}
surely has a zero s, < 3/8 <2/5 < &.

And in the end, we must separately investigate G;/ ? because at this special point
& = 1/2 the function G§ has only one branch for s € [0, 1/2], that is, we have

GY*(s) =s(—4s2 +3s — 1/2), s€[0,1/2).
We can easily see that Gy*(s) < 0,5 € (0, 1/4) and Gy*(s) > 0,5 € (1/4,1/2). D

Of course, from the above results we have G(t) <0, ¢t € (a, (a+b) /2) for any
X € [a, (a+b)/2 —(b-—- a)/(4«/6)), and also

Gga+b)/2-(b—a)/(4~/6)(s) < 0’ S € (a’ (a + b)/z) \ {(Sa + 3b)/8}y
Gga+b)/2(t) <0, te (a, (a + b)/4)7
Gy™(t) >0, te(BGa+b)/4,(a+b)/2).

LEMMA 2.4. Forr > 2andx € [a, (a+b)/2—(b— a)/(4«/6)), the function G5, _,
has no zeros in the interval (a, (a+b)/ 2). The sign of this function is determined by

(=17'G5,_,1) >0, 1€ (a, (a+b)/2).
Also,
(1) GEE O 1y 5 0, 1 e (a, (a+b)/2) \ {(Sa +3b)/8),
(=) 'GP (1) > 0, e (a, Ba+b)/4),
(=1)7IGE (1) <0, t e ((Ba+b)/4, (a+b)/2).
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PROOF. Let x € [a, (a + b)/2 — (b — a)/(44/6)). If r = 2, then the assertion
follows from Lemma 2.3. Assume now that » > 3. In that case we have 2r — 1 > §
and the function G735, _, is continuous and at least twice differentiable. We know that

. u 2r—1 .
(G5,_D'() = . G5, (),
x " (2r - 1)(2r - 2) x
(Gzr_l) (t) = (b — a)2 Gz,_3(t)’ (26)

and that G%,_,(a) = G5,_,((a + b)/2) = 0.

Suppose that G3,_, has another zero « € (a, (a + b) /2). Then inside each of the
intervals (a, @) and (o, (a + b)/2) the derivative (G%,_,)’ must have at least one zero,
say B1 € (a, ) and B, € (a, (a + b)/2). Therefore, the second derivative (G5, _,)"
must have at least one zero inside the interval (8, ;) C (a, (a +b) /2). Thus, from
the assumption that G3, _, has a zero inside the interval (a, (a + b)/2) it follows that
G3,_, also has a zero inside the interval (a, (a + b)/2). From this we could deduce
that the function G also has a zero inside the interval (a, (a +b) /2) which is not
true. Thus G3,_, cannot have a zero inside the interval (a, (a + b) /2). Furthermore,
if G3,_;(t) > Ofort € (a, (a + b)/2), then from (2.6) it follows that G3,_, is convex
on (a, (a + b)/2), and hence G,_,(t) < 0 for t € (a, (a + b)/2). Similarly, if
G5, (1) <Ofort € (a, (a + b)/2), then from (2.6) it follows that G3,_, is concave
on (a, (a + b)/2), and hence G%,_,(t) > O for ¢ € (a, (a + b)/2). Since G%(t) <0
fort € (a, (a + b)/ 2), we can conclude that

(=7'G5_, (1) >0, 1e(a (a+b)/2).

For the special cases x = (a + b)/2 — (b — a)/(4\/6) and x = (a + b)/2, the proof
is similar so we skip the details. J

COROLLARY 2.5. Forr > 2and x € [a, (a+b)/2—(b—- a)/(4\/8 )], the functions
(=1)'F5.(t) and (—1)" G;,(t) are strictly increasing on the interval (a, (a+b) /2) and
strictly decreasing on the interval ((a +b)/2, b). Consequently, a and b are the only
zeros of F3, in the interval [a, b] and

I x—a X —a
By | = — — By [——}+20Q2 % - 1)B,
2(2 b—a) Z(b—a)+ ( )B,

B (2% + B B, (1 -*=9) 5, (]
2r b—a 2r 2r 2 b—a 2r 2 .

PROOF. Let r > 2 and x € [a, (a + b)/2 — (b — a)/(4+/6)). We know that

3

ey |0l =2

, 2

melos 0l =12

14 ’ 2
(=D F®] =[-1yG50] = b—_r; (=D'G5,_ (),
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and by Lemma 2.4 we also know that (—1)"'G3,_,(#) > Oforallz € (a, (a + b)/2).
Thus the functions (—1)" F} (¢) and (—1)"G3_(¢) are strictly increasing on the interval
(a, (a + b)/2). Also, by Lemma 2.2, we have F5 (b —t) = F;.(t) and G5, (b — 1) =
G3,(t) for t € [a, b], which implies that (—1)"F3 (¢t) and (—1)"G3,(t) are strictly
decreasing on the interval ((@ + b)/2,b). Further, F}.(a) = Fi(b) = 0, which
implies that | F5 (¢)| achieves its maximum at t = (a + b)/2, that is,

«fat+b
5 ()
1 X —a X—a
By | = — - B, 227" — 1)B,,|.
2<2 b—a) z(b—a)+ ( ) B>
b
o (7]
2
B xX—a +B B 1 x—a 4B 1
2r b—-a 2r 2r 2 b—a 2r 2 .

The special case x = (a + b)/2 — (b — a)/(4+/6) can be investigated similarly. O

II’EI}[?{:] | szr (t) I -

=2

Also,

max |G3, (1)] = max {IGE‘,(a)I,

= max [2

COROLLARY 2.6. For r > 2 the functions (—1)" F*(t)y and (=1 G0 (r)
are strictly increasing on the intervals (a, (Ba + b) /4) and ((a +5)/2, Ba+b) /4)’
and strictly decreasing on the intervals ((3a +b)/4, (a + b) /2) and ((3a +b)/4, b),
Consequently, a, (a + b)/2 and b are the only zeros of F2<:r+b)/2
and

in the interval [a, b]

max |02 ()| = | F(Ga + b)/4)| = 22 (2 = 21 By |,

1€(a,b]
’]2335) |G§7-+b)/2(t)l — G(2¢:+b)/2((3a + b)/4)| — 22—2r(1 _ 21—2r)|32r|‘

PROOF. The proof follows similarly to the proof of Corollary 2.5, using the fact
that F*Y2((a + b)/2) = 2[By, — B2 (1/2) + 227" — 1)B,| = 0. O

COROLLARY 2.7. Forr > 2 and x € [a, (a +b)/2 — (b — a)/(4v/6)], we have

. fa+b
5 ()

1 x—a X—a
By | = — — By, 227 —1)B,,|.
2 (2 b—a) 2 (b—a)+ ( )B

x—a
By, By,
z(b—a)_l— 2

L[|k L6 1
b—afa |Fzr—1(t)|dt=b—_—(—l/a |G2,_.(t)|dt=;
2

Also, we have

1 b
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x—a
By { — B, .
2<b—a)+ 2

PROOF. Letr > 2 and x € [a, (a + b)/2 ~ (b — a)/(4+/6)]. Using Lemmas 2.2
and 2.4 we get

and

1 b
b_——a/ IG;,(I)ldI <4

(a+b)/2

Gy, () dt

b
/ |G3,_, ()| dt =2

(a+b)/2

b—

=2|-

2r

b— b
_ anj(r(a-f- ),
r 2

which proves the first assertion. Using Corollary 2.5 and the fact that F} (a) =
F;.(b) = 0, we can deduce that the function F;, does not change its sign on the
interval (a, b). Therefore we have

b b b
[|F;,(z)|dt= / Fi(t)dt| = / [G3,(t) ~ By ] dt
b—a b ~
= ’—msz(I)L —(-a)B, =
=2(b - a) BZ,(b_ >+Bz, ,

which proves the second assertion. Finally, we use the triangle inequality to obtain
the third formula. g

COROLLARY 2.8. Forr > 2, we have

/ Fz(,"+,")/z(t)'dt = / Gg‘;“;”z(t)’dt 2 A1 = 277) By
Also, ’
Bi—a- / b FyP )| di =27 |By| and (“+b)/2(t)ldt<23 B, |.
PROOF. The proof is similar to the proof of Corollary 2.7. O

LEMMA 2.9. Let x € [a, (a +b)/2 — (b — a)/(4V6)]. If f : [a, b] — R is such
that for some r > 2 the derivative f@" is continuous on [a, b, then there exists a
point n € (a, b] such that

- b—a)” _
R () = —(—2(2%))! I:Bzr (ZTZ) + Bzr] £, @7
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PROOF. Let x € [a, (a + b)/2 — (b — a)/(44/6)]. Forn = 2r > 4 and f such
that @7 is continuous on [a, b] we can rewrite R (f) as

(b _ a)Zr—l
4(2r)!

’ — 2r—1

D2 — (1}
Ry ) = (=1) 42!

where b
I = [ (=1 F5 @) f® () dt.

If m = ming, 5 f®(t) and M = max,, f@”(t), thenm < f@(t) < M, t € [a, b).
From Corollary 2.5 we have(~1)"F; () > 0, ¢ € [a, b], so

b b
m/ (=D Fde <1, < M/ (=D"F; (t)dt.

Since

b ~ X —a
/ Fi(t)dt = —(b—a)By, = —2(b - a) [Bz, ( . ) + Bzr] :

we obtain

2m(_l)r-l(b - a) [BZr (z — a) + BZr]

—a

<1, <2M(~1)"'(b — a) [Bzr (z - “) + Bzr] .

By the continuity of £?” on [a, b] it follows that there must exist a point n € [a, b]

such that
X —a

L, =2-1y"'"b—a) [BZr (b_—;> + BZr] & m).

From that we can easily obtain (2.7). O

LEMMA 2.10. If f : [a, b] — R is such that for some r > 2 the derivative f@®" is
continuous on [a, b], then there exists a point n € [a, b} such that

~ (a+bY _ b-a _ _, @r)
R;, (T) = —W2 By, £ (n)-

PROOF. The proof follows analogously to the proof of Lemma 2.9. O

THEOREM 2.11. Letx € [a, (a+b)/2—(b—a)/(4Jg)]. Assumethat f :[a, b]—> R
is such that f®” is continuous on [a, b] for some r > 2. If f is a (2r)-convex or
(2r)-concave function, then there exists a point 0 € [0, 1] such that

~ 1 x—a xX—a
R} (x) =10 [B2r (5 - b—a) - Bz'(b——a) +2Q7 - I)BZr]

b — 2r—1
( 2(2ar))' [f(2r—l)(b) _ f(2r—l)(a)] .
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PROOF. By Corollary 2.5 for ¢ € [a, b] we have
0 < (=1)'F00) < (=)' F5((a + b)/2).
The rest of the proof is similar to the proof of Lemma 2.9. O

Theorem 2.11 can be improved in a way that the derivative f®” need not be
continuous on [a, b]. To obtain such a result we use the following theorem from [7,
Theorem 1].

THEOREM B. Let ¢ : I — R, I C R, be a monotonic function, and let p :
R — R be a periodic function with period P such that for some a € Randn € N
[a,a+nP] C 1. Suppose that there exists some xq € (a, a+ P) such that p(xg) =0,
o(x) > 0forall x € la, xp) and p(x) < 0forall x € (xo, a + P). Suppose also that
fa+P p(x)dx = 0. If g is increasing on [a, a + nP), then

a

a+nP 1 a+nP
—/ p(X)p(x)dx < 2, (e +nP)— (p(a))/ lo(x)ldx, (2.8)

and this inequality is sharp. If ¢ is decreasing on [a, a + nP), then the inequality
(2.8) is reversed.

THEOREM 2.12. Assume that the function [ : [a, b] — R is such that for some
r > 2 the derivative f* =Y s continuous and increasing on [a, b]. Then for every

x € [a, (@a+b)/2 = (b — a)/(4/6)] we have

b - ~
(_l)r{b_l_/ Fyde — f@+fO)+ fx)+ fla+b—-x) +T2,_,(x)}
_a a 4
b — 2r—1
< ( 2(25?)! [f(2r—l)(b) _f(Zr—l)(a)]

X b

1 x-a X —a
By | = — — By, | —— 227 — 1)B,,
2(2 b—a) 2(b >+ ( )B;

and this inequality is sharp.

PROOF. We know that the function F3,_, is periodic with period P = b — a. From
Theorem 2.4 and Lemma 2.2 for r > 2 and x € [a, (a + b)/2 — (b — a)/(4/6)] we

have: Fy_,((a +5)/2) =0, [ Fi_,(t)dt = 0 and also

) {> 0, te(a (a+b))2),

<0, te€((a+b)/2,b).
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This means that if in Theorem B we choose p(t) = (—=1)""'Ff_,(1), (1) = f@ D)
and n = 1, then from (2.8) we obtain

b b
-/ I @0 dr < 5[0 — f @) f F2_, @] dt,

and combining this with Corollary 2.7 we obtain

b _
-1y / Fy () fe"(@)dr < b—r—“ [F&D®) — & (@)

1 x—a X—a
X | By, (2 - a)— 2,< )+2(2‘2’—1)Bz, .
From Theorem 2.1 we know that

b—a
b
/f(t)dt f@+ )+ )+ flatb—x)

b-a 4 + T2r— (x)
=0 —a x @r-1n
B m ‘/[a‘b] F2r—1(t)f (1) dt,
SO

- 1),{ 1 f f@yde— f(a)+f(b)+fix)+f(a+b 05 l(x)}
b 2r—
(4(2 _)1)| (=1 _/ S O fF @) dr
b — 2r—1

O

1 x—a -
B, | = — B 27 )
X 2r (2 b—a) 2r<b_ >+2( 1)BZr

THEOREM 2.13. Assume that the function f : [a, b] — R is such that for some
r > 2 the derivative f* =" is continuous and increasing on [a, b]. Then we have

b
-1y [——b — [ rwar - f@+ O +2/{@tbr) | 5z (" +b)}
—a J, 4 2

- (b — a)2r—l

< (2’,)' [f(Zr—l)(b) _ f(2r-—1)(a)]21v2r(1 _ 2—2r)|B2r|’

and this inequality is sharp.

PROOF. The proof is similar to the proof of Theorem 2.12. |
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3. Hadamard’s inequalities for (2r)-convex functions

Now we can give our main result: a generalization of Hadamard’s inequalities for
(2r)-convex functions, r > 2.

THEOREM 3.1. Assume that f : [a,b] — R is such that for some r > 2 the
derivative f® =V is continuous on [a, b), and assume that f is (2r)-convex on [a, b).

If r is odd, then for all x € [a, (a+b)/2 - (b— a)/(4\/6)] U {(a + b)/2}

+ f(b 1 =
f(a) . f) b—a./,, f@yde—-Tf_ |,
b — ~
> —1—/ f@)yde — W+ jath-n) + T, (), G-I
b—al, 2
and for all x € [a + (b — a)/(2V/3), (a + b)/2]
b

blaf fyadr — f(X)+f(2a+b_x) + T, 2 0. (3.2)

If r is even the above inequalities are reversed.

PROOF. Let x € [a, (a + b)/2 — (b — a)/(4+/6)]. In the case n = 2r > 4, from

(2.5) we get
b _ ‘ - -
b_i_a/ Faydi— f(a)+f(b)+f(2x)+f(a+b x)+2T2,_.(x)=2R§,(f),
where " e
n2 _ —a)’” x @r-1)
R0 = S /[ B0,

If £ is (2r)-convex then df ¥ ~D(¢) > Oon [a, b], and since by Corollary 2.5 we know
that (—1)" F5(¢) > 0, ¢ € [a, b], we obtain R? (x) > O for r even and RZ,(x) < O for
r odd. The same is true if x = (a 4+ »)/2. This means that for r odd we have

b
bia/ f([)dt_f(a)+f(b)+f(x)+f(a+b—X)

+ 2T, 1(x) <0,

2
that is,
f@a)+ f(b) 1 b ~
? 2 —b—a/a f@®)yde — Ty,
1 b @+ fla+b—x) =~
Zb—a/,, Fodi— & fza 2T,
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and the above inequality is reversed if r is even. This completes the proof of (3.1).
Now let x € [a + (b — a)/(2\/§), (a + b)/2] and suppose that r is odd. We can
use the analogous results from [9, Theorem 2.1 and Corollary 2.4] to obtain

1 b - ~
Z_—a/ f(t)dr—f(x”f(;*b D L0 20,

and the reverse if r is even. This completes the proof. O

The interested reader can find several sharper variants of (3.2) in [8].
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