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A note on generalised linear

complementarity problems

J. Parida and B. Sahoo

Given an n X n matrix A , an #n-dimensional vector ¢q , and a

closed, convex cone S of Rn , the generalized linear

complementarity problem considered here is the following: find a
z € ' such that
Az-q € 5% , 3 €85,
(4z~q, 3) =0 ,

where S* 1is the polar cone of S . The existence of a solution
to this problem for arbitrary vector ¢ has been established
both analytically and constructively for several classes of
matrices A . In this note, a new class of matrices, denoted by

J , is introduced. A4 is a J-matrix if

Az €S*, 24z2<0, 2 €S imply that z = O

The new class can be seen to be broader than previously studied
classes. We analytically show that for any A4 in this class, a
solution to the above problem exists for arbitrary vector ¢ .

This is achieved by using a result on variational inequalities.

1. Introduction

The generalized linear complementarity problem is to find a 2z € il

satisfying

Received 11 November 1977.

https://doi.org/10.1017/5000497270000798X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000798X

162 J. Parida and B. Sahoo

Az—q € S* , 2 €8 ,
(1.1)
(4z-q, 2) =0 ,

where A is a given 7 x n matrix, g 1is a given n-dimensional vector,
S 1is a closed, convex cone in R , and S* is the polar cone of S .

3
For S = R+

» the complementarity problem (1.1) has been extensively
studied in the literature. The existence of a unique solution to this
problem has been shown by Dantzig, Cottle [2] for P-matrices, which
include all the previously studied matrices for which there is a unique
solution. Karamardian [7] has solved this problem for the class of regular
matrices, and thus has enlarged the class of matrices each of which

guarantees a solution (but not necessarily unique).

Habetler and Price [4] have shown that the problem (1.1) has a
solution when S is a pointed, closed, convex cone with nonempty interior,

4 is a strictly S-copositive matrix, and either
(i) ¢q € int S* or
(ii) S < s5*

Karamardian [6] has generalized this result, and shown that strict
S~copositiveness of A is sufficient to ensure the existence of a solution
to (1.1}. In [9], the authors have shown that the linear complementarity
problem defined over polyhedral cones in a complex n-space possesses a

solution when A 1is a strictly S-copositive complex matrix.

In this note, we define a new class J of matrices A such that: if

A € J , then

Az € 5* zTAz <=0, 2 €85 imply that 2 =0 .

The classes of P~ and regular matrices become proper subclasses of this

class when S 1is taken as Rz . It is also found that the class J
includes the class of strictly S-copositive matrices, and thus becomes a

broader class than previously studied ones.
We show that if A € J and there exists a vector p € int S* such
that the system 0 # 2 € S , Az+p € 5% , zT(Az+p) = 0 1is not consistent,

then (1.1) possesses a solution for every vector g € Rn .
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2. Notations and definitions

Throughout this note, Rn will denote euclidean n-space with the
usual imner product (x, y) = yTx of x,y € B and norm |lzl| of

x € -4 . Rz denotes the nonnegative orthant of Rn . A subset S of Rn

will be called a closed, convex cone if, and only if,
(i) 8§ is closed, and
(ii) ox+#8y € S for o, B =0 and x,y €35 .

The polar of a cone S 1is the cone S* defined by

5* = {x € A" : ¢z, y) 2 0 for all y € 5} .
The interior of S* is given by
int §* = {x € S* : (x, y)> > 0 for all O #y € S} .

A cone is said to be pointed if whenever x # O is in the cone, -z is
not in the cone. For a closed, convex cone S , int S* is nonempty if,

and only if, S 1is pointed.

A square matrix A 1is a P-matrix if all its principal minors are

positive.

For every x = 0 , let I+(x) and I (x) denote the set of indices

0
corresponding to the positive and zero components of x ; that is,

I+(x) = {L ) >0} and Io(x) = {i Px, = o} . A square matrix 4 is
said to be regular if the system

(Ax)i +t=0 for ¢ €7I(z),

(Az). + t =2 0 for <% ero(x) .

i

is inconsistent. Here (Ax)i denotes the Zth component of the vector

Ax .

A square matrix A 1is said to be strictly S-copositive if xzhx >0

for all 0 #x €S .

https://doi.org/10.1017/5000497270000798X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000798X

164 J. Parida and B. Sahoo

3. Preliminary results
LEMMA 3.1. Let A be an n x n matrix, and let S be a closed,
convex come in R .

(a) If A 1is strictly S-copositive, then A € J .

(b) If S = R’_: , then A i in J whenever A 1is either
(i) a P-matrix or
(i1} a regular matrix.

Proof. (a) It immediately follows from the definitions of J- and

S~copositive matrices given above.

(b) Let A be a P-matrix. The conclusion (b) for P-matrices

follows from the following result of Fiedler and P+dk [3]: if A is a

P-matrix, then for each 0 # x € Rn , there is an index < for which

>
xi(Ax)Z. 0.

To prove the second part of (b), we observe that when S =R, , the

+ S

o
-

system x € S , Ax € S* , xTAxEO , reduces to x>0 , Ax =

xTAx < 0 , the consistency of which implies that xi(Ax)i =0 for

1=<i=<n. If x#0 , we will have {4x). =0 for i€I+(x) and

i
(Ax)i >0 for 7 € Io(:x:) , which is a contradiction to the regularity of
A

REMARK 3.2. It is interesting to note that the class of regular
matrices is properly included in J . For example, the matrix

-2 2
is a J-matrix, but not regular.
-1 2

LEMMA 3.3. Let C be a closed, convex come in R’ with nonempty
interior, d € ) 4 , and let x € int C . Then there is a )\0 > 0 such
that Ax +d € C for every kzxo.
Proof. Since « € int C , there is a § > O such that u € C when-

ever |lu-z|l = 8§ . Consider the vector w =x + d/u for some u >0 . Now
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lo-z|| = ldlil/u <8 4if wp = ||d|i/8 . Taking )\0 = ||d|l/8 , we see that
x + d/X €C for every A= )‘O . Since C is a cone, Ax + d = A{xz+(d/)))
will be in € for all A = )‘O .

LEMMA 3.4, Let C be a closed, convex cone in R'@ with nonempty
interior, d €C , and let x € int C . Then x +d € int C .

Proof. If x, d €C , then = +d € C because ( is a convex cone.
Further, if O # y € C* , then we have (d, y> 20, (x, y) >0 , and
hence (x+d, y) > 0 , from which it follows that (z+d) is in int C .

We shall make use of the following results.
LEMMA 3.5 [4, Lemma 5.1, p. 227]. Let S be a pointed, closed,
convex come in R' , and let p € int S* . Then the set
V={zx : z €5, (p, =) =1}

18 bounded.

THEOREM 3.6. If F : ' + ' is a contimuous mapping on the
nonempty, compact, convex set C 1in R, then there is an £ in ¢
such that

0 0
(F(x),x—x)zo for all x €C .

REMARK 3.7. Theorem 3.6 was first stated and proved in [5]. A
complex version of this result has been used by the present authors to
obtain some existence theorems for nonlinear complementarity problems in

complex space [§].

4, Solvability of the complementarity problem

THEOREM 4.1. ILet S be a pointed, closed, convex cone in R' . If
A € J and there exists a vector p € int S* such that the system

O#z €S, Az +p € 5%, zT(Az+p) = 0 1is not consistent, then for each
q € R' there is a vector z° satisfying Az - q € S* , 2 €5 .

Proof. Consider the set V ={z : z €3, {p, 2} = 1} . It is clear

that V is a closed, convex set, and by Lemma 3.5, it is also bounded.

Thus V 1is a nonempty, compact, convex set in Rn . Now applying Theorem
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3.6, we get a point 2 in V such that
{k.1) (Az, 2-3) 2 0 for all z €V .
It follows from (L4.1) that

{4z, 3) = min (47, 2) ,
z€V

and therefore, the following set of necessary conditions [1] is satisfied:

Az +np € S5* , (Az+np, 3) = 0

s

(4.2) _ _
z€8, (p,2)=1, né€ER.

Obviously 2z # O . Now the consistency of (4.2) for a vector 0 # 2z € S
and n = 0 will contradict the assumptions made in the statement of the
theorem. So n < 0 , and thus we have a 0 # y = z/n €8 satisfying
Ay — p € S* . Since p € int S* , it follows from Lemma 3.4 that

Ay € int §* . Now, for any given vector g € Rn , Lemma 3.3 will determine
a A >0 such that A(4y) - ¢ € S* . Since S is a cone, Ay € S . The
proof of the theorem is then completed by writing zo = Ay

Now we give the following existence theorem.

THEOREM 4.2. Let S be a pointed, closed, convex cone in 7 , and
let p be a vector in int S8* such that the system 0 # z €5,

Az +p € 5%, zT(Az+p) = 0 1ig inconsistent. Then there is a solution to
(1.1) for each q € R* if A is a J-matria.
Proof. Consider the function
Az+t(p-q)
Flz, t) =
t
defined over the set
c={(z,t) :2€8,t=0,{p, z)+t =1}

From Lemma 3.5, it is clear that ¢ 1is a nonempty, compact, convex set in

Rnﬂ' . It is also evident that F(z, £) and C satisfy the conditions of

Theorem 3.6, and hence, there exists a point (z, £) in C such that
(Az+t(p-q), 2-3) + t(t-£) =2 0 for all (z, t) € C .

But this means that
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(Az+t(p-q), 3> + t+t = min ((Az+t(p-q), 2)+E-1)
(z,t)ec
Now using the Kuhn-Tucker necessary conditions of optimality [1] for cone

domains, we have a CO in R such that
AZ+?(p-q)+c0p€S* . L,z 0,

(4.3) (AE#%]p—q)+;0p, 2y =0, Z{E@co) =0

z€8, t=20, (p, 2+t =1.

Suppose that t =0 . Since (p, 2) +t =1 and p € int S* | 2% 0
If this is the case, then (4.3) will imply that the system

0#z €8, A§+;0pes*,

(L.4) _ _
<Az+cop, z) =0, o2 0,

is consistent. When g, = 0 , the consistency of (U4.4) will contradict the

assumption that A4 is a J-matrix. Further, when Ty > 0, (L.h) will

yield a nonzero vector §'= E]CO € S satisfying Ag +p € 5%,

QT(AEFp) = 0 , again a contradiction. Hence, t > 0 , and since

?(E};O) = 0 , therefore, we have ¢ + CO = 0 . Now substituting Co = -t

in (4.3), and then dividing throughout the resulting relations by T, we

get the desired solution.

REMARK 4.3. We do not require any other assumption for the cone S
except that it is to be pointed in the statement of Theorem 4.2. But for
q , we impose the restriction that when -g =p € int S* , there is no
nonzero solution to (1.1). 'For this value of ¢ , zero is obviously a
solution. This restriction is automatically satisfied when A4 is
strictly S-copositive, whereas if A 1is a regular matrix and S = RZ ,
(1.1) has no nonzero solution for the vector -q = et , t =0 , with

eT =(1, 1, ..., 1)
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