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Abstract. We show that, generically, the unique invariant measure of a sufficiently
regular piecewise smooth circle homeomorphism with irrational rotation number and zero
mean nonlinearity (e.g. piecewise linear) has zero Hausdorff dimension. To encode this
generic condition, we consider piecewise smooth homeomorphisms as generalized interval
exchange transformations (GIETs) of the interval and rely on the notion of combinatorial
rotation number for GIETs, which can be seen as an extension of the classical notion of
rotation number for circle homeomorphisms to the GIET setting.
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1. Introduction
An irrational circle homeomorphism f : T → T, that is, a continuous bijection on
T = R/Z with no periodic points, is uniquely ergodic [13]. Moreover, this map is
topologically conjugated to an irrational rotation x �→ x + α on T if and only if it does
not admit wandering intervals, the latter condition being guaranteed if, for example, the
map is piecewise smooth and its derivative has bounded variation. In this case, its unique
invariant probability measure μf can be expressed as the pushforward μf = h∗Leb of
the Lebesgue measure on T by the conjugacy map h : T → T.

Many recent works have aimed to understand more deeply this unique invariant
probability measure under different assumptions on the map. Let us point out that the
fine statistical properties of μf are closely related to the (lack of) regularity of h, but, in
general, it is not possible to study the conjugacy map directly to understand dimensional
properties of the invariant measure. Nevertheless, the existence of this conjugacy allows
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the transport of valuable techniques, such as dynamical partitions (see §2.1.2), from rigid
rotations to more general maps, and to use these tools to study geometric properties of the
associated invariant measures.

Of particular interest to us will be the notion of Hausdorff dimension of a probability
measure μ on T, defined as

dimH (μ) := inf{dimH (X) | μ(X) = 1},
where dimH (X) denotes the Hausdorff dimension of the set X (see §2.4). Intuitively, this
is a way to assess the ‘size’ of the set where the measure is concentrated whenever the
measure is singular with respect to Lebesgue.

For circle diffeomorphisms, it follows from the works of Herman [16] and Yoccoz [30]
that sufficiently regular circle diffeomorphisms are smoothly conjugated to a rigid rotation
provided its rotation number α ∈ R \ Q is Diophantine, that is, if it verifies∣∣∣∣α − p

q

∣∣∣∣ ≥ γ

qτ
for all p, q ∈ Z, q �= 0,

for some γ , τ > 0. Hence, for any smooth circle diffeomorphism with a Diophantine
rotation number, its unique invariant measure is equivalent to the Lebesgue measure
and, therefore, its Hausdorff dimension is equal to one. However, for any 0 ≤ β ≤ 1 and
any Liouville number α, that is, any non-Diophantine irrational number, Sadovskaya [26]
constructed examples of smooth diffeomorphisms with rotation number α whose unique
invariant measure has Hausdorff dimension β. In the analytic category, V. Arnold showed
the existence of analytic circle maps with Liouville rotation number whose conjugacy to
the circle rotation is non-differentiable.

As for critical circle maps with power-law criticalities, that is, smooth diffeomorphisms
with a finite number of singular points where the derivative vanishes and where the
map behaves as x �→ x|x|p + c in the neighborhood of the critical point (in a suitable
coordinate system) for some p > 0 and c ∈ R which may depend on the critical point,
Khanin [20] proved that the unique invariant measure of any sufficiently regular irrational
critical circle map is singular with respect to the Lebesgue measure. If, in addition, the
rotation number of the map is of bounded type, Graczyk and Świątek [15] showed that
the Hausdorff dimension of the unique invariant measure is bounded away from 0 and 1.
More recently, the author [27] provided explicit bounds, depending only on the arithmetic
properties of the rotation number, for the Hausdorff dimension of these maps.

In this work, we study the unique invariant probability measures of certain piecewise
smooth circle homeomorphisms known as P-homeomorphisms or circle diffeomorphisms
with breaks. These are smooth orientation-preserving homeomorphisms, differentiable
away from countable many points, so-called break points, at which left and right
derivatives exist but do not coincide, and such that log Df has bounded variation.

For P-homeomorphisms with exactly one break point and irrational rotation number,
Dzhalilov and Khanin [11] showed that the associated invariant probability measure is
singular with respect to Lebesgue. The case of two break points has been studied by
Dzahlilov and Liousse [9] in the bounded rotation number case, and by Dzahlilov, Liousse,
and Mayer [10] for any irrational rotation numbers. In both works, the authors conclude
the singularity of the associated invariant probability measure.
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More recently, for P-homeomorphisms of class C2+ε with a finite number of break
points and non-zero mean nonlinearity, Khanin and Kocić [19] showed that the Hausdorff
dimension of their unique invariant measure is equal to 0, provided that their rotation
number belongs to a specific (explicit) full-measure set of irrational numbers. In the same
work, the authors show that this result cannot be extended to all irrational rotation numbers.
Recall that the mean nonlinearity of a piecewise C2 circle homeomorphism f such that
D log Df ∈ L1 is given by

N (f ) =
∫
T

D log Df (x) dx,

where, as an abuse of notation, we denote by Df the derivative of any lift F : R → R of f .
The aim of this work is to show that for ‘typical’ P-homeomorphisms without periodic

points and zero mean nonlinearity, the conclusions in [19] remain valid, that is, the
associated unique invariant probability measure has zero Hausdorff dimension. For the
sake of clarity, we postpone the exact formulation of this result to §3, but let us mention
that the meaning of ‘typical’ in the previous statement relies on the notion of combinatorial
rotation number (see §2.2.3), which is widely used in the theory of interval exchange
transformations (see §2.2) and can be seen as an extension of the classical notion of
rotation number for circle maps. Throughout this work, a typical map will stand for a
map having a typical combinatorial rotation number.

We stress the fact that the non-zero mean nonlinearity assumption in [19] plays a
crucial role in their proof, which relies on renormalization techniques for circle maps,
as the behavior of successive renormalizations of these transformations in this class is well
understood (they approach in a very specific way the space of Möbius maps, see [18]).
However, the behavior for renormalizations of maps with zero mean nonlinearity is very
different (they approach the space of piecewise affine homeomorphisms, see [14]), and
thus a different approach is required. A more in-depth discussion about this is given at the
beginning of §3.

A recent result by Berk and the author [3] shows that a typical sufficiently smooth
P-homeomorphism without periodic points and zero mean nonlinearity is smoothly con-
jugated to a piecewise linear P-homeomorphism, or PL-homeomorphism for short. Thus,
to prove our main result (Theorem 3.1) concerning the Hausdorff dimension of typical
P-homeomorphisms with zero mean nonlinearity, it suffices to consider the piecewise
linear case (Theorem 3.2), since diffeomorphisms preserve the Hausdorff dimension of
the unique invariant measure.

The invariant measures of PL-homeomorphisms were first studied by Herman [16], who
showed that a PL-homeomorphism with exactly two break points and irrational rotation
number has an invariant measure absolutely continuous with respect to Lebesgue if and
only if its break points lie on the same orbit. More generally, Liousse [21] showed that the
invariant measure of a generic PL-homeomorphism with a finite number of break points
and irrational rotation number of bounded type is singular with respect to Lebesgue. The
generic condition in [21] is explicit and appears as an arithmetic condition on the logarithm
of the slopes of the PL-homeomorphism.
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Theorem 3.2 provides an improvement of the results in [16, 21] under a stronger generic
condition (namely, typical combinatorial rotation number) by showing that the associated
invariant measures are not only singular but have zero Hausdorff dimension.

To prove our main results, we consider P-homeomorphisms as generalized interval
exchange transformations, or GIETs for short (see §2.2.3). We provide a canonical
way to make this identification in §2.3. The renormalization for these maps, known as
Rauzy–Veech renormalization, allows for finer control than those for circle maps. In fact,
when seen as a circle map, the successive renormalizations of a P-homeomorphism appear
as a subsequence of the successive renormalizations of the same map when considered a
GIET. Let us mention that this approach has been successfully used to study renormaliza-
tions and rigidity properties for an exceptional class of P-homeomorphisms in [6–8], and
to study rigidity properties of P-homeomorphisms with zero mean nonlinearity in [3].

We will obtain a good control for the renormalizations of PL-homeomorphisms, along a
subsequence, by using ergodicity properties of an accelerated version of the Rauzy–Veech
renormalization, known as Zorich map, together with a ‘Borel–Cantelli lemma’ for the
Zorich map, due to Aimino, Nicol, and Todd [1, Theorem 2.18]. The desired properties
will hold for a full-measure set of combinatorial rotation numbers.

We finish this introduction with a brief outline of the article. Section 2 will introduce
the core notions used throughout this work and recall some well-known facts concerning
circle maps, IETs, and P-homeomorphisms. In §3, we state our main results (Theorems 3.1
and 3.2) and discuss the strategy of proof, which relies on a general criterion for zero
Hausdorff dimension using Rohlin towers (Proposition 3.3). The proof of this criterion is
given in §4. Finally, in §5, we prove our main result by using renormalization techniques
for GIETs to build appropriate Rohlin towers, fulfilling the hypotheses of the criterion.

2. Preliminaries
2.1. Circle maps. Let us quickly recall some of the properties of circle maps that will
be used throughout this work.

2.1.1. Rotation number. Let f : T → T be an orientation-preserving circle homeomor-
phism and let F : R → R be a lift of f, that is, a continuous homeomorphism of R such
that F(x + 1) = F(x) + 1 and F(x)(mod 1) = f (x) for all x ∈ R. By a classical result
of Poincaré, the limit

ρ(f ) = lim
n→∞

Fn(x)

n
mod 1

is well defined and independent of the value x ∈ R initially chosen. This limit is called the
rotation number of f. By Poincaré’s classification theorem for circle maps, any minimal
orientation-preserving circle homeomorphism with irrational rotation number α ∈ R \ Q
is conjugate to the rigid rotation Rα : T → T given by Rα(x) = x + α for any x ∈ T. In
particular, such a map is uniquely ergodic.

2.1.2. Dynamical partitions. Given a circle homeomorphism f : T → T topologically
conjugated to an irrational rotation Rα , a classical way to study fine statistical properties
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of its unique invariant measure μf is to consider the so-called dynamical partitions of f,
which are defined through the denominators (qn)n≥0 of the convergents

pn

qn

= [a1, a2, a3, . . . , an]

associated to the continued fraction of α

α = 1

a1 + 1

a2 + 1

a3 + 1

· · ·

= [a1, a2, a3, . . .],

as follows. Given x0 ∈ T and n ≥ 1, the nth dynamical partition Pn(x0) of f, with base
point x0, is given by

Pn(x0) = {I 0
n−1(x0), . . . , I

qn−1
n−1 (x0)} ∪ {I 0

n (x0), . . . , I
qn−1−1
n (x0)},

where I i
m(x0) = f i(Im(x0)) is the ith iterate of the circle arc given by

Im(x0) =
{

[x0, f qm(x0)) if m is even,[
f qm(x0), x0) if m is odd.

These partitions form a refining sequence. In fact, it is easy to see that In+1(x0) ⊆ In−1(x0)

for any n ≥ 1. Moreover, they verify

I i
n−1(x0) \ I i

n+1(x0) =
an+1−1⋃

j=0

I
i+qn−1+jqn
n (x0) (1)

for all 0 ≤ i < qn and all n ≥ 1. Notice that the right-hand side of equation (1) is a disjoint
union of an+1 different iterates of In. Furthermore, each iterate is adjacent to the next one
when seen as arcs in the circle; that is, they share a common endpoint.

Geometric properties of these partitions are closely related to dimensional properties of
the subjacent invariant measure, see, for example, [19, 20, 27].

2.1.3. Renormalization. The renormalization maps of f are closely related to the
dynamical partitions and are often used to study their geometric properties. The nth
renormalization of f, with base point x0, is the map fn : In−1(x0) ∪ In(x0) → In−1(x0) ∪
In(x0) given by

fn(x) =
{

f qn−1(x) if x ∈ In(x0),

f qn(x) if x ∈ In−1(x0).

It is not difficult to check that the map fn is the first return map of f to In−1(x0) ∪ In(x0).

2.2. Interval exchange transformations. Let I = [0, 1) be the unit interval. An interval
exchange transformation (IET) is a bijective, right-continuous function T : I → I , with a
finite number of discontinuities, whose restriction to any subinterval of continuity is given
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by a translation. We say that T is an IET on d intervals if there exists a partition {Iα}α∈A,
where the indexes belong to some finite alphabet A with d ≥ 2 symbols, such that T is
continuous when restricted to Iα for each α ∈ A. Notice that T is simply exchanging the
order of the intervals in the partition.

An IET T of d intervals can be encoded by a pair (λ, π) corresponding to a
combinatorial datum π = (π0, π1), consisting of two bijections π0, π1 : A → {1, . . . , d}
describing the order of the intervals before and after T is applied (the numbers 0 and 1
in the previous notation are usually referred to top and bottom, see §2.2.1), and a lengths
vector λ = (λα)α∈A in the simplex 
d = {ν ∈ RA+ | ∑

α∈A να = 1}, which corresponds
to the lengths of the intervals in the partition {Iα}α∈A associated to T. We call π1 ◦ π−1

0 :
{1, . . . , d} → {1, . . . , d} the monodromy invariant of π .

A combinatorial datum π = (π0, π1) is said to be of rotation type if its monodromy
invariant verifies

π1 ◦ π−1
0 (i) − 1 = i + k (mod d)

for some k ∈ {0, . . . , d − 1} and all i ∈ {1, . . . , d}. Similarly, we say that an IET is of
rotation type if its combinatorial datum is of rotation type. Notice that any IET of rotation
type induces a well-defined circle rotation on the circle T.

Given an IET T with associated partition {Iα}α∈A, we can obtain an explicit expression
for the intervals Iα as [lα , rα), where

lα =
∑

π0(β)<π0(α)

λβ , rα = lα + λα

for any α ∈ A. Notice that {lα}π0(α) �=1 are the only possible discontinuity points of T. With
this notation,

T (x) = x + wα

for any x ∈ Iα and any α ∈ A, where

wα =
∑

π1(β)<π1(α)

λβ −
∑

π0(β)<π0(α)

λβ .

We denote by w = (wα)α∈A the translation vector of the IET T. Notice that wα can be
expressed as a linear transformation on RA as wα = �π(λ), where �π : RA → RA is
given by

�α,β =

⎧⎪⎪⎨⎪⎪⎩
+1 if π1(α) > π1(β) and π0(α) < π0(β),

−1 if π1(α) < π1(β) and π0(α) > π0(β),

0 in other cases.

(2)

We say that the pair π = (π0, π1) is reducible if there exists 1 ≤ k < d such that

π1 ◦ π−1
0 ({1, . . . , k}) = {1, . . . , k}.

Otherwise, it is said to be irreducible. An IET is said to be reducible (respectively
irreducible) if the associated combinatorial datum π is reducible (respectively irreducible).
We say that an IET T satisfies the Keane condition if T m

(π ,λ)(lα) �= lβ for all m ≥ 1 and
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all α, β ∈ A with π0(β) �= 1. In particular, any IET verifying the previous condition is
irreducible. Recall that a transformation on a metric space is said to be minimal if the orbit
of all points is dense. By [17], any IET satisfying Keane’s condition is minimal.

2.2.1. Rauzy–Veech renormalization. Let T = (λ, π) be an IET on d intervals. Denote

αε = π−1
ε (d) (3)

for ε = 0, 1. The letters α0 and α1 correspond to the ‘last’ intervals (that is, those having
1 as their right endpoint) in the partitions {Iα}α∈A and {T (Iα)}α∈A, respectively.

If λα0 �= λα1 , by comparing the lengths of these intervals, we define the type of T as

ε(λ, π) =
{

0 if λα0 > λα1 ,

1 if λα0 < λα1 .

The longest of these two intervals is sometimes referred to as the winner and the shortest
as the loser. Notice that αε(λ,π) and α1−ε(λ,π) correspond to the symbols of the winner
and the loser intervals, respectively. If there is no risk of confusion, we will denote these
letters simply by αε and α1−ε . We will sometimes refer to types 0 and 1 as top and bottom,
respectively.

The Rauzy–Veech induction of T, which we denote by T̂ , is defined as the first return
map of T to the subinterval

Î =
{

I \ T (Iα1) if T is of type top,

I \ Iα0 if T is of type bottom.

We define the Rauzy–Veech renormalization of T, which we denote by R(T ), by rescaling
linearly T̂ to the interval I. The renormalized map R(T ) is an IET with the same number
of subintervals as T. This induction/renormalization procedure can be iterated infinitely
many times if and only if T verifies the Keane condition. Also, it follows quickly from the
definition that each infinitely renormalizable pair (λ, π) will admit exactly two preimages.
We refer the interested reader to [29] for a proof of these facts.

We denote by Gd the set of combinatorial data π = (π0, π1) with d symbols and
let G0

d ⊆ Gd be the subset of irreducible combinatorial data, which we equip with the
counting probability measure dπ . We will sometimes refer to a combinatorial datum in
Gd simply as a permutation. We denote by Xd the set of IETs verifying Keane’s condition.

Let us point out that for a fixed π ∈ G0
d and for any λ ∈ 
d such that (λ, π) is

renormalizable, there are only two possibilities for the combinatorial datum of R(λ, π),
depending on whether the IET is of top or bottom type. For notational simplicity, for any
π ∈ G0

d and for any ε ∈ {0, 1}, we let 
π = Xd ∩ (
d × {π}) and denote by 
π ,ε the set
of IETs in 
π of type ε.

Notice that the set Xd of pairs (λ, π) verifying Keane’s condition is R-invariant and of
full measure in 
d × G0

d , with respect to Leb × dπ . Hence,

R : Xd → Xd
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is a well-defined 2-to-1 map defined in a full measure subset Xd ⊆ 
d × G0
d . In fact,

it is easy to see that any (λ, π) ∈ Xd has exactly two preimages, one of type top
and one of type bottom. Moreover, for any π ∈ G0

d and for any ε ∈ {0, 1}, the map
R |
π ,ε : 
π ,ε → 
π(ε) is bijective, where we denote by π(ε) the permutation obtained
from π after a Rauzy–Veech renormalization of type ε.

It was shown independently by Masur [25] and Veech [28] that R admits an infinite
invariant measure μR, absolutely continuous with respect to Leb × dπ . Moreover, the
measure μR is unique up to product by a scalar.

2.2.2. Rauzy classes. Given π , π ′ ∈ Gd , the permutation π ′ is said to be a successor
of π if there exist λ, λ′ ∈ 
d such that (λ′, π ′) = R(λ, π). We denote this relation by
π → π ′. Notice that any successor of an irreducible permutation is also irreducible.

The relation ‘→’ defines an oriented graph structure on the set of irreducible per-
mutations G0

d . We call Rauzy classes the connected components of the oriented graph
G0

d with respect to the successor relation. It follows from the discussion in the previous
section that any irreducible permutation π has at least one and at most two successors,
namely π(0), π(1) ∈ G0

d , and that it is itself the successor of at least one and at most two
permutations π0, π1 ∈ G0

d satisfying π0(0) = π = π1(1).
Let us point out that if π , π ′ belong to the same Rauzy class, then an oriented path

exists in G0
d from π to π ′. For combinatorial data of rotation type, we have the following.

PROPOSITION 2.1. For any d ≥ 2, the permutations of rotation type belong to the same
Rauzy class in G0

d .

2.2.3. GIETs and combinatorial rotation number. A generalized interval exchange
transformation (GIET) is a piecewise smooth bijective, right-continuous function
f : I → I with a finite number of discontinuities, whose derivative is non-negative and
extends to the closure of any subinterval where the function is smooth. Similar to the case
of IETs, to any GIET f, we can associate a partition {Iα(f )}α∈A of I such that, for every
α ∈ A, the restriction f |Iα : Iα → f (Iα) is smooth, as well as a permutation π describing
the order in which these intervals are exchanged.

Rauzy–Veech renormalization and Keane’s condition, initially defined only for IETs,
extend trivially to GIETs. Given a GIET f with associated permutation π and exchanged
intervals {Iα(f )}α∈A, we denote by R(f ) its Rauzy–Veech renormalization whenever it
is well defined, that is, if |Iα0 | �= |f (Iα1)|, where α0, α1 are given by equation (3) and | · |
denotes the length of an interval. We say that f is infinitely renormalizable if and only
if Rn(f ) is well defined for all n ∈ N. Similar to the IET setting, if f verifies Keane’s
condition, then it is infinitely renormalizable. An infinitely renormalizable GIET f defines
a unique path γ (f ) on the Rauzy diagram, which we call the combinatorial rotation
number or simply the rotation number of f. The notion of rotation number for GIETs is
now classical and goes back to the works of Marmi, Moussa, and Yoccoz [23, 24]. Let us
point out that the combinatorial rotation number is a topological invariant for GIETs.
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An infinite path on the Rauzy diagram is called ∞-complete if each letter in A wins
infinitely many times. We say that a GIET is irrational if it is infinitely renormalizable and
its rotation number is ∞-complete.

Let us point out that in the case of GIETs, the role played by IETs and combinatorial
rotation numbers are analogous to that of rigid rotations and rotation numbers in the case
of circle homeomorphisms. Indeed, an infinite path in a Rauzy diagram is associated with
some infinitely renormalizable IET if and only if it is ∞-complete. Also, two infinitely
renormalizable IETs are conjugated if and only if they have the same rotation number.
Moreover, any irrational GIET is semi-conjugated to a unique IET with the same rotation
number. Analogously to the circle case, this semi-conjugacy is a conjugacy if the GIET
does not admit wandering intervals. We refer the interested reader to [31] for proof of
these facts.

Given the previous discussion, we can consider the combinatorial rotation number for
irrational GIETs on d intervals as taking values on 
d × G0

d . This will allow us to speak
in the following of almost every combinatorial rotation number for GIETs. As an abuse
of notation, we will sometimes write γ (T ) = (λ, π) to state that a GIET T and a standard
IET T0, associated with some (λ, π) ∈ Xd , have the same rotation number.

2.2.4. The lengths cocycle. Given T = (λ, π) such that λα0 �= λα1 , we define the
Rauzy–Veech matrix A(T ) : RA → RA associated to T as

A(T ) = IA + Eαε ,α1−ε
, (4)

where IA denotes the identity matrix on RA and Eα,β is the matrix whose entries are 1 at
the position (α, β) and 0 otherwise. Notice that det(A(T )) = 1.

The Rauzy–Veech matrices depend only on the IET’s combinatorial datum and type.
For any π ∈ G0

d and any ε ∈ {0, 1}, we denote

Aπ ,ε = IA + E
π−1

ε (d),π−1
1−ε

(d)
. (5)

Given T = (λ, π) verifying Keane’s condition, denote

An(T ) = A(T ) · · · A(Rn−1(T ))

for any n ≥ 0. Then the lengths vector of Rn(T ) is given by

An(T )−1λ

|An(T )−1λ|1 .

The map

A−1 : Xd → SL(d, Z)

T �→ A(T )−1

is a cocycle over R, known as the Rauzy–Veech cocycle or lengths cocycle.
The following observation will be of fundamental importance. For a proof, see [32,

Proposition 7.6].
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PROPOSITION 2.2. The set ⋃
π∈G0

d


π × Ker(�π),

where �π : RA → RA is given by equation (2), is invariant by the lengths cocycle

L : Xd × RA → Xd × RA

(T , v) �→ (R(T ), A(T )−1v)

and its action is trivial on it. More precisely, one can choose a basis of row vectors of
Ker(�π) for every π ∈ G0

d , such that for any (λ, π) ∈ 
d × G0
d infinitely renormalizable

and for any n ∈ N, the transformation

An(λ, π)−1 |Ker(�π ): Ker(�π) → Ker(�π ′)

is the identity with respect to the selected bases, where π ′ ∈G0
d is such that

Rn(λ, π) ∈ 
π ′ . In particular, if π ′ = π , then An(λ, π)−1 acts as the identity on Ker(�π).

2.2.5. The heights cocycle. Let T = (λ, π) satisfying Keane’s condition. Using the
Rauzy–Veech matrix A(T ) given by equation (4), we define a cocycle over R, known
as the heights cocycle, by

AT : Xd → SL(d, Z)

T �→ A(T )T
.

This cocycle allows us to describe the return times, or heights, if we think of the induced
map as a system of Rohlin towers associated with the iterates of R. Indeed, given n ∈ N,
the transformation Rn(T ) is defined as the linear rescaling of the first return map of T to
some subinterval In ⊆ I . Moreover, this interval admits a decomposition In = ⊔

α∈A In
α

such that the return time to In on each subinterval In
α is constant. The vector of return

times to In is given by

hn = An(T )T 1,

where 1 ∈ NA is the vector whose entries are all equal to 1. We refer to the d distinct
Rohlin towers {In

α , T (In
α ), . . . , T hn

α−1(In
α )}, with α ∈ A, as Rauzy–Veech towers.

2.2.6. Affine IETs. An affine interval exchange transformation (AIET) is a GIET for
which the restriction to each subinterval of continuity is a linear map. As for IETs, given
an AIET f, we can decompose the interval I into intervals of continuity of f, which we
denote by {Iα}α∈A, where A is a finite alphabet. Notice that f will change the order of
these intervals and linearly modify their lengths. If the permutation associated with f is in
the Rauzy class of rotations, we say that f is of rotation type.

Given an AIET f on d intervals with associated partition {Iα}α∈A, we define its
log-slope as the logarithm of the slope of f in each interval of continuity, namely, the
vector ω = (log Df |Iα )α∈A ∈ RA.

The following relation between the log-slope of Rauzy–Veech renormalizations of an
AIET and the heights cocycle will play a crucial role in this work.
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PROPOSITION 2.3. Let f be an irrational AIET on d intervals with combinatorial rotation
number γ (f ) = (λ, π) ∈ 
d × G0

d and log-slope ω ∈ RA. Then, the log-slope of Rn(f )

is given by An(λ, π)T ω for any n ≥ 0.

Let us point out that, by a result of Camelier and Gutierrez [4, Lemma 3.3], for almost
every (a.e.) (λ, π), and any AIET f with γ (f ) = (λ, π) and log-slope ω ∈ RA, we have
〈ω, λ〉 = 0.

2.2.7. Zorich acceleration. Zorich [33] showed that one can ‘accelerate the dynamics’
of R to define a map Z : Xd → Xd admitting an invariant probability measure μZ
which is absolutely continuous with respect to the Leb × dπ and whose density is a
rational function on 
d uniformly bounded away from the boundary of 
d (see, e.g.
[29, Proposition 21.4]). For every Rauzy class R, the restriction to the Z-invariant set⋃

π∈R 
π is ergodic. This map is given by

Z(T ) = Rz(T )(T ),

where z(T ) is the smallest n > 0 such that Rn−1(T ) and Rn(T ) have different type.
Similarly, using z : Xd → N as the accelerating map, we define the accelerated lengths

and heights cocycles

B−1 : Xd → SL(d, Z), BT : Xd → SL(d, Z),

by setting

B−1(T ) = Az(T )(T )−1, BT (T ) = Az(T )(T )T .

As before, these cocycles are related to the transformation of lengths and heights under
the action of Z . Moreover, these cocycles are integrable with respect to the invariant
probability measure μZ .

2.2.8. Notation for iterates. In the following, given T = (λ, π) ∈ Xd , we denote by

(λ(n), π(n)) = Zn(T )

its orbit under Z and by T (n) the map associated to (λ(n), π(n)). We denote the type of
Zn(T ) by ε(n), and the letters associated with its winner and loser intervals by α(n) and
β(n), respectively. We denote by I (n) the subinterval I (n) ⊆ I , given by the Rauzy–Veech
algorithm, such that T (n) coincides with the linear rescaling of T when induced to I (n).
We denote its associated decomposition by {I (n)

α }α∈A. We denote by h
(n)
α the return time

of T to I (n) for any x ∈ I
(n)
α . We define

Bn(T ) = B(T ) · · · B(Zn(T ))

for any n ≥ 0. Then, by definition of the accelerated lengths and heights cocycles, we have

λ(n) = Bn(T )−1λ(0)

|Bn(T )−1λ(0)| , h(n) = Bn(T )T h(0),

where h(0) := (1, . . . , 1) ∈ NA.
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2.2.9. Oseledet’s splitting. By Oseledet’s theorem and the combination of several
classical works [2, 12, 28, 33], for a.e. (λ, π), there exist Lyapunov exponents

θ1 > θ2 > · · · > θg > 0 > −θg > · · · − θ2 > −θ1

for some 1 ≤ g ≤ (d)/(2), and Oseledets’ filtrations

Rd = Eg � Eg−1 · · · � E1 � E0 ⊇ E−1 � · · · � E−g+1 � E−g � {0},

Rd = Fg � Fg−1 · · · � F1 � F0 ⊇ F−1 � · · · � F−g+1 � F−g � {0},
invariant by the cocycles (Z , BT ) and (Z , B−1), respectively, where Fi \ Fi−1 (respec-
tively Ei \ Ei−1) is associated to the Lyapunov exponent θg−i+1 for 1 ≤ |i| ≤ g, and
vectors in E0\E−1 (respectively F0 \ F−1) are associated to a zero Lyapunov exponent.

We denote

Eu = R|A| = Fu, Ecs = E0, Es = E−1, Fcs = F0, F s = F−1.

We have

Eu ⊇ Ecs ⊇ Es , Fu ⊇ Fcs ⊇ F s .

For a.e. (λ, π), the following hold:
• λ ∈ F s(λ, π);
• d − 2g = dim(Ker(�π)) and Ker(�π) ⊆ Fcs(λ, π) \ F s(λ, π);
• Es = (F cs)⊥ and F s = (Ecs)⊥.
We refer the interested reader to [32, 34] for details.

If π is of rotation type, then dim(Ker(�π)) = d − 2. Hence, it follows from the
previous relations that

dim(Eu) = dim(Es) = 1 = dim(F s) = dim(F u),

F s(λ, π) = 〈λ〉, Ecs = λ⊥, Es = Ker(�π)⊥ ∩ λ⊥.

Since for a.e. (λ, π) and any AIET f with γ (f ) = (λ, π) and log-slope ω ∈ RA we have
〈ω, λ〉 = 0 (see §2.2.6), it follows from the equation above that if π is of rotation type,
then ω ∈ Ecs(λ, π).

2.3. P-homeomorphisms as GIETs. Recall that a circle homeomorphism f is called a
P-homeomorphism if it is a smooth orientation-preserving homeomorphism, differentiable
away from countable many points, so-called break points, at which left and right
derivatives, denoted by Df−, Df+, respectively, exist but do not coincide, and such that Df

(which is defined away from break points) coincides with a function uniformly bounded
from below and of bounded variation. A P-homeomorphism that is linear in each domain
of differentiability is called a PL-homeomorphism. We denote the set of break points of a
P-homeomorphism f by

BP(f ) = {x ∈ T | Df−(x) �= Df+(x)}.
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Since we often require P-homeomorphisms to have additional properties, we introduce the
following notation. Define

ϕ : [0, 1) → T

x �→ e2πix .

For any d ≥ 1 and any r ∈ [0, +∞), let P r
d (T) (respectively PLd(T)) be the space

P-homeomorphisms (respectively PL-homeomorphisms) f : T → T such that:
(i) f is piecewise Cr (respectively piecewise linear);
(ii) ϕ(0) ∈ BP(f );
(iii) |BP(f )| = d;
(iv) ρ(f ) ∈ R \ Q;
(v) f n(x) �= f m(y) for any n, m ∈ Z and any x, y ∈ BP(f ), x �= y.
We treat P-homeomorphisms (respectively PL-homeomorphisms) as GIETs (respectively
AIETs) using the circle parameterization given by the map ϕ. For any f ∈ P r

d (T), the map

Tf = ϕ−1 ◦ f ◦ ϕ

is a well-defined GIET (respectively AIET) on d + 1 intervals. Since f has exactly d
break points lying in different orbits, Tf defines an irrational GIET (respectively AIET).
Moreover, Tf cannot be seen as a GIET (respectively AIET) on a smaller number of
intervals. In the following, for any f ∈ P r

d (T), we define its combinatorial rotation number
as γ (f ) = γ (Tf ).

By Denjoy’s theorem, a P-homeomorphism with an irrational rotation number is
topologically conjugated to a rigid rotation (see [16, Theorem 6.5.5]). In particular,
given f ∈ P r

d (T), the associated GIET Tf has no wandering intervals. Hence, if γ (f ) =
(λ, π) ∈ 
d × G0

d , recalling that by [31, Proposition 7], Tf is semi-conjugated to the
IET associated with (λ, π) and that this is actually a conjugacy if Tf has no wandering
intervals, it follows that Tf is topologically conjugated to the IET T associated with (λ, π).
We summarize this in the following proposition.

PROPOSITION 2.4. Let d ≥ 1 and r ∈ [0, +∞). Let f ∈ P r
d (T) with rotation number

α = ρ(f ) ∈ R \ Q and combinatorial rotation number γ (f ) ∈ 
d × G0
d . Then:

• f is topologically conjugated to Rα (as circle maps);
• Tf is topologically conjugated to T = (λ, π) (as GIETs).

2.4. Hausdorff dimension. For a subset X of a metric space M, we define its
d-dimensional Hausdorff content by

Cd
H (X) := lim

ε→0
inf
(Ui)

∑
i

(diam(Ui))
d ,

where the infimum is taken over all countable covers (Ui) of X satisfying diam(Ui) < ε.
The Hausdorff dimension of X is given by

dimH (X) := inf{d ≥ 0 | Cd
H (X) = 0}.

We recall that the Hausdorff dimension of a probability measure μ over M is given by

dimH (μ) := inf{dimH (X) | μ(X) = 1}.
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3. Statement of the main results
In this work, we aim to complement the results of Khanin and Kocić [19], which concerns
P-homeomorphisms with a finite number of breaks and non-zero mean nonlinearity, by
considering the zero mean nonlinearity case. We will show that, typically, the unique
invariant probability measure of P-homeomorphisms with a finite number of breaks,
irrational rotation number, and zero mean nonlinearity has zero Hausdorff dimension. To
encode this generic condition, we consider P-homeomorphisms as generalized interval
exchange transformations (GIETs) of the interval (see §2.3) and rely on the notion
of combinatorial rotation number, which can be seen as an extension of the classical
notion of rotation number for circle homeomorphisms to the GIET setting. Notice that
a P-homeomorphism with zero mean nonlinearity has either none or at least two break
points.

Our main result is the following.

THEOREM 3.1. Let d ≥ 2. There exists a full-measure set of combinatorial rotation
numbers Cd ⊆ 
d+1 × G0

d+1 such that, for any f ∈ P 3
d (T) with zero mean nonlinearity

and γ (f ) ∈ Cd , the unique invariant probability measure μf of f verifies dimH (μf ) = 0.

Let us point out that the non-zero mean nonlinearity hypothesis plays an essential role
in the argument of [19] (which proves a similar result in the non-zero mean nonlinearity
case) as the proof relies heavily on the behavior of renormalizations of P-homeomorphisms
with a finite number of break points and non-zero mean nonlinearity. In fact, for a given
map f in this class, its renormalizations converge, in the C2 norm, to a class of Möbius
transformations whose second derivative is negative and uniformly bounded away from
zero. Exploiting this convergence, the authors show that the union of adjacent intervals
in the right-hand side of equation (1) accumulates ‘geometrically’ near the boundary of
I i
n−1 \ I i

n+1, that is, their lengths decrease geometrically with respect to the length of I i
n−1.

Since all of the intervals in the right-hand side of equation (1) have the same measure
with respect to the unique invariant measure μf of f, the observation above allows to
construct sets (more precisely, Rohlin towers) with small Lebesgue measure (in fact,
small Hausdorff content) but whose measure with respect to μf tend to 1. Refining this
argument, the authors in [19] show that if an appropriate full-measure condition in the
rotation number is satisfied, then the Hausdorff dimension of the unique invariant measure
μf is zero.

However, for circle diffeomorphisms with breaks and zero mean nonlinearity, the
renormalizations exhibit very different behavior. For example, for piecewise affine circle
homeomorphisms, the second derivative of any of their renormalizations is equal to 0
everywhere. Furthermore, it follows from a recent result by Ghazouani and Ulcigrai [14]
that the renormalizations of any circle diffeomorphism with breaks of class C2+ε and
zero mean nonlinearity converge, in C2 norm, to the space of piecewise affine circle
homeomorphisms. In particular, the second derivative of their renormalizations converges
to 0, and thus, the argument in [19] cannot be extended to the zero mean nonlinearity case.

As mentioned in §1, it follows from a recent work by Berk and the author [3] that,
for d ≥ 2, a typical P-homeomorphism f ∈ PL3

d(T) with zero mean nonlinearity is C1

conjugated to a PL-homeomorphism. Moreover, following §2.3, this PL-homeomorphism
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induces an AIET with exactly d + 1 intervals, which cannot be reduced to an AIET on a
smaller number of intervals. Hence, Theorem 3.1 is a direct consequence of the following.

THEOREM 3.2. Let d ≥ 2. For a.e. (λ, π) ∈ 
d × G0
d of rotation type, and for any AIET f

on d intervals with log-slope ω ∈ Rd and γ (f ) = (λ, π), we have the following dichotomy,
either:
(1) f is C∞ conjugate to a standard IET; or
(2) dimH (μf ) = 0, where μf denotes the unique invariant probability measure of f.
Moreover, the first assertion is verified if and only if f can be seen as an AIET on two
intervals, which corresponds to ω ∈ Es(λ, π).

3.1. Strategy of proof. For T = (λ, π), f and ω as in the statement of Theorem 3.2, the
existence of a smooth conjugacy between f and T if ω ∈ Es(λ, π) is a direct consequence
of a result by Cobo [5, Theorem 1]. Thus, it suffices to show that if ω /∈ Es(λ, π), then
dimH (μ) = 0.

Extracting the main elements of the strategy of [19] described in the previous section,
and refining the argument therein, yields the following criterion. For an ergodic piecewise
continuous orientation-preserving bijection (T , μ) on an interval, the existence of a
sequence of ‘sufficiently rigid’ Rohlin towers Fk (see equations (6) and (7) in Proposition
3.3) with intervals Fk as bases, increasing heights hk , measure μ(Fk) uniformly bounded
from below, and such that T hk is continuous on each floor of Fk and either contracts or
expands at a uniform rate when restricted to Fk , implies dimH (μ) = 0.

More precisely, we have the following.

PROPOSITION 3.3. Let T : [0, 1) → [0, 1) be a piecewise C2 bijection without
periodic points, having positive derivative on each smoothness branch, and such that
supx∈[0,1) |(T ′′(x))/(T ′(x))| < ∞. Let μ be a T-invariant ergodic probability measure.
Suppose there exist a sequence of intervals Fk ⊆ [0, 1) and an increasing sequence of
natural numbers hk such that:
(a) Fk = ⊔hk−1

j=0 T j (Fk) is a Rohlin tower for any k ≥ 0;
(b) T hk |T j (Fk)

is smooth for any k ≥ 0 and any 0 ≤ j < hk;
(c) infk≥0 μ(Fk) > 0;
(d) infx∈Fk

k≥0
|DT hk (x) − 1| > 0;

(e) there exists a sequence of natural numbers Mk obeying

Mk

log hk

→ ∞, (6)

such that
Mk⋂

m=0

T mhk (Fk) �= H. (7)

Then, dimH (μ) = 0.

Proposition 3.3 will be proven in §4.
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To show that typical PL-homeomorphisms whose log-slope vector does not belong
to the stable space fulfill the hypotheses of Proposition 3.3, we use renormalization
techniques for interval exchange transformations (IETs) and treat PL-homeomorphisms
as affine interval exchange transformations (AIETs) by parameterizing the circle T as

ϕ : [0, 1) → T

x �→ e2πix ,

and restricting ourselves to PL-homeomorphisms such that ϕ(0) is a break point of f. Then,
if f has d ≥ 1 break points, the map ϕ−1 ◦ f ◦ ϕ can be seen as a well-defined AIET on
d + 1 intervals. See §2.3 for more details on this identification.

4. Proof of the zero HD criterion
The following lemma is a well-known fact.

LEMMA 4.1. Let (T , X, μ) be an ergodic measure-preserving automorphism on a proba-
bility space. Then, for any c > 0 and any sequence of Rohlin towers,

Tk := T (Fk , hk) =
hk−1⊔
j=0

T j (Fk),

with hk → +∞ and μ(Tk) > c,

μT

( ⋂
n≥0

⋃
k≥n

Tk

)
= 1.

Proof. Let
A =

⋂
n≥0

⋃
k≥n

Tk .

Since A is the intersection of a decreasing sequence of sets of measure at least c, it follows
that μ(A) ≥ c. Since μ is an ergodic T-invariant measure, it suffices to show that A is a
T-invariant set. Notice that

A
T −1(A) ⊆
⋃
k≥n

T −1(Fk) ∪ T hk−1(Fk)

for any n ∈ N. Up to taking a subsequence and since hk → +∞, we may assume∑
k≥0

μ(Fk) < +∞.

Therefore,
μ(A
T −1(A)) ≤ lim

n→∞ 2
∑
k≥n

μ(Fk) = 0.

Hence, A is a T-invariant set. By ergodicity, μ(A) = 1.

We are now in a position to prove Proposition 3.3.

Proof of Proposition 3.3. For any k ≥ 0, let us denote the left and right endpoints of Fk

by lk and rk , respectively. Notice that since T has no periodic points, equation (7) together
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with the continuity of T hk |T j (Fk)
, for 0 ≤ j < hk , imply that either

T mhk (lk) ∈ Fk for all 0 < m ≤ Mk , (8)

or

T mhk (rk) ∈ Fk for all 0 < m ≤ Mk .

Clearly, one of the two equations above must hold for infinitely many values of n. Hence,
up to considering a subsequence, we may assume without loss of generality that one of
the two equations holds for all k ≥ 0. From now on, and for the sake of simplicity, let
us assume that the first of the two equations holds for all k ≥ 0, the other case being
analogous. Moreover, by taking Mk bigger if necessary, we may assume that

T (Mk+1)hk (lk) /∈ Fk . (9)

Similarly, by condition (d), we may assume without loss of generality that either DT hk |Fk

is uniformly bigger than one for all k ≥ 0 or it is uniformly smaller than one for all k ≥ 0.
For the sake of simplicity, let us assume that

σ = sup
x∈Fk
k≥0

DT hk (x) < 1,

the other case being analogous.
Let (Lk)k≥0 be a sequence of natural numbers such that

Lk

log hk

→ ∞,
Lk

Mk

→ 0.

Define

Gk =
Mk−1⊔
j=Lk

T jhk ((lk , T hk (lk))), Gk =
hk−1⊔
j=0

T j (Gk), Xk =
⋃
n≥k

Gn

for any k ≥ 0, and let

X =
⋂
k≥0

Xk .

We will show that μ(X ) = 1 and dimH (X ) = 0.
Notice that Gk ⊆ Fk and Gk ⊆ Fk . We shall see that although Gk has a very small

Hausdorff content, its μ-measure is comparable to that of Fk . More precisely, we can
show the following.

CLAIM. For any 0 < s < 1, there exists C > 0 such that

Cs
H (Gk) ≤ Celog σ/2Lk

for any k ≥ 0, where Cs
H denotes the s-dimensional Hausdorff content. Moreover,

inf
k≥0

μ(Gk) > 0.

Before proving this claim, let us show how to conclude the proof of the proposition. By
Lemma 4.1 and the previous claim, μ(X ) = 1. Moreover, up to taking a subsequence, we
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may assume without loss of generality that∑
k≥0

Cs
H (Gk) < +∞.

Thus,
Cs

H (X ) ≤ lim inf
k→∞ Cs

H (Xk) ≤ lim inf
k→∞

∑
n≥k

Cs
H (Gn) = 0

for any 0 < s < 1. Hence,

dimH (X ) = inf{s > 0 | Cs
H (X ) = 0} = 0.

Therefore,
dimH (μ) = inf{dimH (X) | μ(X) = 1} = 0.

Proof of the claim. Fix k ≥ 0. Then

|Gk| =
Mk∑

j=Lk

|T jhk ((lk , T hk (lk)))| ≤
Mk∑

j=Lk

σ j |(lk , T hk (lk))| ≤ Cσ σLk |Fk|, (10)

where Cσ = (1 − σMk−Lk )/(1 − σ). A simple bounded distortion argument, together with
equation (10), yields

|T j (Gk)| ≤ CT Cσ σLk |T j (Fk)| (11)

for any 0 ≤ j < hk , where CT = exp(supx∈[0,1)(|T ′′(x)/T ′(x)|)). Indeed, since Gk ⊆ Fk

and
∑hk−1

j=0 |T j (Fk)| ≤ 1, for any 0 < j < hk and any 0 ≤ i < j , there exist, by the mean
value theorem, xi ∈ Gk , yi ∈ Fk and zij ∈ T i(Fk) such that

log
|T j (Gk)|
|T j (Fk)|

|Fk|
|Gk| = log

(T j )′(xj )

(T j )′(yj )
=

j−1∑
i=0

log T ′(T i(xj )) − log T ′(T i(yj ))

≤
j−1∑
i=0

∣∣∣∣T ′′(zij )

T ′(zij )

∣∣∣∣|T i(xj ) − T i(yj )| ≤
j−1∑
i=0

log(CT )|T i(Fk)|

≤ log(CT ).

The previous inequality, together with equation (10), implies equation (11).
Hence, for any 0 < s < 1, it follows from equation (11) that

Cs
H (Gk) ≤

hk−1∑
j=0

|T j (Gk)|s

≤ CT Cσ σLk

hk−1∑
j=0

|T j (Fk)|s

≤ CT Cσ σLkh1−s
k

= CT Cσ exp(Lk log σ + (1 − s) log hk)

≤ CT Cσ Ch,s exp
(

log σ

2
Lk

)
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for some positive constant Ch,s independent of n, where from the second to third lines,
we used Jensen’s inequality on the concave function x �→ xs together with

∑hk−1
j=0

|T j (Fk)| ≤ 1.
By equations (8) and (9),

Mkμ((lk , T hk (lk))) ≤ μ(Fk) ≤ (Mk + 1)μ((lk , T hk (lk))).

Hence,
Mk − Lk

Mk + 1
≤ μ(Gk)

μ(Fk)
≤ Mk − Lk

Mk

,

which implies
μ(Gk)

μ(Fk)
→ 1.

This finishes the proof of the proposition.

5. Proof of Theorem 3.2
Theorem 3.2 will hold for irrational AIETs f of rotation type whose renormalizations
{Zn(f )}n∈N display certain prescribed behavior along some increasing subsequence
{nk}k∈N ⊆ N (see Lemma 5.2). This control on renormalizations will allow us to construct
an appropriate sequence of Rohlin towers and to apply Proposition 3.3. We can prescribe
a behavior on the subsequent renormalizations of f by imposing conditions on the map’s
combinatorial rotation number γ (f ) = (λ, π). Moreover, since f and the IET T associated
with (λ, π) are conjugated (as well as their subsequent renormalizations), dynamical
properties of T obtained using the renormalized maps can be easily translated to properties
of f. Using strong ergodic properties of the map Z (see Theorem 5.7), we will show that
the prescribed behavior on the renormalizations described in Lemma 5.2 is exhibited by a
full-measure set of IETs.

For the sake of simplicity, let us start by introducing some notation that will be used
in the remainder of this work. For any d ≥ 2, we denote by π∗ = (π∗

0 , π∗
1 ) ∈ G0

d a fixed
combinatorial datum satisfying

π1 ◦ π0
−1(1) = d , π1 ◦ π0

−1(k) = k − 1. (12)

Notice that although a permutation π∗ ∈ G0
d verifying equation (12) always exists, π∗ is

not necessarily unique. For example, for d = 4, the permutations(
A D B C

D B C A

)
,

(
A C B D

C B D A

)
,

verify equation (12). In the following, we denote the last letters in the top and bottom rows
of π∗ by

α∗ = π∗
0

−1
(d), β∗ = π∗

1
−1

(d). (13)

In Lemma 5.2, we will consider a subset of the IETs of rotation type whose iterates by Z
belong to 
π∗ infinitely many times. Our main interest in doing this is the properties in the
lemma below, which we illustrate in Figure 1. In the following, we say that two intervals
are adjacent if they share exactly one endpoint.
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(a) (b)

FIGURE 1. (a) An IET of rotation type with combinatorial data π satisfying equation (12). (b) An IET of rotation
type with combinatorial data π not satisfying equation (12). In both cases, we denote α∗ = π−1

0 (d) and β∗ =
π−1

1 (d). The red (shaded) intervals represent the iterates {T 2(Iβ∗ ), . . . , T m+1(Iβ∗ )}, where m is the smallest
positive natural number for which T m(I ∗

β ) ∩ Iβ∗ �= H.

LEMMA 5.1. Let T = (λ, π∗) ∈ 
π∗ , satisfying Keane’s condition. Then,

{T (Iβ∗), T 2(Iβ∗), . . . , T m+1(Iβ∗)} where m =
⌊

1 − λβ∗

λβ∗

⌋
,

are disjoint, adjacent intervals satisfying

m⊔
j=1

T j (Iβ∗) �
⊔

α �=β∗
Iα �

m+1⊔
j=1

T j (Iβ∗).

If α �= β∗ and mα = �(λα)/(λβ∗)� > 2, then at least mα − 2 of these iterates of Iβ∗ are
contained in Iα . More precisely, there exist 1 ≤ �α < Lα ≤ m + 1 with Lα − lα ≥ mα − 1
such that

Lα−1⊔
j=�α+1

T j (Iβ∗) � Iα �

Lα⊔
j=�α

T j (Iβ∗).

Furthermore,
⋂mα−2

j=0 T j (Iα) �= H.

Proof. Notice that Iβ∗ = [0, λβ∗) and

T (x) =
{

x + (1 − λβ∗) if x ∈ Iβ∗ ,

x − λβ∗ otherwise.

Hence, T j (Iβ∗) = [1 − jλβ∗ , 1 − (j − 1)λβ∗) for any 1 ≤ j ≤ m + 1. In particular, the
intervals {T (Iβ∗), . . . , T m+1(Iβ∗)} are disjoint and adjacent. Moreover, we have

m⊔
j=1

T j (Iβ∗) = [1 − mλβ∗ , 1) ⊆ [λβ∗ , 1) =
⊔

α �=β∗
Iα ⊆

m+1⊔
j=1

T j (Iβ∗) = [1 − (m + 1)λβ∗ , 1).
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If α �= β∗ is such that mα = �λα/λβ∗� > 2, since
⊔

α �=β∗ Iα ⊆ ⊔m+1
j=1 T j (Iβ∗), it follows

that Iα intersects at least mα intervals of {T (Iβ∗), . . . , T m+1(Iβ∗)}. Hence, as these
intervals are adjacent, there exists 1 ≤ �α < Lα ≤ m + 1 such that mα − 1 ≤ Lα − l and

Lα−1⊔
j=�α+1

T j (Iβ∗) ⊆ Iα ⊆
Lα⊔

j=�α

T j (Iβ∗).

Notice that the inclusions in the equations above are strict since T would not verify Keane’s
condition otherwise. Moreover, it follows from the previous equation that

T Lα−1(Iβ∗) ⊆
mα−2⋂
i=0

T i

( Lα−1⊔
j=�α+1

T j (Iβ∗)

)
⊆

mα−2⋂
i=0

T i(Iα).

Using the notation introduced above, we can explicitly state the generic condition in
Theorem 3.2.

LEMMA 5.2. For any 0 < c0 < 1/10d sufficiently small and for any increasing sequence
{C(n)}n∈N ⊆ N verifying ∑

n≥1

1
nC(n)

= +∞, (14)

the following holds. For a.e. (λ, π) ∈ 
d × G0
d of rotation type, there exists an increasing

sequence {nk}k∈N ⊆ N such that:
(1) π(nk) = π∗;
(2) λ

(nk)
α > nkC(nk)λ

(nk)
β∗ for all α �= β∗;

(3) λ
(nk)
α > c0 for all α �= β∗;

(4) h
(nk)
α /h

(nk)
β > c0 for all α, β ∈ A;

(5) (log |hnk |)/nk ≤ c−1
0 .

We postpone the proof of the lemma above to the end of this section.
Let us explain how the conditions in Lemma 5.2 will appear in the proof of (the second

assertion of) Theorem 3.2 for log-slope vectors not belonging to the stable space. As
mentioned before, this will be a consequence of Proposition 3.3 for which an appropriate
sequence of Rohlin towers is required. To build Rohlin towers for a given AIET f with
γ (f ) = (λ, π), we start by building towers for the IET T defined by (λ, π) to which f is
conjugated.

From Lemmas 5.1 and 5.2, we immediately conclude the following.

COROLLARY 5.3. Let T = (λ, π) ∈ 
d × G0
d and {C(n)}n∈N, {nk}k∈N ⊆ N as in Lemma

5.2. Then, for any k ∈ N, there exist natural numbers 1 = lk0 < lk1 < · · · < lkd−1 such that
lki+1 − lki ≥ nkC(nk) − 1 and

lk
i+1−1⊔

j=lki +1

T (nk)
j
(

I
(nk)
β∗

)
� I

(nk)

π∗
0

−1(d−i)
�

lk
i+1⊔

j=lki

T (nk)
j
(I

(nk)
β∗ )
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for i = 1, . . . , d − 1, where the unions in the previous equation consist of adjacent
intervals. Moreover,

nkC(nk)−2⋂
j=0

T (nk)
j
(

I
(nk)

π∗
0

−1(d−i)

)
�= H (15)

for i = 1, . . . , d − 1.

Using Corollary 5.3, we can easily check that, along the subsequence given by Lemma
5.2, the Rauzy–Veech towers associated with T already satisfy many of the conditions in
Proposition 3.3.

LEMMA 5.4. Let T = (λ, π) ∈ 
d × G0
d and {C(n)}n∈N, {nk}k∈N ⊆ N as in Lemma 5.2.

Fix α ∈ A with α �= β∗. Then, the sequences

Fk :=
hk−1⊔
j=0

T (nk)
j
(Fk), Fk := I (nk)

α , hk := h(nk)
α , Mk = nkC(nk) − 2,

define Rohlin towers satisfying conditions (a)–(c) and (e) of Proposition 3.3.

Proof. Let k ≥ 0. It follows directly from the definitions and the renormalization proce-
dure that Fk is a well-defined Rohlin tower and that T is a translation when restricted to
T j (Fk) for any 0 ≤ j < hk . This proves conditions (a) and (b).

Since T is a translation on each floor of Fk , it follows that

|Fk| =
hk−1∑
j=0

|T j (Fk)| = h(nk)
α |I (nk)

α |. (16)

By condition (3),

max
β∈A

|I (nk)
β |

|I (nk)
α |

= max
β∈A

λ
(nk)
β

λ
(nk)
α

≤ c−1
0 .

Hence, recalling that [0, 1) = ⊔
β∈A

⊔h
(nk)

β −1
j=0 T j (I

(nk)
β ), by condition (4) and the previ-

ous inequality, we have

1 =
∑
β∈A

h
(nk)
β |I (nk)

β | ≤ dc−2
0 h(nk)

α |I (nk)
α |,

which, together with equation (16), implies condition (c).
By condition (5), it follows that

Mk

log hk

= nkC(nk) − 2

log h
(nk)
α

≥ c0C(nk) − 2c0

nk

−−−→
k→∞ +∞.

Since α �= β∗, there exists 1 ≤ i < d such that α = π∗
0

−1(d − i). Recalling that

T (nk) |
I

(nk)
α

= T h
(nk)
α , it follows from equation (15) that

Mk⋂
m=0

T mhk (Fk) �= H,

thus proving condition (e).
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Therefore, if f is an AIET with γ (f ) = (λ, π) verifying Lemma 5.2, the Rauzy–Veech
towers associated to f,

h
(nk)
α −1⊔
j=0

f j (I (nk)
α (f )) for α �= β∗, (17)

satisfy conditions (a)–(c) and (e) of Proposition 3.3. Indeed, for α �= β∗ fixed, since f and T
are conjugated by some homeomorphism h ∈ Hom([0, 1)), verifying f ◦ h = h ◦ T , then

h
(nk)
α −1⊔
j=0

f j (I (nk)
α (f )) = h

( h
(nk)
α −1⊔
j=0

T j (I (nk)
α (T ))

)
and

μf

( h
(nk)
α −1⊔
j=0

f j (I (nk)
α (f ))

)
=

∣∣∣∣h
(nk)
α −1⊔
j=0

T j (I (nk)
α (T ))

∣∣∣∣,
where μf denotes the unique invariant probability measure of f.

Since, by Lemma 5.4, the towers
⊔h

(nk)
α −1

j=0 T j (I
(nk)
α (T )) verify conditions (a)–(c) and

(e) in Proposition 3.3, it is readily seen that the towers in equation (17) also verify these
conditions.

Notice that condition (d) for the towers in equation (17) is equivalent to

inf
k≥1

|ω(nk)
α | > 0, (18)

where ω
(nk)
α is the log-slope vector of f (nk). Recall that, by Proposition 2.3, if f has

log-slope vector ω, then ω(nk) = Bnk (λ, π)T ω.
As we shall see in Corollary 5.6, if the log-slope vector of f does not belong to the stable

space Es(λ, π) then, up to considering a subsequence, equation (18) is satisfied for at least
one α �= β∗, and thus the second assertion of Theorem 3.2 would follow by Proposition
3.3 when applied to the towers given by equation (17) for this particular α.

To see that such α ∈ A \ {β∗} indeed exists, we will use the following properties of the
lengths cocycle (see §2.2.4 for the definition).

LEMMA 5.5. Let (λ, π) ∈ 
d × G0
d infinitely renormalizable with π of rotation type.

Then, for any ω ∈ RA and for any n ∈ N such that π(n) = π ,

πKer(�π )(ω
(n)) = πKer(�π )(ω),

where πKer(�π ) : RA → Ker(�π) denotes the orthogonal projection to Ker(�π) and
ω(n) = An(λ, π)−1ω. Moreover,

πKer(�π )(ω) �= 0

for any ω ∈ Ecs(λ, π) \ Es(λ, π).
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Proof. Fix (λ, π) ∈ 
d × G0
d infinitely renormalizable with π of rotation type and let

ω ∈ RA. Then, for any n ∈ N such that π(n) = π , and for any v ∈ Ker(�π),

|〈ω, v〉| = |〈(B(n)T )−1ω(n), v〉|
= |〈ω(n), (B(n))−1v〉|
= |〈ω(n), v〉|,

where the last equality follows from Proposition 2.2. Hence,

πKer(�π )(ω
(n)) = πKer(�π )(ω)

for all n ∈ N.
Recall that (see §2.2.9) for π of rotation type, we have

Ecs(λ, π) = λ⊥, dim
(
Ecs(λ, π)

) = d − 1,
Es(λ, π) = Ker(�π)⊥ ∩ λ⊥, dim

(
Es(λ, π)

) = 1.

Hence,

(Ecs(λ, π) \ Es(λ, π)) ∩ Ker(�π)⊥ = {0},
since otherwise 1 = dim(Ker(�π)⊥ ∩ λ⊥) = dim(Es(λ, π)) > 1. Thus,

πKer(�π )(ω) �= 0

for any ω ∈ Ecs(λ, π) \ Es(λ, π).

As a simple consequence of Lemmas 5.2 and 5.5, we have the following.

COROLLARY 5.6. Let (λ, π) ∈ 
d × G0
d as in Lemma 5.2. Then, for any ω ∈ Ecs(λ, π) \

Es(λ, π), there exists a constant c2 > 0, depending only on ω, such that

inf
k≥1

max
α �=β∗ |ω(nk)

α | > c2,

where {nk}k∈N ⊆ N is the sequence in Lemma 5.2.

Proof. Fix k ≥ 1. By definition of π∗, we have

Ker(�π∗) =
{
v ∈ RA

∣∣∣∣ vβ∗ = 0; vα∗ = −
∑
δ �=α∗

vδ

}
.

Then,

πKer(�π∗ )(πe⊥
β∗ (ω

(nk))) = πKer(�π∗ )(ω
(nk)),

where e⊥
β∗ = {v ∈ RA | vβ∗ = 0} and πe⊥

β∗ : RA → e⊥
β∗ denotes the orthogonal projection

to e⊥
β∗ . By Lemma 5.5,

πKer(�π∗ )(πv⊥
β∗ (ω

(n))) = πKer(�π∗ )(ω) �= 0.

Hence, there exists c > 0, depending only on π∗ and ω, such that

|πv⊥
β∗ (ω

(n))| > c.
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We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. Let T = (λ, π), f, and ω as in the statement of the theorem. Recall
that in this case (see §2.2.9), ω ∈ Ecs(λ, π) and

Ecs(λ, π) = λ⊥, Es(λ, π) = λ⊥ ∩ Ker(�π)⊥. (19)

We start by showing that ω ∈ Es(λ, π) if and only if f can be seen as a 2-IET. For the sake
of simplicity, we will assume that π = π∗, with π∗ as in equation (12), but an analogous
argument will yield the same conclusion for any rotation-type combinatorial datum. By
definition of π∗, we have

Ker(�π∗)⊥ = Vect
(

eβ∗ ,
∑
δ �=β∗

eδ

)
, (20)

where β∗ is given by equation (13). In particular, the coordinates of a vector ω ∈
Ker(�π∗)⊥ have only two possible values. It follows from equations (12), (19), and (20)
that f can be seen as a 2-IET if and only if ω ∈ Es(λ, π∗).

Moreover, if ω ∈ Es(λ, π), the existence of a smooth conjugacy between f and T, under
generic assumptions on T, is a direct consequence of [5, Theorem 1].

For the rest of the proof, we will assume without loss of generality that π = π∗. In fact,
by the ergodicity of the Zorich map Z when restricted to the Z-invariant set

⋃
π∈R 
π ,

where R denote the Rauzy class in G0
d that contains rotation-type permutations (see

Proposition 2.1), it is sufficient to prove the theorem in this case.
Taking into account the observations above, the theorem will be proved if we show

that, for a.e. λ ∈ 
d , and for any AIET f with γ (f ) = (λ, π∗) and log-slope ω ∈
Ecs(λ, π∗) \ Es(λ, π∗), where π∗ satisfies equation (12), the Hausdorff dimension of its
unique invariant measure μf is equal to zero.

Let λ ∈ 
d such that (λ, π∗) verifies the conclusions of Lemma 5.2 (and in particular
of Corollary 5.3) and Corollary 5.6. By Corollary 5.6 and up to taking a subsequence, we
can assume without loss of generality that there exists α ∈ A \ {β∗} such that equation
(18) holds, where β∗ is given by equation (13). Notice that the set of such λ defines a
full-measure set in 
d .

Let f be an AIET with combinatorial rotation number γ (f ) = (λ, π∗), log-slope
ω ∈ Ecs(λ, π∗) \ Es(λ, π∗), and unique invariant measure μf . Then, dimH (μf ) = 0
by applying Proposition 3.3 to the towers given by equation (17), which are defined
using Corollary 5.3. Notice that these towers verify the hypotheses in Proposition 3.3 by
Corollaries 5.3 and 5.6.

The remainder of this work concerns the proof Lemma 5.2.

5.1. Proof of Lemma 5.2. Lemma 5.2 will be an application of the following
‘Borel–Cantelli lemma’ for the Zorich map, due to Aimino, Nicol, and Todd [1, Theorem
2.18].
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Before stating (a simplified version of) this result, let us introduce some notation. Let R
be a fixed Rauzy class. Let

PR = {
π ,ε | π ∈ R, ε ∈ {0, 1}},
and define

Pn
R =

n−1∨
i=0

R−i (PR)

for any n ≥ 1. Notice that any B ∈ Pn
R

is contained in a unique simplex of the form 
π ,ε

for some π ∈ R and ε ∈ {0, 1}. For any ε ∈ {0, 1}, we denote


R,ε =
⋃

π∈R

π ,ε .

Given A ⊆ 
π ,ε , we denote by ∂A its boundary with respect to the usual Euclidean
distance in 
π ,ε . Similarly, for any δ > 0, we denote by Bδ(A) the δ-neighborhood of
A with respect to the usual Euclidean distance in 
π ,ε .

THEOREM 5.7. (Borel–Cantelli lemma for Zorich acceleration [1]) Let R be a fixed Rauzy
class, n ≥ 1, and ε ∈ {0, 1}. Suppose B ∈ Pn

R
verifies B ⊆ 
R,ε and B ⊆ 
d × R.

Then, for any sequence {An}n≥1 of subsets of B such that∑
n≥1

μ(An) = +∞, sup
n≥1

lim
δ↘0

|Bδ(∂An)|
δα

< +∞

for some 0 < α < 1, we have

1
En

n∑
i=1

χAi
◦ Z2i (x) → 1

for a.e. x ∈ 
R,ε , where En = ∑n
i=1 μ(Ai) for any n ≥ 1.

In the following, we denote by R the Rauzy class containing the permutations of
rotation type. Recall that R is endowed with an oriented graph structure associated with
the Rauzy–Veech induction and that for any permutation in π ∈ R and any ε ∈ {0, 1},
there exists exactly one permutation πε ∈ R such that π can be obtained from πε after a
Rauzy–Veech renormalization of type ε (to which we sometimes refer as a movement of
type ε in the graph). Recall that we can denote this as πε(ε) = π (we refer the reader to
§§2.2.1, 2.2.2 for details on definitions and notation).

Note that associated to any admissible finite path γ in the oriented graph R, there exists
a non-empty simplex 
γ in 
d × R defined by the (λ, π) ∈ 
d × R following the path γ

under Rauzy–Veech induction. Indeed, denoting by |γ | the length of the path γ , by γi ∈ R
the ith permutation in γ , and by εi ∈ {0, 1} the type of movement (that is, top or bottom)
used to go from γi to γi+1, then 
γ ⊆ 
γ0,ε0 and we have


γ =
|γ |−1⋂
i=0

R−i (
γi ,εi
) ∈ P |γ |

R
. (21)

https://doi.org/10.1017/etds.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.25


On the HD of invariant measures of piecewise smooth circle maps 3625

Moreover, since the matrices in the Rauzy–Veech cocycle depend only on combinatorial
data and type (see §2.2.4), for any (λ, γ0) ∈ 
γ , we have A|γ |−1(λ, γ0) = Aγ , where

Aγ := Aγ0,ε0 · · · Aγ|γ |−1,ε|γ |−1 ,

and Aγi ,εi
are as in equation (5). Notice that since the diagonal entries of Rauzy–Veech

matrices are positive and all other entries are non-negative, the same is true for Aγ . Using
the matrix Aγ , we can also write 
γ as


γ =
{(

Aγ λ

|Aγ λ|1 , γ0

) ∣∣∣∣ λ ∈ 
d

}
. (22)

Given two finite admissible paths γ and γ ′ in R such that the last permutation in γ

coincides with the first permutation in γ ′, the matrix associated with the concatenation
of these paths, which we denote by γ ∗ γ ′, verifies Aγ ∗γ ′ = Aγ Aγ ′ .

It will be helpful to consider admissible finite paths γ in R for which the associated
matrix Aγ is positive, that is, such that all the entries of the matrix are positive. In this
case, we say that the finite path γ is positive. These paths will play a crucial role in the
proof of Lemma 5.2 (e.g. in showing condition (4), see Claim 2 and equation (27)). Notice
that if a path is positive, its concatenation (either from left or right) with any other path is
also positive.

Our main interest in considering positive matrices is the following property. If A =
(Aαβ)α,β∈A is a positive matrix, then

max
α,β∈A

(Av)α

(Av)β
≤ d max

α,β∈A
Aαβ for any v ∈ RA+ . (23)

Indeed, for any v ∈ RA+ and any α, β ∈ A,

(Av)α

(Av)β
=

∑
δ∈A Aαδvδ∑
δ∈A Aβδvδ

≤
∑
δ∈A

Aαδ

Aβδ

≤ d max
σδ∈A

Aσδ .

In particular, if γ is a positive path in R, the associated simplex 
γ is compactly
contained in 
d × R. Indeed, since in this case the associated matrix Aγ is positive, it
follows from equations (22) and (23) that


γ ⊆
{
v ∈ 
d

∣∣∣∣ max
α,β∈A

vα

vβ

≤ d max
α,β∈A

(Aγ )αβ

}
× R � 
d × R.

Let us point out that positive paths within a Rauzy class starting at any given permu-
tation always exist (see, e.g. [22, Lemma 1.2.4]). Moreover, since any two permutations
in a Rauzy class can be connected by a finite path, there always exist positive finite paths
starting/ending at any given permutation within a Rauzy class.

We are now in a position to prove Lemma 5.2.

Proof Lemma 5.2. To prove the lemma, we will define an appropriate admissible finite
path γ in R and an appropriate sequence of subsets {An}n≥1 in 
γ to which we will apply
Theorem 5.7.

Let us start by defining the path γ . To avoid the use of double superscripts, let us denote
by π = (π0, π1) ∈ R the pre-image of π∗ = (π∗

0 , π∗
1 ) by a bottom movement, that is, π
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verifies π(1) = π∗. Let γ be a finite admissible positive path whose first permutation is
π∗, its second permutation is π∗(0), and its last permutation is π . That is, γ is a positive
path starting at π∗ with a top movement and ending at π . In particular, the associated set

γ verifies 
γ ⊆ 
π∗,0 ⊆ 
R,0.

To define the sequence of subsets {An}n≥1 in 
γ , we will first define an auxiliar
sequence of subsets {Ân}n≥1 in 
d as follows. Denote δ∗ = π−1

0 (d) and let 0 < c0 <

(1)/(10d). Define

Ân :=
{
λ ∈ 
d

∣∣∣∣ min
{
c2

0,
c0

nC(n)

}
> λβ∗ − λδ∗ > 0; min

α∈A
λα > c0

}
for any n ≥ 1. Clearly

|Ân| ≥ c1

nC(n)
(24)

for some c1 > 0, depending only on c0 and d.

CLAIM 1. Let n ≥ 1. For any λ ∈ Ân, we have (λ, π) ∈ 
π ,1. Moreover, R(λ, π) ∈ 
π∗,0

and its length vector λ′ satisfies

min
α �=β∗ λ′

α > max{c0, nC(n)λ′
β∗}. (25)

Proof. Let λ ∈ Ân. Notice that π(1) = π∗ implies π∗
1 = π1 and, in particular, π∗

1 (β∗) =
d = π1(β

∗). Since

λ
π−1

1 (d)
= λβ∗ > λδ∗ = λ

π−1
0 (d)

,

the IET (λ, π) is of bottom type. Hence, its Rauzy–Veech renormalization R(λ, π) has
combinatorial datum π(1) = π∗, and its length vector λ′ is given by

λ′
α =

⎧⎪⎪⎨⎪⎪⎩
λα

1 − λβ∗
if α �= β∗,

λβ∗ − λδ∗

1 − λβ∗
if α = β∗.

(26)

In particular, it follows from the definition of Ân that

nC(n)λ′
β∗ <

nC(n)

1 − λβ∗
min

{
c2

0,
c0

nC(n)

}
≤ c0

1 − λβ∗
.

Since minα∈A λα > c0 by definition of Ân, the previous equation together with equation
(26) implies equation (25). Moreover, R(λ, π) = (λ′, π∗) is of top type since

λ′
π∗

0
−1(d)

≥ min
α �=β∗ λ′

α > λ′
β∗ = λ′

π∗
1

−1(d)
.

Define, for any n ≥ 1,

An :=
{
(λ, π) ∈ 
γ

∣∣∣∣ A−1
γ λ

|A−1
γ λ|1

∈ Ân

}
.

CLAIM 2. Let n ≥ 1. There exists N > 0, depending only on γ , such that for any (λ, π) ∈
An, λ(N) satisfies equation (25), π(N) = π∗, and BN(λ, π) = Aγ Aπ ,1.
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Proof of the claim. Fix n ≥ 1. By definition of An and γ , any (λ, π) ∈ An follows the
path γ under Rauzy–Veech induction and R|γ |−1(λ, π) ∈ Ân × {π}. By Claim 1, the IET
R|γ |−1(λ, π) is of bottom type, R|γ |(λ, π) is of top type with combinatorial datum π∗,
and the length vector of R|γ |(λ, π) satisfies equation (25).

Since the types of R|γ |−1(λ, π) and R|γ |(λ, π) are different, there exists 1 < N ≤ |γ |,
depending only on γ , such that

ZN(λ, π) = (λ(N), π(N)) = R|γ |(λ, π).

In particular, π(N) = π∗ and λ(N) satisfies equation (25). Finally, we have

BN(λ, π) = A|γ |(λ, π) = A|γ |−1(λ, π)A(R|λ|−1(λ, π)) = Aγ Aπ ,1.

As γ is positive, 
γ is compactly contained in 
d × R. In particular, since the sets An

are contained in 
γ , they are also compactly contained in 
d × R. Therefore, since μZ is
equivalent to the Lebesgue measure in 
d and its density is uniformly bounded away from
the boundary of 
d (see §2.2.7), there exists c2 > 0, depending only on γ , such that

μ(An) ≥ c2|An|.
Moreover, by definition of An and equation (24),

|An| ≥ c3|Ân| ≥ c1c3

nC(n)

for some c3 > 0 depending only on γ . Hence,∑
n≥1

μ(An) = +∞ =
∑
n≥1

μ(A2n+N),

since C(n) is an increasing sequence verifying equation (14).
Recalling that 
γ ∈ P |γ |

R
(see equation (21)), it follows by Theorem 5.7 that the set⋂

m≥1

⋃
n≥m

Z−2n(A2n+N)

has full measure in 
R,0. Thus, for a.e. (λ, π) ∈ 
R,0, there exists an increasing sequence
{nk}k≥1 ⊆ N such that

(λ(nk−N), π(nk−N)) ∈ Ank

for all k ≥ 1, where N is as in Claim 2. In particular, it follows from Claim 2 that π(nk) and
λ(nk) verify conditions (1), (2), and (3).

By Claim 2, for any k ≥ 1,

h(nk) = BN(λ(nk−N), π(nk−N))T h(nk−N) = (Aγ Aπ ,1)
T h(nk−N).

Since (Aγ Aπ ,1)
T = AT

π ,1A
T
γ is positive, by equation (23) and the previous equation, there

exists cγ > 0, depending only on γ and d, such that

h
(nk)
α

h
(nk)
β

≥ cγ (27)
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for any k ≥ 1 and any α, β ∈ A. By taking c0 smaller if necessary, we may assume without
loss of generality that c0 < cγ . This proves condition (4).

Since a.e. IET verifying Keane’s condition admits an Oseledet’s filtration associated to
the heights cocycle BT , we may assume that, for (λ, π) as above,

lim
n→∞

log ‖Bn(λ, π)T ‖
n

= θ1,

where θ1 is the biggest Lyapunov exponent associated with (λ, π) and BT (see §2.2.9).
Hence, as h(n) = Bn(λ, π)T 1 for all n ∈ N, it follows that

lim
n→∞

log |h(n)|
n

= θ1.

Notice that since Z is ergodic on 
d × R, the biggest Lyapunov exponent is the same
for a.e. IET as above. Thus, assuming without loss of generality that c0 < θ−1

1 and up
to considering a subsequence of {nk}k∈N, we may assume that condition (5) holds for all
k ≥ 1.

By considering the set

Z−1
( ⋂

m≥1

⋃
n≥m

Z−2n(A2n+N+1)

)
and recalling that Z−1(
R,0) = 
R,1 (up to a zero measure set), it is easy to show that
the same conclusions hold for a.e. (λ, π) ∈ 
R,1. This finishes the proof.
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[19] K. Khanin and S. Kocić. Hausdorff dimension of invariant measure of circle diffeomorphisms with a break

point. Ergod. Th. & Dynam. Sys. 39 (2019), 1331–1339.
[20] K. M. Khanin. Universal estimates for critical circle mappings. Chaos 1(2) (1991), 181–186.
[21] I. Liousse. Nombre de rotation, mesures invariantes et ratio set des homéomorphismes affines par morceaux

du cercle. Ann. Inst. Fourier (Grenoble) 55(2) (2005), 431–482.
[22] S. Marmi, P. Moussa and J.-C. Yoccoz. The cohomological equation for Roth-type interval exchange maps.

J. Amer. Math. Soc. 18(4) (2005), 823–872.
[23] S. Marmi, P. Moussa and J.-C. Yoccoz. Affine interval exchange maps with a wandering interval. Proc.

Lond. Math. Soc. (3) 100(3) (2010), 639–669.
[24] S. Marmi, P. Moussa and J.-C. Yoccoz. Linearization of generalized interval exchange maps. Ann. of Math.

(2) 176(3) (2012), 1583–1646.
[25] H. Masur. Interval exchange transformations and measured foliations. Ann. of Math. (2) 115(1) (1982),

169–200.
[26] V. Sadovskaya. Dimensional characteristics of invariant measures for circle diffeomorphisms. Ergod. Th. &

Dynam. Sys. 29(6) (2009), 1979–1992.
[27] F. Trujillo. Hausdorff dimension of invariant measures of multicritical circle maps. Ann. Henri Poincaré

21(9) (2020), 2861–2875.
[28] W. A. Veech. Gauss measures for transformations on the space of interval exchange maps. Ann. of Math.

(2) 115(2) (1982), 201–242.
[29] M. Viana. Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19(1) (2006), 7–100.
[30] J.-C. Yoccoz. Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie

une condition diophantienne. Ann. Sci. Éc. Norm. Supér. (4) 17(3) (1984), 333–359.
[31] J.-C. Yoccoz. Échanges d’intervalles. Cours au Collège de France, 2005, https://www.college-de-france.fr/

media/jean-christophe-yoccoz/UPL8726_yoccoz05.pdf.
[32] J.-C. Yoccoz. Interval exchange maps and translation surfaces. Homogeneous Flows, Moduli Spaces and

Arithmetic (Clay Mathematics Proceedings, 10). Ed. M. L. Einsiedler, D. A. Ellwood, A. Eskin, D.
Kleinbock, E. Lindenstrauss, G. Margulis, S. Marmi and J.-C. Yoccoz. American Mathematical Society,
Providence, RI, 2010, pp. 1–69.

[33] A. Zorich. Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents.
Ann. Inst. Fourier (Grenoble) 46(2) (1996), 325–370.

[34] A. Zorich. Deviation for interval exchange transformations. Ergod. Th. & Dynam. Sys. 17(6) (1997),
1477–1499.

https://doi.org/10.1017/etds.2024.25 Published online by Cambridge University Press

https://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL8726_yoccoz05.pdf
https://doi.org/10.1017/etds.2024.25

	1 Introduction
	2 Preliminaries
	2.1 Circle maps
	2.1.1 Rotation number
	2.1.2 Dynamical partitions
	2.1.3 Renormalization

	2.2 Interval exchange transformations
	2.2.1 Rauzy–Veech renormalization
	2.2.2 Rauzy classes
	2.2.3 GIETs and combinatorial rotation number
	2.2.4 The lengths cocycle
	2.2.5 The heights cocycle
	2.2.6 Affine IETs
	2.2.7 Zorich acceleration
	2.2.8 Notation for iterates
	2.2.9 Oseledet's splitting

	2.3 P-homeomorphisms as GIETs
	2.4 Hausdorff dimension

	3 Statement of the main results
	3.1 Strategy of proof

	4 Proof of the zero HD criterion
	5 Proof of Theorem 3.2
	5.1 Proof of Lemma 5.2

	Acknowledgements
	References

