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The passive flight of a thin wing or plate is an archetypal problem in flow–structure
interactions at intermediate Reynolds numbers. This seemingly simple aerodynamic
system displays an impressive variety of steady and unsteady motions that are familiar
from fluttering leaves, tumbling seeds and gliding paper planes. Here, we explore the
space of flight behaviours using a nonlinear dynamical model rooted in a quasisteady
description of the fluid forces. Efficient characterisation is achieved by identification of
the key dimensionless parameters, assessment of the steady equilibrium states and linear
analysis of their stability. The structure and organisation of the stable and unstable flight
equilibria proves to be complex, and seemingly related factors such as mass and buoyancy-
corrected weight play distinct roles in determining the eventual flight patterns. The
nonlinear model successfully reproduces previously documented unsteady states such as
fluttering and tumbling while also predicting new types of motions, and the linear analysis
accurately accounts for the stability of steady states such as gliding and diving. While
the conditions for dynamic stability seem to lack tidy formulae that apply universally, we
identify relations that hold in certain regimes and which offer mechanistic interpretations.
The generality of the model and the richness of its solution space suggest implications for
small-scale aerodynamics and related applications in biological and robotic flight.

Key words: flow-structure interactions, swimming/flying, propulsion

1. Introduction
Thin structures falling through fluids exhibit a wide variety of unsteady and steady motions
such as fluttering, tumbling and gliding. Such passive flight systems are canonical areas
of study for aerodynamics at intermediate Reynolds numbers (Re) and the interactions
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of bodies with unsteady flows. Attempts to identify and categorise flight behaviours and
understand their physical origins date back to Maxwell’s discussions about the tumbling
of a thin card or sheet dropped in air (Maxwell 1854). Over recent decades, work on the
so-called falling paper problem has greatly intensified due to interest in related forms of
biological locomotion (Dickinson, Lehmann & Sane 1999; Walker 2002; Bergou et al.
2010; Ristroph et al. 2011; Wang 2016). The aerodynamics of thin wings and plates
undergoing unsteady motions has been interrogated by many methods, including direct
numerical simulations via computational fluid dynamics (Sun & Tang 2002; Pesavento
& Wang 2004; Wang, Birch & Dickinson 2004; Andersen, Pesavento & Wang 2005b),
laboratory experimentation (Sane & Dickinson 2001; Birch & Dickinson 2003; Dickson
& Dickinson 2004; Andersen et al. 2005b; Huang et al. 2013; Li et al. 2022) and
mathematical modelling (Sane & Dickinson 2002; Birch & Dickinson 2003; Dickson &
Dickinson 2004; Andersen et al. 2005a,b; Pesavento 2006; Hu & Wang 2014; Nakata, Liu
& Bomphrey 2015; Li et al. 2022). These and related studies have sought to characterise
force generation mechanisms unique to the flight regime, such as the effect of leading-
edge vorticity and its shedding during wing translation as well as lift modifications due
to pitching rotations (Dickinson et al. 1999; Sane & Dickinson 2002; Walker 2002; Wang
et al. 2004; Fung 2008). This line of work complements related research into the falling
motions of sedimenting plates at lower Reynolds number (Re < 102) (Assemat, Fabre &
Magnaudet 2012; Sun et al. 2024) as well as aeronautical research on plate-wings at high
Reynolds number (Re > 105) (Tobak & Schiff 1981; Tobak & Chapman 1985; Pinsky &
Essary 1994; Goman, Zagainov & Khramtsovsky 1997; Sinha & Ananthkrishnan 2021).

A major goal has been to formulate mathematical force laws for the various contributing
effects during flight and to incorporate these into dynamical models for the free motions
of plate-wings (Farren 1935; Sane & Dickinson 2002; Wang et al. 2012; Wang 2016).
These efforts parallel lift–drag types of laws and flight dynamics models of fixed-wing
aircraft (Wang et al. 2012; Lee et al. 2016). Given the intrinsic unsteadiness in the motions,
flows and forces during passive flight, the suitability of such a framework for the falling
plate problem is not clear a priori. However, there have been notable successes with
quasisteady aerodynamic models that express forces in terms of instantaneous kinematic
state variables, i.e. the plate’s orientation or attack angle, translational and rotational
velocities, etc. (Andersen et al. 2005a; Pesavento 2006; Wang et al. 2012; Huang et al.
2013; Hu & Wang 2014; Nakata et al. 2015). Recent work by Li et al. (2022) represents
the current state of the art for models of the two-dimensional (2-D) problem pertaining to
planar motions of a thin plate, a setting that is recognised as involving much of the essential
physics (Andersen et al. 2005b; Wang et al. 2016; Wang 2016). This nonlinear model built
on and extended previous work to account for lift, drag and added-mass effects associated
with translation and rotation, as well as the torques associated with a dynamic centre of
pressure. The latter was shown to be important to account for the rich variety of motions
displayed by plates of differing centres of mass, including end-over-end tumbling, back-
and-forth fluttering, phugoid-like bounding, gliding and downward diving. Such states
manifest differently in experiments with plastic plates falling in water and paper sheets in
air, and the model was shown to successfully account for observations across these systems
(Li et al. 2022).

As more observations become explainable by flight models, and more aerodynamic
effects and conditions are subsumed within a single framework, new questions arise
and new research directions become available. These include aspects of how the many
different physical parameters defining the plate–fluid system map to the passive-flight
states. Models are particularly well suited to address such issues given their efficiency,
computational ease compared with direct numerical simulations, and versatility compared
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Figure 1. Quantities relevant to the passive flight of a thin plate. (a) A plate of length � and thickness h has
mass m, centre of mass �C M measured from the middle and moment of inertia I . It moves under the action
of gravity (acceleration g) through an ambient fluid of density ρ f and viscosity μ. (b) The centre of static
equilibrium �C E is defined as the balance point for the torques due to weight and buoyancy.

with experiments (Sane & Dickinson 2002; Dickson & Dickinson 2004; Andersen et al.
2005b; Wang 2016). Further, exploration of a given model’s solution space should furnish
new predictions that can be tested against other methods and therefore establish its
applicability in different parameter regimes or drive its further refinement. Such work is
motivated by the many potential applications. Quasisteady modelling has already proven
highly effective for insect flight (Birch & Dickinson 2003; Liu 2005; Bergou et al. 2010;
Ristroph et al. 2010, 2011, 2013), and other forms of motion and locomotion through air
and water such as plant seed dispersal or finned propulsion may similarly benefit (Liu
2005; Miller et al. 2012; Wang et al. 2018; Certini 2023). For engineered systems such as
small-scale flying and swimming vehicles and robots, accurate models could accelerate the
design process and integrate into actuation and control schemes (Ellington 1999; Keennon,
Klingebiel & Won 2012; Ristroph & Childress 2014; Jafferis et al. 2019).

In this work, we build on the model of Li et al. (2022) to undertake an exploration
of the space of passive-flight patterns across the widely ranging scales and conditions
commonly accessed in aerial and aquatic environments. Dimensional analysis allows us to
reduce the complexity of the parameter space for plates of various physical characteristics
moving through fluids of differing material properties, and stability analysis of equilibrium
solutions to the model yields maps that help to predict and characterise the flight
behaviours. These investigations show that the full gamut of flight motions arise across
the space of parameters, and that any given state such as gliding can be achieved in
distinct ways. This work also spurs useful refinements of the model, furnishes formulae
for the stability of steady motions and leads to predictions of new unsteady motions,
whose existence may be validated or refuted in future experiments and/or direct numerical
simulations. Overall, these results reveal an unexpectedly complex space of passive-
flight behaviours that can, however, be organised and understood through the presented
modelling and analysis techniques.

2. Dimensional and scaling analyses
We seek to establish dimensionless groups of variables with which to describe the general
problem of a rigid plate of arbitrary mass distribution that passively falls under gravity
through a Newtonian fluid. We follow previous works and address the 2-D problem
(Sane & Dickinson 2002; Andersen et al. 2005a; Hu & Wang 2014; Li et al. 2022).
The situation is characterised by the eight dimensional quantities shown in figure 1(a).
There are five quantities intrinsic to the plate: chord length, �; thickness, h; centre of
mass, �C M ; the 2-D mass, m, as measured per unit span; and 2-D moment of inertia, I .
There are three additional environmental quantities: fluid density, ρ f ; dynamic viscosity,
μ; and the gravitational acceleration, g. These eight total quantities may be reduced by the
Buckingham π theorem to five dimensionless groups (Logan 2013). Reasonable choices
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Quantity Definition Range

Centre of equilibrium, �∗
C E �∗

C M/W ∗ [0, ∞)

Effective weight, W ∗ 1 − (ρ f h�/m) (0, 1)

Mass, M∗ m/πρ f (�/2)2 (0, ∞)

Moment of inertia, I ∗ 2I/πρ f (�/2)4 (0, ∞)

Reynolds number, Re
√

2W ∗mgρ f �/μ (102, 105)

Table 1. Summary of dimensionless quantities and their ranges for the problem of a thin plate falling
passively under gravity through a fluid.

consistent with the aerodynamics literature are (Andersen et al. 2005a; Li et al. 2022)

�∗
C M = �C M

�
, h∗ = h

�
, M∗ = m

πρ f

(
�

2

)2 , I ∗ = I

1
2
πρ f

(
�

2

)4 , Re =
√

2mgρ f �

μ
.

(2.1)

Respectively, these correspond to the normalised centre of mass, the thickness aspect ratio,
the mass of the plate relative to the fluid, the relative moment of inertia and the Reynolds
number Re = ρ f U�/μ based on a speed scale U = √

2mg/ρ f � set by balancing weight
with a fluid force of the usual high-Re form that increases quadratically with speed.

Anticipating applications for different fluids, we consider a related set of parameters
that explicitly includes the effect of buoyancy. To this end, it is convenient to define
the dimensionless form of the buoyancy-corrected weight W ∗ = (W − B)/W = 1 −
ρ f hl/m = 1 − 4h∗/π M∗. The last two expressions hold specifically for a plate of
rectangular cross-section, and the final form indicates that W ∗ may replace h∗ in the
dimensionless set of variables. Further, the Reynolds number is readily modified by
replacing the weight with its buoyancy-corrected form: mg → W ∗mg (Amin et al. 2019).
We also replace the centre of mass with the more general centre of static equilibrium,
which is the location at which the torques due to buoyancy and weight balance in a
static situation without flow (Li et al. 2022). Torque balance based on the force diagram
of figure 1(b) leads to the relation �C E = �C M/W ∗. In summary, the selected five
dimensionless groups can be expressed in terms of the eight dimensionful plate–fluid
quantities as

�∗
C E = �C M

W ∗�
, W ∗ = 1 − ρ f hl

m
, M∗ = m

πρ f

(
�

2

)2 , I ∗ = I

1
2
πρ f

(
�

2

)4 ,

Re =
√

2W ∗mgρ f �

μ
. (2.2)

These parameter definitions are summarised in table 1 along with their ranges.
The variables �∗

C E , W ∗, M∗ and I ∗ will appear throughout our study, and we will
examine their effect within a model. The parameter Re will not appear explicitly since the
aerodynamic coefficients (e.g. lift, drag and added mass) are assumed to be independent of
Reynolds number over the intermediate range (102 to 105) of interest here. The model and
our results strictly pertain to thin plates in accordance with the expressions in (2.2) and
with the assumption that the aerodynamic coefficients are independent of the slenderness
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Figure 2. Real-world flight systems occupy different regions of the parameter space. The selected examples
vary in size and composition and occupy either air or water, and they rely on thin structures operating at
intermediate Reynolds numbers. Proceeding roughly from top to bottom, shown are a flying squirrel, an
autonomous gliding water craft, a gliding air vehicle, a bird, a paper aeroplane, a particulate of marine snow,
a snowflake, an aluminium plate in water, a scallop, a seed, a butterfly, an acrylic plate in water, a stingray in
water and a fish.

ratio h/�. The work of Li et al. (2022) showed good agreement of such a model with
experiments conducted for h/� = 0.001 and 0.1. The form of the model may be more
generally relevant to the flight of slender wings whose shape and Reynolds number would
dictate the model coefficients. One may also reasonably apply our results to flight systems
composed of a thin wing as the aerodynamically relevant surface and other structures that
experience significantly weaker fluid forces but nonetheless contribute (perhaps strongly)
to mass, buoyancy, centre of mass, moment of inertia, etc. For example, a gliding bird
could be crudely viewed in this way as composed of wings and a body (fuselage).

2.1. Survey of intermediate-Re passive fliers
The need for a general analysis of the passive flight problem is motivated by the
widely ranging parameter values characterising the relevant systems. In figure 2 we
place some representative fliers on the three-dimensional (3-D) map defined by the
quantities (W ∗, M∗, I ∗), whose values can be estimated from information in the literature
(Appendix A). The examples displayed include laboratory idealisations involving metal or
plastic plates in water; the everyday case of paper in air; flying animals such as insects,
mammals and birds; swimming animals such as molluscs, fish and rays; plant seeds;
biomimetic robots; and abiotic fliers such as marine snow and airborne snowflakes. What
these have in common is that all have thin structures that dictate their intermediate-Re
motions through fluids. Note that the parameter �∗

C E is not shown since reliable data
are generally not available. In addition, the displayed parameters should be understood
as rough estimates, and hence the figure is intended only to convey that the relevant values
span orders of magnitude.

Some further details give greater appreciation for the diversity among the relevant
systems. Proceeding generally top to bottom, shown in figure 2 are a flying squirrel
(Glaucomys volans) (Thorington Jr & Heaney 1981), an autonomous gliding water vehicle
(Wood & Inzartsev 2009), an autonomous gliding air vehicle (Wood et al. 2007), a
bird (Uria aalge) (Berg & Rayner 1995), a paper aeroplane (Li et al. 2022), a flake of
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Figure 3. Definitions of dynamic quantities. (a) A snapshot of the plate. The centre of mass has location
(x, y) in the laboratory frame and translates with velocity vC M , and the plate has posture given by the angle
θ and rotates with angular velocity ω. The primed frame corotates with the plate, and the angle of attack α

is that of the centre of volume velocity vCV relative to the x ′ axis. (b) Free body diagram of the forces. The
net aerodynamic force F acts at the centre of pressure �C P , the weight W acts at the centre of mass and the
buoyancy B acts at the centre of volume (middle).

marine snow (Passow et al. 2012), a snowflake (Langleben 1954), an aluminium plate in
water (Andersen et al. 2005b), a scallop (Placopecten magellanicus) (Cheng, Davison &
Demont 1996), a seed (Alsomitra macrocarpa) (Ennos 1989; Viola & Nakayama 2022), a
butterfly (Papilio ulysses) (Hu & Wang 2010), a plastic plate in water (Li et al. 2022), a
stingray in water (Dasyatis pastinaca) (Yigin & Ismen 2012) and a flounder (Paralichthys
olivaceus) (Takagi et al. 2010). As detailed in Appendix A, the parameters (W ∗, M∗, I ∗)
are computed as order-of-magnitude estimates based on reported values of the relevant
morphological parameters and dimensions.

Can a single model usefully apply across such large variations in parameter values? Are
steady motions such as gliding only available in restricted regions of the space, or are
they generally accessible? How does the stability of such states vary with the parameters?
These are some of the questions motivating the work presented here.

3. Existence and uniqueness of free-flight equilibrium states
Our characterisations start by seeking to identify the equilibrium flight states that satisfy
zero net force and torque and which therefore involve steady translation and rotation. Such
motions are specified by the constant values of three kinematic variables, which would
generally be the rotation rate ω and the two components of the centre of mass velocity
vC M = (vC M

x , vC M
y ). These and other free-flight variables are defined in figure 3(a).

However, rotation can be immediately excluded on the basis that such states generally
involve time-dependent fluid forces and torques. It is therefore the special cases with ω = 0
that are of interest, for which we instead choose the orientation angle θ defined relative to
the vertical and the velocity v, which is the same for any point on the wing. Equivalently,
the state is specified by θ , the speed v = |v|, and angle of attack α from the plate surface to
its velocity vector. These three kinematic constants combine with the many dimensional
parameters (eight for rectangular plates) characterising the wing-fluid system by a grand
total of 11 quantities which specify the wing–fluid-flight system. These quantities are not
independent, and we seek a minimal subset of parameters whose values must be specified
in order to determine the others.

Here we claim a correspondence principle that we will later show holds mathematically
within our model and which may apply in a looser sense to real flight systems: specifying
the static quantities that arise for a wing fixed in a wind tunnel setting determines the full
set of dynamical quantities involved in its free-flight equilibrium at the same relative flow
conditions. That is, for a wing of given geometry (shape and size) fixed in a given fluid
(density and viscosity) under steady flow conditions (attack angle and speed), one can
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(a) (b) (c)

θ θ
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W ′
W ′

 = W – B

g g vCV

vv

�C E = �C P

α′
�C P (α′)

F(v, α′)
F F

Figure 4. The aerodynamic conditions of a fixed wing in a wind tunnel flow can be identically realised as an
equilibrium state of free flight. (a) A plate held fixed at attack angle α′ > 0 in a wind tunnel of flow speed v

experiences an aerodynamic force F(v, α′) that acts at the centre of pressure �C P (α′). (b) The entire plate–
tunnel system can be rotated so that F points directly upwards, which determines the orientation angle θ . The
plate can then be released under gravity, and its total mass may be assigned such that |W ′| = |F| in order
to achieve force balance. The mass may be distributed such that �C E = �C P , which ensures torque balance.
(c) A change of reference frames indicates that the same conditions can be achieved as an equilibrium motion
through quiescent fluid. Note the wind-tunnel convention defines the attack angle α′ as that of the plate relative
to the upstream direction, whereas the free-flight angle α = −α′ is defined here as that of the plate velocity
vector relative to the x ′ axis.

determine the remaining factors (orientation and trajectory of the wing, its mass, centre
of mass and moment of inertia) needed to achieve the same aerodynamic conditions as an
equilibrium motion through the fluid under gravity. This equilibrium may or may not be
aerodynamically stable and hence may or may not be maintained as a free-flight state.

The argument starts in the wind tunnel setting, where a wing is held fixed in a steady
uniform flow of speed v at angle of attack α′, defined as that of the plate relative to the
flow as shown in figure 4(a). These factors determine the aerodynamic force F due to
pressure and the centre of pressure �C P , which is the effective point of action. The entire
wing-tunnel system can be rotated to make F point vertically upwards as in figure 4(b).
This determines the plate orientation angle θ while keeping α′ and v at their prescribed
values. The wing may then be released from rest within this inclined flow. Force balance
is achieved only if the fluid force balances the buoyancy-corrected weight, F = W − B,
which therefore determines the mass m since the buoyancy is fixed by the prescribed
geometry. Torque balance is achieved only by matching the pressure and equilibrium
centres, �C P = �C E , which determines the centre of mass �C M . The wing may now hover
in place within the inclined flow. Invoking Galilean relativity as in figure 4(c), the same
aerodynamic conditions are realised in free flight through a quiescent fluid by a downward
trajectory of the wing at speed vCV = v and α = −α′, defined here as that of the velocity
vector relative to the plate. The moment of inertia I is undetermined but irrelevant, i.e.
any identified equilibrium may be achieved for any value of I > 0. This specifies the sense
in which free-flight equilibria exist and are unique.

Note that α′ = 0 is a special case in that there is no torque, �C P is undefined and �C E
is thus undetermined. While any location of the centre of mass is permissible, the other
free-flight factors such as mass, velocity and attack angle are determined according to the
reasoning given above.

In summary, this argument takes as inputs the wing geometry (for a plate, � and h), the
fluid and environmental parameters (ρ f , μ and g), and the usual wind tunnel quantities
(α′ and v) and from these determines the remaining quantities (θ , m and �C M , with I free)
needed to completely specify a free-flight equilibrium state. This argument is not unique,
e.g. one could take the plate mass m and free-flight attack angle α as inputs to determine
the speed v. We will later analyse equilibria of a dimensionless version of a flight model
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(a) (b) (c)

vCV

vCV
vCV vCV

vCV

α′ ∈ (0°, 90°)

α ∈ (0°, 90°)

α ∈ (–90°, 0°)

α′ = 0°

α = 0° α = –180°

α = ± 90°

α′ = 90°

Figure 5. Three types of free-flight equilibria of a plate. (a) Gliding involves constant speed motion along
a sloped trajectory and with an acute angle of the plate. Each attack angle α′ ∈ (0, π/2) = (0◦, 90◦) as
conventionally defined for the wind tunnel setting admits two free-flight states with α = ±α′ corresponding
to leftward and rightward gliding. (b) Diving involves constant speed descent directly downward and with
edgewise posture of the plate. For a given value of �∗

C E � 0, two such states exist. (c) Pancaking involves
constant speed descent directly downward and with broadside-on posture. This is achieved only for �∗

C E = 0,
and thus the two states are physically identical and degenerate.

to show that α can be taken as the sole input that determines (θ, vCV ∗, �∗
C E ), with W ∗, I ∗

and M∗ being free. The resulting map (α, W ∗, M∗, I ∗) to (θ, vCV ∗, �∗
C E ) is then exploited

to simplify the stability analysis of the equilibria.
Implicit in the above argument are conditions that are often assumed in aerodynamic

contexts and which will be exactly satisfied within our quasisteady framework. The fluid
force and torque must derive dominantly from pressure, as expected for sufficiently high
Reynolds number (Re > 102) (Tritton 2012). The forces are assumed steady, as expected
for low α and stably attached boundary layer flows at sufficiently low Reynolds number
(Re < 105) (Anderson 2011; Schlichting & Gersten 2016). (Alternatively, one may consider
the force balances defining the equilibria as applying in the time average.) Slenderness
of the wing is needed so that the centre of pressure is well defined via integrals along
the centreline of the pressure difference across the surface: �C P = ∫

xp(x)dx/
∫

p(x)dx .
For a given wing geometry, the pressure centre �C P(α′) is assumed to depend only
on the attack angle. Finally, for a given wing at fixed α′ in a given directed flow, the
fluid force F is assumed to have a unique direction and its magnitude has a one-to-
one (bijective) relationship with the relative flow speed. Such conditions are expected
insofar as the flow state is unique for a given set of conditions and for pressure forces
that typically increase quadratically with speed at moderate to high Re (Anderson 2011;
Tritton 2012).

3.1. Equilibrium states for plates
The fixed- and free-flight correspondence principle readily allows all equilibria to be
tabulated based on the attack angle, and the possibilities are depicted in figure 5. For
this purpose, it is helpful to distinguish two notions of the angle of attack. The static angle
α′ ∈ [0, π/2] = [0◦, 90◦] is relevant to the fixed configuration of a wind tunnel, where
the limited range is sufficient for completely specifying the aerodynamic properties of
a plate given its fore–aft and up–down symmetries. The dynamic angle α ∈ [−π, π) =
[−180◦, 180◦) is relevant to free flight, where the full range is needed to completely specify
the flight state and allow for all possible directions of the velocity vector relative to the
plate’s x ′-axis.
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We use the term gliding for those states with strictly acute static angle α′ ∈ (0, π/2) =
(0◦, 90◦), as shown in figure 5(a). For a given static α′, there are two available free-flight
motions that take the form of leftward and rightward descent along linear trajectories for
which the dynamic angles are α = ±α′. It will be shown that gliding at a given α′ is
associated with a unique value of the equilibrium centre �∗

C E .
We introduce special terms for the equilibria at the two extremes of α′. We use the term

diving for those states with α′ = 0 = 0◦, which involve edge-on and strictly downward
descent as shown in figure 5(b). For a given �∗

C E > 0, there are two available free-flight
motions that take the form of bottom-heavy diving with α = 0 = 0◦ and top-heavy diving
with α = −π = −180◦. The two are distinguished by whether the centre of equilibrium is
displaced towards the leading or trailing edge, and they are degenerate for the symmetric
case of �∗

C E = 0. Diving is exceptional in that torque balance is achieved for all values of
�∗

C E � 0, as the weight and aerodynamic force both act parallel to the plate, and it will
necessitate a separate analysis of stability. We use the term pancaking for those states with
α′ = π/2 = 90◦, which involve broadside-on and strictly downward descent as shown in
figure 5(c). These states will be shown to exist only for the symmetric case �∗

C E = 0. In
principle, they take the form of two motions with α = ±π/2 = ±90◦, which, however,
are degenerate and physically indistinguishable. Within our quasisteady model and its
analysis, pancaking is simply a particular case of gliding that requires no special treatment.

4. Flight dynamics model and numerical solutions
We propose and analyse a dynamical system for the problem of a falling plate that builds on
and extends the work of Li et al. (2022). The model expresses the Newton–Euler equations
for planar (2-D) motion with forces and torques due to gravity (weight), fluid-static effects
(buoyancy) and fluid-dynamic effects (pressure, skin friction, added mass, etc.). As shown
in figure 3(a), the plate has centre-of-mass position (x, y) in the laboratory (fixed) frame
and centre-of-mass velocity vC M = (vC M

x , vC M
y ). Its instantaneous orientation angle is θ

and its angular velocity is ω. It proves most convenient to express the dynamical variables
in a frame that rotates with the plate, e.g. (vC M

x ′ , vC M
y′ ), where the prime indicates the

corotating frame (figure 3a). The aerodynamic forces and torques are expressible in terms
of the motion of the geometric middle or centre of volume (CV),

vCV
x ′ = vC M

x ′ = vx ′ and vCV
y′ = vC M

y′ − ω�C M = vy′ − ω�C M , (4.1)

where we suppress the superscript CM hereafter for ease of notation. The dynamics take
the form of a system of nonlinear, coupled ordinary differential equations (ODEs) whose
dimensional form is given by

ẋ = vx ′ cos θ − vy′ sin θ,

ẏ = vx ′ sin θ + vy′ cos θ,

θ̇ = ω,

(m + m11) ˙vx ′ = (m + m22) ωvy′ − m22ω
2�C M + Lx ′ + Dx ′ − m′g sin θ,

(m + m22) ˙vy′ = −(m + m11)ωvx ′ + m22ω̇�C M + L y′ + Dy′ − m′g cos θ,

(I + Ia) ω̇ = τT + τRL + τRD + τB . (4.2)

This model is identical to that of Li et al. (2022) with the exception of the term τRL , which
is newly added here and will be discussed below. The first three equations relate positions
and angle to their respective velocities, and the last three equations are the Newton–
Euler equations for the accelerations induced by forces and torques. Added mass effects
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are associated with terms involving the coefficients m11 = 0, m22 = πρ f �
2/4 and Ia =

Ia(�C M = 0) + m22�
2
C M = πρ f �

4[1 + 8(2�C M/�)2]/128, where the expressions hold for
an infinitesimally thin plate. The lift L and drag D terms are detailed below and expressed
in terms of the velocities and posture of the plate, with force coefficients that were
empirically determined by Li et al. (2022) for intermediate Re. Aerodynamic effects also
induce torques that are decomposed into τT , τRL and τRD according to their association
with lift and drag from wing translation (subscript T), lift from rotation (subscript RL)
and drag from rotation (subscript RD). Finally, buoyancy effects are accounted for in the
corrected mass m′ = (ρs − ρ f )V = (ρs − ρ f )h� for a plate of homogeneous density ρs
and 2-D volume V , as well as in the torque τB about the centre of mass. These quantities
are defined as follows:

LT = 1
2
ρ f �CL(α)

√
v2

x ′ + (vy′ − ω�C M )2(vy′ − ω�C M , −vx ′),

L R = −1
2
ρ f �

2CRω(vy′ − ω�C M , −vx ′),

L = LT + L R,

D = −1
2
ρ f �CD(α)

√
v2

x ′ + (vy′ − ω�C M )2(vx ′, vy′ − ω�C M ),

τT = −1
2
ρ f �

√
v2

x ′+(vy′ − ω�C M )2
[
CL(α)vx ′+CD(α)(vy′ − ω�C M )

]
[�C P(α) − �C M ] ,

τRL = 1
2
ρ f �CRωvx ′(�C M − �C RL),

τRD = − 1
128

Cπ/2
D ω|ω|[(2�C M/� + 1)4 + (2�C M/� − 1)4],

τB = −ρ f gh��C M cos θ. (4.3)

The various aerodynamic coefficients are largely taken from Li et al. (2022), where
they were determined by theoretical considerations and experimental measurements. The
rotational lift coefficient CR = 1.1 is taken is a constant, which was shown in previous
models to adequately reproduce observations from experiments and direct numerical
simulations (Pesavento & Wang 2004;Andersen et al. 2005a, b; Pesavento 2006). Lacking
any information on the centre of rotational lift, we take it to be �C RL = 0. Other quantities
are assumed to depend on the dynamic attack angle α = arctan[(vy′ − �C Mω)/vx ′ ],
including the lift coefficient CL(α), drag coefficient CD(α) and centre of pressure �C P(α).
The following expressions from Li et al. (2022) are appropriate for angles α ∈ [0, π/2] =
[0◦, 90◦]:

CL(α) = f (α)C1
L sin α + [1 − f (α)]C2

L sin(2α),

CD(α) = f (α)
(
C0

D + C1
D sin2 α

) + [1 − f (α)]Cπ/2
D sin2 α,

�C P(α)/� = f (α)
(
C0

C P − C1
C Pα2) + [1 − f (α)]C2

C P [1 − α/(π/2)],
f (α) = [1 − tanh(α − α0)/δ]/2. (4.4)

Here, the constant prefactors are C1
L = 5.2, C2

L = 0.95, C0
D = 0.1, C1

D = 5.0, Cπ/2
D = 1.9,

C0
C P = 0.3, C1

C P = 3.5, C2
C P = 0.2, α0 = 14◦ and δ = 6◦. The logistic function f (α) plays
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Figure 6. Aerodynamic force characteristics of a thin plate at intermediate Re as determined by the
experimental tunnel measurements of Li et al. (2022). (a) Lift and drag coefficients as functions of the attack
angle α′ ∈ [0, π/2] = [0◦, 90◦], whose range covers all unique postures relative to the flow. Stall is evident in
the drop in lift near α′ = 15◦. (b) The centre of pressure location along the plate. Stall leads to a non-monotonic
form of the curve. The value at α = 0 is undefined as the force is parallel to the plate surface.

the mathematical role of an indicator function that smoothly transitions between different
expressions appropriate for low attack angle (α < α0) where one expects an attached
leading-edge vortex or so-called separation bubble and higher attack angle (α > α0) where
the flow fully separates and stall occurs (Smith, Pisetta & Viola 2021). The aerodynamics
therefore differs markedly from classical airfoil theory (Anderson & Bowden 2005;
Anderson 2011). Figure 6 shows the corresponding curves identified in water tunnel
experiments by Li et al. (2022), where they were shown to account for experimental
observations on plates of thickness ratios h/� = 10−3 to 10−1 and Reynolds numbers
Re = 102 to 104. The above expressions are readily extended throughout α ∈ [−π, π) =
[−180◦, 180◦) based on symmetries as explained in Li et al. (2022), which allows the
model to address arbitrary motions during free flight.

4.1. Torque from rotational lift
We give extra consideration to the torque from rotational lift τRL as it is the only new
addition to the model presented in Li et al. (2022). That work included rotational lift
L R as a Magnus-like force that is associated with the combined translation and rotation
of a wing and which scales with the product of the two respective speeds (Munk 1925;
Kramer 1932; Sane 2003). However, no associated torque was included, and indeed to
our knowledge no previous work has addressed a possible torque contribution from this
effect. Its omission in the model of Li et al. (2022) is conceptually problematic, since the
absence of an associated torque implies that this force always acts at the centre of mass.
This violates the fundamental physical principle that all fluid dynamical effects depend
only on the outer shape and motion of a structure and do not directly ‘know’ about aspects
of mass and its distribution inside the structure.

We propose a remedy in which the rotational lift force L R is associated with an effective
point of action or centre �C RL . This is analogous to how pure translation gives rise to
pressure forces (translational lift and drag) that act at the centre of pressure. As such, the
expression for τRL = L Ry′ (�C M − �C RL) in (4.3) follows directly from that for L R . The
centre of rotational lift �C RL could in principle vary with attack angle and perhaps other
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dynamical quantities, but such information seems unavailable in the literature. To avoid
introducing any unsubstantiated dependencies, we opt for the simplest choice of �C RL = 0,
i.e. the rotational lift always acts at the middle of the plate. This choice could be viewed
as consistent with previous models of Andersen et al. (2005a, b) that included rotational
lift without any associated torque for symmetrically weighted plates, which have �C M = 0
and hence τRL = 0 only if �C RL = 0. Future experiments or numerical simulations may
provide more information about this effect, and the model may be updated accordingly.

4.2. Dimensionless form of dynamical system
Non-dimensionalisation of the ODE system leads to equivalent expressions that involve
the aforementioned dimensionless variables (�∗

C E , W ∗, M∗, I ∗, Re). We choose the
characteristic length scale to be � and time scale to be �/U , recalling the characteristic
speed U = √

2W ∗mg/ρ f �. The dynamical system then becomes

ẋ∗ = v∗
x ′ cos θ − v∗

y′ sin θ,

ẏ∗ = v∗
x ′ sin θ + v∗

y′ cos θ,

θ̇ = ω∗,

M∗ ˙vx ′ ∗ = (
1 + M∗) ω∗v∗

y′ − (ω∗)2W ∗�∗
C E + L∗

x ′ + D∗
x ′ − 2

π
sin θ,

(
1 + M∗) ˙vy′ ∗ = −M∗ω∗v∗

x ′ + ω̇∗W ∗�∗
C E + L∗

y′ + D∗
y′ − 2

π
cos θ,[

I ∗ + 1 + 32(W ∗�∗
C E )2

4

]
ω̇∗ = τ ∗

T + τ ∗
RL + τ ∗

RD + τ ∗
B . (4.5)

The aerodynamic forces and torques are given by

L∗
T = 2

π
CL(α)

√(
v∗

x ′
)2 + (

v∗
y′ − ω∗�∗

C M

)2(
v∗

y′ − ω∗�∗
C M , −v∗

x ′
)
,

L∗
R = − 2

π
CRω∗(v∗

y′ − ω∗�∗
C M , −v∗

x ′
)
,

L∗ = L∗
T + L∗

R,

D∗ = − 2
π

CD(α)

√(
v∗

x ′
)2 + (

v∗
y′ − ω∗�∗

C M

)2(
v∗

x ′, v∗
y′ − ω∗�∗

C M

)
,

τ ∗
T = −16

π

√(
v∗

x ′
)2 + (

v∗
y′−ω∗�∗

C M

)2
[
CL(α)v∗

x ′+CD(α)
(
v∗

y′ − ω∗�∗
C M

)][
�∗

C P(α)−�∗
C M

]
,

τ ∗
RL = −16

π
CRω∗v∗

x ′
(
�∗

C M − �∗
C RL

)
,

τ ∗
RD = − 1

4π
Cπ/2

D ω∗|ω∗|
[(

2�∗
C M + 1

)4 + (
2�∗

C M − 1
)4

]
,

τ ∗
B = −16

π
(1 − W ∗)�∗

C E cos θ. (4.6)

Here �∗
C P = �C P/� and �∗

C M = �C M/� = W ∗�∗
C E . The Reynolds number Re is the only

dimensionless variable that does not appear explicitly. It should be viewed as implicit in the
coefficients CR , CL , CD and �C P which are modelled here as independent of Re over the

1014 A24-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
27

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10275


Journal of Fluid Mechanics

10

8

6

4

2

0

1.0

0.5

0 0 0.1 0.2 0.3

�C E

W

M

Figure 7. Sample trajectories produced by the flight dynamics model reveal a variety of behaviours. Different
values of the parameters (�C E , W, M) for fixed I = 0.1 are marked on the 3-D flight map, and the displayed
plate motions result from identical initial conditions. Steady terminal states include gliding (light blue) at
different attack angles and diving (dark blue) but pancaking is never observed. Periodic states include fluttering
(red), progressive fluttering (orange), bounding (green) and meandering (pink). Aperiodic and apparently
chaotic motions (grey) with bouts of tumbling are also observed.

intermediate range of interest. Similarly, the aerodynamic effect of the slenderness ratio
h/� is included implicitly in these coefficients which are modelled here as independent
in the thin-plate limit h/� � 1. The static effect of h/� due to weight and buoyancy is
explicitly included via W ∗.

4.3. Survey of numerical solutions to the model
To give a sense of the types of motions produced by the model, we present in figure 7 a
variety of flight trajectories that arise as numerical solutions of the dynamical system for
different parameter values. We hereafter work with the dimensionless system of equations,
(4.5) and (4.6), and drop the asterisks on (�C E , W, M, I ). These parameters serve as
inputs to a ‘flight simulator’ code that numerically integrates the ODEs in MATLAB
via the built-in solver ode15 s. The survey shown in figure 7 explores the parameters
(�C E , W, M) for fixed I = 0.1, which is representative in that other values of I produce
similarly diverse sets of motions. Each case is marked by a point in parameter space, and
the corresponding numerical solutions are displayed as snapshots of the plate orientation
and location over time. All are released with the same initial conditions, and the resulting
terminal or long-time motions vary greatly depending on the inputs.
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These samplings of the solution space may be familiar from fluttering leaves, erratically
tumbling confetti and flying paper planes. Some cases lead to steady motions such
as sideways gliding (light blue) or downward diving (dark blue). Other cases lead to
periodic behaviours such as back-and-forth fluttering with swoops punctuated by sharp
reversals (red, orange), phugoid-like bounding with swoops of a single direction (green)
or downward meandering along a smoothly winding course (pink). Others seem chaotic
with bouts of end-over-end tumbling but lacking any repeated pattern (grey). The same
flight pattern may be achieved for significantly different parameter values, and conversely
a small change in parameters may lead to substantially different motions.

These explorations make clear the great complexity of the flight space encompassing
how the governing parameters map to the eventual dynamical behaviour. Importantly, a
major result of this work is that one or more of the steady motions (gliding, pancaking
and diving) exist as equilibrium solutions at any given point in parameter space. That such
states emerge as solutions to the nonlinear model in some regions of parameter space and
not others motivates the forthcoming stability analysis. More generally, the identification
of equilibrium states and assessment of their stability will provide a way to systematically
characterise the structure and organisation of the flight space.

5. Analytical forms of the free-flight equilibria
The dynamical flight model admits analytical expressions for the equilibrium states. Here
we continue working with the dimensionless system of equations, (4.5) and (4.6), without
the asterisks on the dimensionless parameters (�C E , W, M, I ). Recalling the reasoning
of § 3, equilibria must have ˙vx ′ = ˙vy′ = ω = 0 and so the non-trivial relations in (4.5)
reduce to

0 = Lx ′ + Dx ′ − (2/π) sin θ,

0 = L y′ + Dy′ − (2/π) cos θ,

0 = τT + τB . (5.1)

Since M and I do not appear in these relations, the claim from § 3 that neither parameter
determines the equilibria is proven. That is, if an equilibrium is identified, it may be
achieved for any value of either parameter. In contrast, �C E and W appear in the τB term
per (4.6). Expanding the above equations via the definitions in (4.6) yields√

v2
x ′ + v2

y′
[
CL(α)vy′ − CD(α)vx ′

] = sin θ,

−
√

v2
x ′ + v2

y′
[
CL(α)vx ′ + CD(α)vy′

] = cos θ,√
v2

x ′ + v2
y′

[
CL(α)vx ′ + CD(α)vy′

]
[�C P(α) − W�C E ] = (W − 1)�C E cos θ. (5.2)

In what follows, we simplify the notation by suppressing the functional dependencies
on α for CL , CD and �C P . One can show by manipulating (5.2) and invoking the four-
quadrant inverse tangent definition of the dynamic attack angle α that solutions exist
for the subset of values α ∈ [−90◦, 90◦] ∪ {−180◦}, these corresponding to downward
trajectories. Equivalently, steady-state solutions exist only for static attack angles α′ ∈
[0◦, 90◦]. The general solution to all equilibria has the form

(vx ′, vy′, cos θ, �C E )=
⎛
⎝ cos α(

C2
L + C2

D

)1/4 ,
sin α(

C2
L + C2

D

)1/4 , −CL cos α + CD sin α√
C2

L + C2
D

, �C P

⎞
⎠ .

(5.3)
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Figure 8. Laboratory frame quantities for equilibrium states as a function of static centre of equilibrium.
(a) Dimensionless flight speed achieved during pancaking (�C E = 0), gliding (�C E ∈ (0, 0.3)) and diving
(�C E � 0.3). (b) Glide angle γ measured relative to the horizontal. (c) Corresponding glide ratio G representing
the horizontal distance travelled per unit distance of fall.

The parameter W does not appear, having dropped out of the equilibrium solution upon
assigning �C E = �C P . This completes the proof of the claim in § 3 that α can be taken as
the sole input that determines the equilibrium values of vCV , θ and �C E , with W , I and
M being free.

Gliding, diving and pancaking are specific instances within the general set
of solutions. Gliding states are those solutions with α ∈ (−π/2, 0) ∪ (0, π/2) =
(−90◦, 0◦) ∪ (0◦, 90◦), or equivalently α′ ∈ (0, π/2) = (0◦, 90◦). These arise in pairs of
leftward and rightward gliding of oppositely signed α = ±α′ and orientation angles θ

differing by π = 180◦. Diving states are those solutions with α = {0, −π} = {0◦, −180◦},
corresponding, respectively, to bottom- and top-heavy postures, both of which have α′ = 0.
Manipulation of (5.2) shows �C E to be a free variable rather than one constrained by �C P .
The solution pair for diving is

(vx ′, vy′, θ, �C E ) =
(

± 1√
CD

, 0, ∓π

2
= ∓90◦, �C E � 0

)
. (5.4)

Pancaking states are the pair of solutions with α = ±π/2 = ±90◦ or α′ = π/2 = 90◦,

(vx ′, vy′, θ, �C E ) =
(

0, ∓ 1√
CD

, −π = −180◦ or 0 = 0◦, 0
)

, (5.5)

which are physically indistinguishable and thus degenerate.
In the laboratory frame, the equilibrium solutions take the form of steady motion at

constant speed v along a straight trajectory of angle γ relative to the horizontal,

v = 1(
C2

L + C2
D

)1/4 , γ = α + θ and G = 1/ tan γ. (5.6)

Here the glide ratio G is the horizontal distance travelled per unit vertical distance of
fall. These dimensionless quantities depend on α and can therefore be recast in terms
of �C E , as shown in figure 8(a–c). Pancaking (�C E = 0) and diving (�C E � 0.3) involve
direct downward descent and hence γ = 90◦ and G = 0. Gliding states have G > 0, and a
maximal value of G = 3.8 is seen near �C E = 0.22, i.e. around the quarter-chord point (Li
et al. 2022).

In the following stability analyses, it will be sufficient to confine our attention to
those states with α ∈ [0, π/2] = [0◦, 90◦]. That is, we need not concern ourselves with
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distinguishing the paired states, since they share the same stability. The exception is
top-heavy diving with α = −π = −180◦, which, however, can be dismissed as statically
unstable for all parameters.

6. Stability of gliding states
With the dynamical system fully defined and its equilibrium solutions identified, we
now seek to understand the parameter ranges for which the equilibria are stable. As
such, we conduct a linear stability analysis. Due to the mathematical complexity of the
model and its many terms, analytical derivations are available but extremely cumbersome
and so we instead employ symbolic computational methods. We develop a code base
written in MATLAB that (i) computes equilibria of the ODE system equations (4.5),
(ii) symbolically linearises the system about a given equilibrium state and then (iii)
assesses the corresponding stability using eigenvalue analysis. Here we again work with
the dimensionless variables (�C E , W, M, I ), where the asterisks have been dropped for
convenience. The analysis presented here will cover gliding and pancaking states, i.e.
α ∈ (0, π/2] = (0◦, 90◦], with diving (α = 0 = 0◦ or π = 180◦) to be handled separately.

The inputs to the algorithm are the equilibrium angle of attack α ∈ (0, π/2] = (0◦, 90◦],
the normalised and buoyancy-corrected weight W ∈ (0, 1), the relative mass M > 0 and
the relative moment of inertia I > 0. The code first solves for the unique equilibrium state
(�C E = �C P(α), θ, v = vC M = vCV , ω = 0), which in all cases verify the analytical results
of § 5. Then the Taylor expansion toolbox in MATLAB is used to symbolically linearise
the dimensionless ODEs (4.5) about this equilibrium. The algorithm then computes the
eigenvalues λi of this linearised system, of which there are four in accordance with the four
degrees of freedom (vx ′, vy′, θ, ω). Finally, the code assesses the stability of a particular
equilibrium state by checking the sign of the real component of each eigenvalue. If the real
components of the eigenvalues are all negative, then the equilibrium is classified as stable.
If there exists at least one eigenvalue with positive real component, then the equilibrium
is unstable. Moreover, if any of these eigenvalues with positive real component also has
a zero imaginary component, then the unstable equilibrium is called statically unstable;
otherwise, it is called dynamically unstable. In summary, the progression is as follows:

(α, W, M, I ) ⇒ (�C E , θ, v)

⇒ λi ⇒

⎧⎪⎨
⎪⎩

stable ∀i, Re(λi ) < 0,

statically unstable ∃i such that Re(λi ) > 0, Im(λi ) = 0,

dynamically unstable otherwise.
(6.1)

In summary, the four-dimensional (4-D) input space (α, W, M, I ) is mapped to an
output characterisation that assumes one of the three possible classifications (stable,
statically unstable, dynamically unstable), each of which corresponds to some steady or
unsteady flight pattern. Since α ∈ (0, π/2] = (0, 90◦] maps to a unique �C E , we may
also consider the analogous map from (�C E , W, M, I ) to (stable, statically unstable,
dynamically unstable). This recasts all input parameters as the intrinsic physical properties
of the plate–fluid system.

Terms such as static/dynamic stability/instability may be used differently and sometimes
casually in other works (Etkin & Reid 1995; Anderson & Bowden 2005; Anderson 2011).
Our classification scheme is mathematically specific and complete and may therefore
impart distinct and additional meaning. The schematics of figure 9 relate the various
terms. An equilibrium is a set of dynamical parameters needed to specify a free-flight
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Figure 9. Classification schemes and nomenclature for eigenmodes and free-flight equilibria. (a) Each
eigenmode i may be one of four types based on the real and imaginary parts of its eigenvalue λi . (b) Each
free-flight equilibrium may be one of three types: stable (blue); statically unstable (pink); dynamically unstable
(purple). (c) Flow diagram showing how the type of equilibrium is determined from the types of eigenmodes.
Each equilibrium has four eigenmodes, and the presence or absence of certain mode types determines the
stability status.

motion that balances forces and torques. Each equilibrium has four eigenvectors and
associated eigenvalues that emerge from a stability analysis, and we call these modes or,
more specifically, eigenmodes. As shown in figure 9(a), each eigenmode may classified
as one of four types with labels of convergent or divergent based on its real part and
pure or oscillatory based on its imaginary part. As shown in figure 9(b), each equilibrium
may be classified as being one of three types with names stable, statically unstable or
dynamically unstable. As specified in figure 9(c), the presence or absence of certain
types of eigenmodes determines the stability status of the equilibrium. Namely, a stable
equilibrium has no divergent eigenmodes, a statically unstable equilibrium has at least
one pure divergent eigenmode and a dynamically unstable equilibrium has one or more
divergent modes none of which are pure. Static instability is ‘obvious’ in the sense that it
would be apparent even in the setting of a wind tunnel where a single degree of freedom
(e.g. attack angle) is statically perturbed and the measured response (pitch moment or
torque) found to be destabilising rather than restorative. In contrast, dynamic instability is
the more subtle or ‘hidden’ type that necessarily involves the free-flight couplings among
multiple degrees of freedom. Note that the distinction between the two unstable equilibria
is inconsequential in the sense that in either case the free-flight system veers away and
displays some other dynamics.

These classifications and terms have some relations to free flight. We use the term free-
flight state, flight state or simply state to describe the long-time or terminal behaviour
exhibited by the dynamical system for a set of parameters specifying an equilibrium.
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As shown in figure 9(c), a stable equilibrium will necessarily lead to a steady state with
the same characteristics (speed, attack angle, etc.) of the equilibrium, and so we call the
state by same name of gliding, pancaking or diving used for the equilibrium. An unstable
equilibrium of either type will typically lead to an unsteady state, including periodic
motions such as fluttering or tumbling and also aperiodic or non-repeating motions.
However, the status of an equilibrium as statically or dynamically unstable tells us nothing
of the nature of the free-flight state beyond that it must be different from the equilibrium.
Moreover, as indicated by the dashed route in figure 9(c), a given unstable equilibrium
may in some cases exhibit a steady state whose dynamical parameters differ from the
equilibrium. For example, an unstable diving equilibrium may lead to a stable gliding
state as the terminal motion during free flight.

In what follows, we will chart out the stability of equilibria across wide ranges of
the input parameters. Throughout these extensive investigations, we have spot-checked
many cases by comparing the predictions of the linear analysis with numerical solutions
of the full nonlinear model. The two always match. That is, conditions predicted to be
linearly stable yield steady motion as the long-time numerical solution to the full model;
dynamically unstable but statically stable equilibria yield purely oscillatory instabilities
that manifest as growing fluctuations at short times; and statically unstable equilibria,
which necessarily have at least one divergent mode and may also have an oscillatory mode
or modes, veer away from the equilibrium continuously or with oscillations depending
on the dominant eigenmode. This correspondence of the linear analysis with the short-
time behaviour of the nonlinear system near equilibria is expected for smooth (i.e.
C∞) dynamical systems per the Hartman–Grobman theorem (Hartman 1960, 2002;
Strogatz 2018).

6.1. Overview of the flight space
The stability map of solutions across the 4-D input parameter space (α, W, M, I ) can be
visualised by taking 3-D sections in which one quantity is fixed. Figure 10 shows 3-D
maps in terms of (�C E , W, M), where the corresponding �C E (α) is displayed as an axis
variable in place of α and where the moment of inertia I is fixed within each panel and
increases from figure 10(a) to figure 10(c). The chosen values of I = 0.01, 1 and 10 are
representative of low, intermediate and high moments of inertia. Each point in the space
corresponds to at least one equilibrium according to the preceding existence argument.
Unstable equilibria are unmarked and thus correspond to the regions of white space in
the plot boxes. Stable equilibria are marked with points whose colour denote the angle of
attack α, as specified by the colour bar. The axis range �C E ∈ [0, 0.3] directly reflects the
range for the �C P(α) curve (figure 6b) and the equilibrium condition �C E = �C P , and no
gliding/pancaking states appear outside this range. The interval W ∈ (0, 1) is intrinsic to
the problem of a dense object in a less dense medium. The range M ∈ (0, 10] is truncated at
its upper bound only for convenience of plotting, and the solution space continues upwards
for larger M but with no significant change in structure.

From the 3-D sections of figure 10, it is clear that the available locations in parameter
space for stable systems have a complex structure. Stable gliding may be achieved
for greatly different values of any given parameter. There are significant and unique
dependencies with respect to all parameters, indicating that all play essential roles in the
stability. Surprisingly, the flight stability demonstrates independent behaviour with respect
to W and M , these two, respectively, encoding the gravitational and inertial aspects of
mass. The stable regions appear variously as 3-D blobs and quasi-2-D sheets, and these
may be distinctly separated at places and bridged by quasi-one-dimensional filaments
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Figure 10. Overview of the 4-D parameter space relevant to gliding and pancaking equilibria. Each plot shows
the 3-D space of the dimensionless parameters (�C E , W, M) for fixed values of I : (a) 0.01; (b) 1; (c) 10. Each
point in the space represents at least one equilibrium. Stable equilibria are indicated with markers coloured by
the attack angle α whereas unstable equilibria are left blank.

elsewhere. A tour through this space reveals some observations and trends that further
emphasise this complexity.

(i) Across the entire space, pancaking with α = 90◦ and thus �C E = 0 is always unstable.
This corresponds to the white space seen in each panel of figure 10 that covers the
left-hand coordinate plane. Systems in the near vicinity with low �C E also tend to be
unstable, as indicated by the voids on the left-hand sides of each panel. Falling plates
thus have an aerodynamic aversion to broadside-on motions.

(ii) For the low I � 1 case represented by figure 10(a), stable gliding is realised across
a wide range of α, including high-α gliding for high M and low �C E (red markers).
Comparison across the panels shows that the availability of such motions decreases
with increasing I .

(iii) For the moderate I = O(1) case represented by figure 10(b), the central blob of stable
solutions shrinks somewhat. Correspondingly, stable gliding is accessible only for low
to moderate values of α. This case also makes clearer the structure for low M � 1
for which stable gliding at low α is available for approximately �C E ∈ [0.1, 0.3] and
across all W ∈ (0, 1). This planar region of stability lies on the lower coordinate plane
or floor of the space, and it is present for all I .

(iv) For the high I � 1 case represented by figure 10(c), the central blob shrinks further
and stable solutions are confined to a yet lower range of α. The low-M stable region
along the floor is yet more visible, and it is connected to the blob through a vertical
filament that seems present for all I . Also clearer is a set of solutions of very small α

(dark blue) that lies along the right-hand wall or coordinate plane defined by �C E =
0.3 and which exists for all I .

6.2. Two-dimensional dissections of the flight space
The space can be further dissected into 2-D slices that are more easily displayed and
examined. In the tableaux of figures 11 and 12, we investigate the parameter space by
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I = 1 I = 10
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�C E
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Statically unstable
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Figure 11. Matrix of 2-D sections in the parameters (�C E , W ) for fixed M and I representing low, moderate
and high values. The schematic shows the how the 2-D sections relate to the 3-D plots of figure 10. Stable states
are shown with markers coloured by the attack angle whereas dynamically and statically unstable equilibria
are shown with grey ◦ and + markers, respectively. The values of (M, I ) are (a) (0.01, 0.01); (b) (0.01, 1);
(c) (0.01, 10); (d) (1, 0.01); (e) (1, 1); (f ) (1, 10); (g) (10, 0.01); (h) (10, 1); (i) (10, 10).

taking several 2-D slices at fixed M and I . The values of M = 0.01, 1, 10 are shown in
increasing order downward through the panels, and the values I = 0.01, 1, 10 increase
across the panels. These sections are representative of low, moderate and high cases in each
variable, and there are no significant structural changes outside the displayed ranges. The
miniature 3-D schematic in figure 11 serves as a guide showing how the 2-D slices relate
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Figure 12. Matrix of 2-D sections in the parameters (α, W ) for fixed M and I representing low, moderate
and high values. This information recasts that of figure 11 so that α is an axis variable and the corresponding
�C E = �C P (α) colours the stable states. Dynamically and statically unstable equilibria are again shown with
grey ◦ and + markers, respectively. Those equilibria with d�C P/dα > 0 (green shading) are statically unstable.
The values of (M, I ) are (a) (0.01, 0.01); (b) (0.01, 1); (c) (0.01, 10); (d) (1, 0.01); (e) (1, 1); (f ) (1, 10);
(g) (10, 0.01); (h) (10, 1); (i) (10, 10).

to the 3-D diagrams of figure 10. Figures 11 and 12 represent the same information, the
former using �C E as an axis variable and α as the marker colour for stable equilibria, and
vice versa for the latter. Unstable equilibria of both types are shown as grey markers, where
open circles represent dynamically unstable equilibria and crosses represent statically
unstable equilibria. These collectively correspond to the white space in figure 10.

These findings reinforce many of the main messages from the 3-D diagrams, notably
that pancaking is always unstable while a rich variety of gliding motions are available for
different combinations of parameter values. The 2-D slices also provide deeper insights
into the structure, dependencies and trends and especially additional information about
the regimes for differing M .
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(i) Equilibrium solutions are unique with respect to α (figure 12) but not unique
with respect to �C E (figure 11), which is readily explained by the equilibrium
condition �C E = �C P and the non-monotonic form of �C P(α), as shown in figure 6(b).
As such, any given location in the panels of figure 11 may have overlapping points that
represent multiple equilibria, some of which may be stable and others unstable. Such
cases occur near �C E ≈ 0.12. Examples include figure 11(d) at high W , where stable
gliding equilibria with α ≈ 35◦ (yellow points) appear together with dynamically and
statically unstable equilibria (circles and crosses visible beneath the yellow points).
At a similar location in figure 11(g), two stable gliding equilibria (blue and yellow
points) overlap with statically unstable equilibria (crosses).

(ii) For the low M � 1 case represented by figures 11(a–c) and 12(a–c), stable gliding
is generally available and its structure is simple. The maps are identical and thus
independent of I , and the stability structure is also independent of W . The region
over which stable gliding can be achieved is thus given by the approximate condition
�C E ∈ (0.12, 0.3) or equivalently, α ∈ (0◦, 17◦).

(iii) For the moderate M = O(1) case represented by figures 11(d–f ) and 12(d–f ), stable
gliding equilibria are generally sparse and especially so for moderate and high I . For
low I as documented in figures 11(d) and 12(d), the stable regions appear as two
islands separated by unstable equilibria.

(iv) For the high M � 1 case represented by figures 11(g–i) and 12(g–i), stable gliding
is generally available for low I and less so with increasing I . The low-�C E , high-α
stable equilibria are increasingly cut off as I increases.

6.3. Role of centre of pressure in gliding stability
The complex structure of the 4-D flight space reflects the fact that the eigenvalues
and associated stability conditions lack simple mathematical formulae. Nonetheless, our
characterisations reveal tidy relationships linking the centre of pressure to stability that,
while defying analytical derivations, are documented to exactly hold across the entire
space of parameters. Specifically, we observe two relations involving the sign of the
derivative of �C P(α) or slope of the curve given in figure 6(b),

stable gliding ⇒ d�C P

dα
< 0 and

d�C P

dα
> 0 ⇒ statically unstable. (6.2)

The first assertion is that all stable gliding solutions have negative pressure centre slope.
The converse is not true, and there are many cases of negatively sloping �C P(α) that are
unstable. Hence, negative slope is a necessary but not sufficient condition for stability. The
second assertion is that all equilibria associated with positive slope of the pressure centre
undergo static instability. The converse is again not true, and there are many statically
unstable equilibria with negative slope. The second relation is visually confirmed by
comparing figure 6(b), where negative slopes are seen for α ∈ (17◦, 26◦), and figure 12,
where the corresponding equilibria are highlighted in green and seen to be unanimously
statically unstable (+ markers). Thus, gliding at any angle in this range is strictly forbidden
as a free-flight stable state.

These observations connect to the flight dynamical notion of static (in)stability as
pertaining to the torque response for a static perturbation to the attack angle in a wind
tunnel setting (Etkin & Reid 1995; Anderson 2011; Amin et al. 2019). Positive slope
d�C P/dα > 0 means that the centre of pressure moves forward on the wing for a nose-
up change in α, which is destabilising. So too is the centre moving back on the wing
in response to a nose-down perturbation. Stable gliding therefore necessarily requires
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Figure 13. Validation of the model against the experiments of Li et al. (2022) whose conditions correspond
to varying (�C E , I ) for fixed (W, M) = (0.2, 0.14). The four experimentally observed states of fluttering,
progressive fluttering, bounding and gliding are reproduced by the model, whose output plate dynamics is
shown. The shading delineates the state regimes determined by simulation runs across the 2-D parameter
space.

d�C P/dα < 0, though this one condition alone is not sufficient to guarantee stability in
free flight where all degrees of freedom participate.

6.4. Numerical investigations into unsteady flight states resulting from unstable
equilibria

The analysis presented above identifies vast regions of parameter space where flight is
unstable, which correspond to the voids in figure 10 and grey markers in figures 11 and
12. It is for these cases that the full nonlinear model yields unsteady flight motions as its
numerical solutions. In this section, we extend the survey of such motions presented in
§ 4.3 and figure 7 and delve deeper into cases of interest. We focus on several 2-D sections
of the flight space and show that our model successfully reproduces states observed in
previous studies and also predicts new free-flight patterns in heretofore unexplored regions
of the parameter space.

A first case involves comparisons with the modelling and experimental results of Li
et al. (2022) on the flight behaviours displayed by plates with displaced centres of mass.
In particular, this earlier work reported on fixed values of M = 0.14 and W = 0.2, for
which different unsteady flight states were identified for differing values of �C E and I . The
modifications in our model relative to that of Li et al. (2022) prove to be inconsequential
with respect to these results, all of which are faithfully reproduced. In figure 13, we display
the relevant region in a 2-D slice of parameter space with colouring that denotes four
unsteady states: fluttering with symmetric back-and-forth swoops, progressive fluttering
with asymmetric swoops, bounding with one-way swoops and steady gliding. The four
displayed plate motions are numerical solutions to our nonlinear model corresponding to
the parameters explored in Li et al. (2022). These results confirm the stability type in
all cases. Further explorations show these states to be generally available, as indicated
by shaded regions identified by running simulations across the ranges �C E ∈ [0, 0.3] and
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Figure 14. Complex and varied motions dominate for intermediate values of the inertial parameters (M, I ) =
(1, 1) where gliding is significantly depleted. This figure repeats figure 11(e) and adds shading whose different
colours indicate the flight states observed in simulation runs across the space. The motions include familiar
states such as gliding (blue), bounding (green), meandering (pink) and tumbling (yellow) but also many other
periodic states (purple) of varied forms as well as aperiodic and apparently chaotic states (grey).

I ∈ (0, 0.5]. The state boundaries are largely dictated by the former and have weaker
dependence on the latter.

Bounding (shown in green in figure 13) is a limit-cycle state that superficially resembles
the phugoid motion of aircraft (Montalvo & Costello 2015) but which differs in that
the angle of attack increases significantly in what look like approaches to stalling. Such
behaviour was previously documented for plates with displaced centre of mass (Li et al.
2022). Bounding occurs for parameters near the stable–unstable border with gliding, and
this structure is consistent with a Hopf bifurcation (Guckenheimer & Holmes 2013).

Irregular and aperiodic motions which involve elements of familiar tumbling and
fluttering motions are reported by Andersen et al. (2005a) and Hu & Wang (2014)
for moderate M = O(1) and I = O(1). Our model reproduces these motions in this
intermediate inertial regime, where gliding availability is significantly depleted and
a significant majority of equilibria are unstable. In figure 14, whose map is that of
figure 11(e) which has (M, I ) = (1, 1), we systematically chart the numerical solutions to
the nonlinear model for each of the unstable equilibria by shading the state space according
to associated long-term flight patterns. The regions are blotchy and irregular, with complex
boundaries and islands demarcating the various states. In grey we shade aperiodic and
apparently chaotic states, which display no discernible pattern over any time scale; in
yellow we shade tumbling; in pink we shade meandering, which is a heretofore unreported
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Figure 15. Pancaking is dynamically unstable (◦) for all conditions. For fixed (�C E , W ) = (0, 0.8), the
parameters (M, I ) are varied logarithmically to explore the space broadly. The shading indicates the flight
state observed in simulations, and example trajectories are displayed. The motions are predominantly forms of
fluttering (red) and tumbling (yellow) but with additional periodic (purple) and aperiodic (grey) states occurring
for intermediate M and low to intermediate I .

flight state described in greater detail in § 7.4; in green we shade bounding; and in light
blue we shade stable gliding. In purple we shade those regions which admit periodic
hybrid motions that combine multiple characteristics of tumbling, fluttering, meandering
and bounding. Regions of these irregular motions appear in a highly complex fashion in
the state space, and more intricate boundaries may exist at a finer resolution of the space
than is explored here.

Pancaking or broadside-on falling of a symmetric plate has been reported by Andersen
et al. (2005a), who found the motion unstable for any I under the Re conditions assumed
in this work. We report that indeed, pancaking is dynamically unstable for any set of
parameters. In figure 15, we hold W = 0.8 and �C E = 0 fixed and systematically chart the
numerical solutions to the nonlinear model for each of the unstable equilibria by shading
the (M, I ) state space according to associated long-term flight patterns. All equilibria are
open ◦ markers, and so pancaking is always statically stable but dynamically unstable.
This figure is representative of any choice of W , since by (4.5), W drops out for �C E = 0.
We plot the information here on a logarithmic scale to better interrogate the intermediate
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inertial regime where irregular motions abound. In red we shade those regions which
display fluttering, and show several different types of fluttering ranging from very weak
(right-hand) to very strong (left-hand). As in figure 14, we shade tumbling, aperiodic states
and periodic hybrid states using yellow, grey and purple, respectively.

7. Stability of diving states
We separately assess diving states, which involve edgewise downward descent as depicted
in figure 5(b). Recalling the arguments of § 3 and the analytical expressions for equilibria
of § 5, there are two possible diving postures: a bottom-heavy configuration with the centre
of equilibrium displaced towards the leading edge side (α = 0 = 0◦) and a top-heavy
configuration with �C E > 0 displaced towards the trailing edge (α = −π = −180◦). As
expected intuitively, the latter is statically unstable for all parameter values, so throughout
this section we focus on the former. We may treat all cases of interest �C E � 0, including
the symmetric plate of �C E = 0 which is degenerate with respect to the two diving
postures. As we have shown, diving is distinguished from gliding in that �C E is free since
the centre of pressure constraint is inoperative. We therefore modify the MATLAB code
for stability analysis of the ODE system (4.5) by supplying �C E as an input for fixed α = 0.
We otherwise use the same classification scheme as in the gliding case,

(�C E , W, M, I ) ⇒ (θ, v)

⇒ λi ⇒

⎧⎪⎨
⎪⎩

stable ∀i, Re(λi ) < 0,

statically unstable ∃i such that Re(λi ) > 0, Im(λi ) = 0,

dynamically unstable otherwise.
(7.1)

This yields a map from the 4-D input space (�C E , W, M, I ) to an output characterisation
that assumes one of the three stability classifications. The following investigations into
diving stability parallel those for gliding.

7.1. Overview of the flight space
The 4-D input parameter space (�C E , W, M, I ) for diving may be visualised by taking 3-D
sections in which one quantity is fixed. Figure 16 shows such a 3-D space of (�C E , W, M)

with the moment of inertia I = 1 fixed at a representative intermediate value. Stable
equilibria are marked with coloured points, which are uniformly blue to indicate that
α = 0 for all. Each such point corresponds to exactly one equilibrium according to the
preceding existence and uniqueness arguments. Unstable equilibria are unmarked and thus
correspond to the blank spaces in the plot box.

The displayed axis range is �C E ∈ [0, 1.5], and there is no significant change in structure
for yet greater values. Note that this range extends beyond that for gliding, reflecting
that �C E is a free parameter no longer constrained by �C P ∈ [0, 0.3]. As for gliding, the
interval W ∈ (0, 1) is intrinsic to the problem. The range M ∈ (0, 10] is truncated at its
upper bound only for the convenience of plotting, and there is no change in structure for
yet greater values. Also shown are two surfaces �C E = �C P(α = 0) = 0.3 (orange upright
plane) and �C M = W�C E = �C P(α = 0) = 0.3 (green hyperbolic sheet) which correspond
to some stability boundaries, as discussed further below.

From figure 16, it is clear that the available regions of parameter space for stable diving
solutions have a simple structure composed of two distinct but connected regions.
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0

1.0
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0
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0.5
1.0

1.5

�C E

�C E = �C P (α = 0) �C M = �C P (α = 0)

W

M

Figure 16. Diving stability ascribes to a simple structure in the parameter space, shown here across varying
(�C E , W, M) for a representative value of I = 1. Each point represents a unique equilibrium that is either
stable (blue markers) or unstable (blank). The surfaces �C E = �C P (α = 0) = 0.3 (orange) and �C M = W�C E =
�C P (α = 0) = 0.3 (green) demarcate stability boundaries in different regimes of M .

(i) For low M < 1, there exists a quasiplanar or sheet-like region where diving is stable
for all �C E > 0.3 regardless of W . This forms the floor of the flight space, and it is
bounded on one side by the orange surface.

(ii) For high M > 1, there exists a 3-D region bounded by the curved upright wall (green
surface). Here, stable diving involves conditions on both �C E and W .

7.2. Two-dimensional dissections of the flight space
More refined insights come from taking 2-D sections of the flight space. In the tableau
of figure 17, we show slices of (�C E , W ) across representative low, moderate and high
values of M and I . Here the plot markers again indicate stability status with blue filled
markers for stable equilibria, crosses for statically unstable equilibria, and open circles
for dynamically unstable equilibria. The latter two unstable cases correspond to the white
space in figure 16. These data reinforce the messages distilled from the 3-D space and add
more details.

(i) There is exceedingly little variation with the moment of inertia I . Changes
with I are not altogether absent but they are few and limited to the borders
representing transitions between stability and instability or between static and
dynamic instabilities. As examples, one may closely compare figures 17(d) and 17(e)
in the vicinity of (�C E , W ) = (0.4, 0.1).

(ii) Sufficiently low �C E < �C P(α = 0) = 0.3 is always statically unstable across all
values of (W, M, I ). Note that, strictly speaking, the centre of pressure is undefined
at α = 0 (figure 6b) and hence should be understood here in the limiting sense. This
result means that the plate must be sufficiently front weighted to have a chance of
being stable in diving. The relevant boundary is the orange vertical line in each panel,
which corresponds to the section through the orange upright plane in figure 16.

(iii) For low mass represented by M = 0.1 in figure 17(a–c), the simple condition �C E >

�C P(α = 0) = 0.3 seems necessary and sufficient for stable diving. This boundary is
shown in all panels as the orange vertical line.
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1.0

0.5W

0 0.5 1.0 1.5

�C E

0 0.5 1.0 1.5

�C E

0 0.5 1.0 1.5

�C E

1.0

0.5W

0

1.0

0.5W

0

M = 10

M = 1

M = 0.01

I = 0.01 I = 1 I = 10
(a) (b) (c)

(g) (h) (i)

(d ) (e) ( f )

Figure 17. Matrix of 2-D sections in the parameters (�C E , W ) for fixed M and I representing low, moderate
and high values. Panels (b), (e) and (h) with I = 1 represent constant-M sections of figure 16. Stable diving
states are shown as blue markers whereas dynamically and statically unstable equilibria are shown with grey ◦
and + markers, respectively. The orange and green curves are sections through the corresponding surfaces of
figure 16 and which are important stability boundaries in the limits of low and high mass. The values of (M, I )
are (a) (0.01, 0.01); (b) (0.01, 1); (c) (0.01, 10); (d) (1, 0.01); (e) (1, 1); (f ) (1, 10); (g) (10, 0.01); (h) (10, 1);
(i) (10, 10).

(iv) For moderate mass represented by M = 1 in figure 17(d–f ), �C E must be yet
greater to ensure stability when W is low. Those unstable solutions with �C E > �C P
(α = 0) = 0.3 are mostly but not exclusively of the static-stable but dynamic-unstable
type, meaning they will destabilise via growing oscillations.

(v) For high mass represented by M = 10 in figure 17(g–i), the simple condition �C M =
W�C E > �C P(α = 0) = 0.3 seems necessary and sufficient for stable diving. This
boundary is shown as the green hyperbolic curve in each panel, which is the section
through the green hyperbolic surface in figure 16. For high mass, dynamically
unstable equilibria tend to hug closely the boundary, and the unstable equilibria are
otherwise of the static type.

Regarding the near independence of stability status on I , we lack an explanation
for this fact. The mathematical expressions for stability conditions do indeed contain
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this parameter but it apparently has exceedingly weak effect. Perhaps analysis of the
expressions for the eigenvalues could give insight. Regarding the transition in stability
status with M , we discuss some interpretations in what follows.

7.3. The roles of the centres of pressure, equilibrium and mass in diving stability
The above results can be summarised by the following conditions for dynamic stability:

stable diving at low M � 1 ⇐⇒ �C E > �C P(α = 0) = 0.3 and
stable diving at high M � 1 ⇐⇒ �C M = W�C E > �C P(α = 0) = 0.3. (7.2)

The two-way arrows indicate necessary and sufficient relations. In words, low-mass stable
diving requires the centre of equilibrium to be forward of the centre of pressure, and high-
mass stable diving requires the centre of mass to be forward of the centre of pressure. These
outcomes are empirically validated but we lack proofs, and so the above claims should be
viewed as conjectures that are empirically validated here across wide ranging conditions.
Future work may pursue derivations by analysing the eigenvalues in the appropriate limits.

Intuitively, these conditions state that plates must be weighted sufficiently forward for
stable diving. This seems to relate to the directional or yaw stability of aircraft, which
presumably have M � 1. For this so-called weathervane effect, the centre of mass is
viewed as a pivot point that must be sufficiently forward of the vertical stabiliser on the tail
where pressure forces act (Anderson & Bowden 2005), which is consistent with the second
condition given above. Our findings are also quantitatively consistent with the experiments
of Li et al. (2022) involving flight tests in water of plastic plates to which weights were
added to the displace the centres of mass and equilibrium. Here the low relative mass
M = 0.14 means the first condition applies, and indeed the observation by Li et al. (2022)
that diving occurs only for �C E > 0.3 aligns with our findings.

Less intuitive is that different regimes of M involve different specifications of what
exactly constitutes sufficient front weighting, one case involving �C E and the other �C M .
This indicates that the two factors play distinct roles, defying the intuition that the former
is simply a generalisation of the latter in situations in which buoyancy is a factor. Similarly,
the inertial and gravitational aspects of mass play different roles, with M dictating which
condition is applicable and W appearing within one of the conditional statements. Better
understanding the origin of these subtleties is an avenue for future work. Our preliminary
investigations show that the newly added torque from rotational lift τRL is in general an
important determinant for diving stability. Without such a term, the model reverts to that of
Li et al. (2022), whose stability maps differ substantially in the regime of high M . Namely,
the stable region is then �C E ∈ (�C P , �C P/W ), which lies between the orange and green
curves in the sections of figure 17(g–i). This seems implausible in that strongly front-
weighted plates are predicted to be unstable. Future experiments would provide valuable
information that would distinguish the models and perhaps further inform on the role of
τRL and its mathematical form.

7.4. Meandering: a new unsteady flight state
Our investigations into the stability of diving predict an unsteady state which has not to
our knowledge been documented in previous studies. We call such behaviour meandering,
which consists of smoothly waving side-to-side excursions during descent. Example
trajectories are shown in pink in figures 7 and 14. The main characteristics of this new
class of motions include the following.
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�C E = 0.15 0.25 0.29 0.5 0.8 1.25

1.0

0.5

W

0 0.5 1.0 1.5
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Figure 18. Meandering is a periodic state arising from unstable equilibria between stable gliding and stable
diving. The panels represent fixed (M, I ) = (10, 1) and varying (�C E , W ) over ranges appropriate to gliding
and diving, and they repeat those of figures 12(h) and 17(h). Sample meandering trajectories (pink) of varying
horizontal excursion amplitudes are accessed by varying �C E across values between stable gliding (light blue)
and stable diving (dark blue).

(i) Meandering, like fluttering, involves periodic back-and-forth oscillations about a
directly downward trajectory. Whereas fluttering has sharply cusped reversals during
which the plate does not flip over, meandering involves smooth turns during which
the plate inverts in the sense of which face is projected upwards. Mathematically,
the distinction is that ŷ′ · ŷ is single-signed for fluttering but alternates in sign for
meandering.

(ii) Meandering can originate as an instability of low-α gliding. Examples are shown
on the left-hand side of figure 18, for which the map repeats that of figure 11(h)
with M = 10 and I = 1. The light blue points are uniformly coloured here to indicate
stable gliding regardless of attack angle, and a corresponding stable gliding trajectory
is shown (�C E = 0.15, light blue). Meandering states (pink) arise as �C E is increased,
and this appearance of a limit cycle state near a stability border is consistent with
a supercritical Hopf bifurcation (Guckenheimer & Holmes 2013). The side-to-side
excursion amplitude for meandering is highest for those states nearest the gliding
stability boundary, i.e. for �C E closer to the plate centre.

(iii) Meandering can also arise as an instability of diving, which parallels how fluttering
emerges in a similar way from pancaking. Examples are shown on the right-hand
side of figure 18, for which the map repeats that of figure 17(h) with M = 10 and
I = 1. Here a stable diving trajectory is shown in blue (�C E = 1.25). Meandering
states (pink) are found at the lower values of �C E corresponding to the region between
the orange and green curves. Here again the stability structure is reminiscent of a
supercritical Hopf bifurcation, and the excursion amplitude is seen to decrease with
increasing �C E .

(iv) The results of figure 18 are typical of M � 1, for which meandering generally arises
for those �C E too large to admit stable gliding and yet not sufficiently large to achieve
stable diving. This solution can result from the region of instability regardless of static
stability (+ markers) or static instability (◦). The decreasing amplitude of meandering
for increasing �C E can be understood intuitively: cases of low �C E represent failures
to glide involving large lateral excursions, whereas cases of higher �C E are failures to
dive with small excursions.
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Meandering may have been missed in previous studies because the requisite conditions
were not explored. The work of Li et al. (2022) seems to be the only experiments
and modelling to address the necessarily large displacements in centre of equilibrium
�C E � 0.2, but the mass M ≈ 0.1 was limited to low values for which figure 17(a) shows
the necessary unstable equilibria for meandering to be absent. Future experiments or
numerical simulations testing our predictions could use figure 18 as a guide in choosing the
relevant parameter values. For example, the case of (�C E , W, M, I ) = (0.25, 0.6, 10, 1)

yields the high-amplitude meandering, and such conditions should be achievable with
strongly front-weighted plates falling in water.

8. Discussion and conclusions
This study provides a flight dynamics model for thin plates moving under gravity at
moderate Reynolds numbers and methods for identifying equilibrium flight states and
assessing their aerodynamic stability. Our approach builds on a quasisteady aerodynamic
framework that has been iteratively improved over recent decades to account for wider
classes of flight modes including unsteady motions such as fluttering and tumbling and
also steady motions such as gliding and diving. We conduct a dimensional analysis and
assessment of equilibrium states to identify a minimal set of physical parameters that must
be specified to uniquely determine the available steady motion, which is shown to be one
of edgewise diving, broadside-on pancaking or gliding. We then systematically investigate
a dimensionless form of the model via linear stability analysis to reveal a complex set of
conditions for which such a mode is stable as a free-flight state. Pancaking is predicted to
be universally unstable whereas stable gliding and diving can be reached through distinct
combinations of the centre-of-equilibrium location �C E , buoyancy-corrected weight W ,
mass M and moment of inertia I . These findings represent a wealth of predictions that
can be tested in future experiments and direct numerical simulations. The unstable regions
of parameter space correspond to dynamic flight states, including a new class of motions
called meandering that are shown to arise as limit cycle solutions for parameters between
stable gliding and stable diving. Another useful consequence is the identification of a
physical inconsistency in previous treatments of the rotational lift effect, for which we
propose a remedy.

The model presented here involves many simplifying assumptions and idealised
treatments of the aerodynamic effects and hence much room for improvement. The hope is
that the large set of predictions presented here can help to guide future experimental and/or
computational investigations that may identify shortcomings and thus drive refinement of
the model. More generally, the analyses presented here may prove useful as means of
systematically characterising the results of future versions of this model or other such
quasisteady formulations. The following is a list of some key assumptions that could be
better informed by future works as well as new predictions to be tested.

(i) The model is quasisteady and thus cannot address any mode transitions or changes
in stability that are driven dominantly by wake dynamics, vortex shedding or other
intrinsically unsteady flow phenomena. Such effects are known to be important for
Re < 100 (Assemat et al. 2012; Ern et al. 2012; Tchoufag, Fabre & Magnaudet 2014),
and hence the framework is necessarily limited to higher Reynolds numbers.

(ii) Also related to unsteadiness, experiments and/or simulations should test the
prediction of stable gliding for plates of high mass M at high attack angles α. One
expects fully separated flow and an unsteady wake that may undermine stability in
ways not captured by a quasisteady framework.
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(iii) Our model follows previous versions in assuming that the aerodynamic coefficients
are independent of Reynolds number. This should be taken as a low-order
approximation and suitable modifications should be made if future work shows
Re-dependent effects to be important for mode or stability transitions.

(iv) More specifically on the above point, we take the skin friction coefficient C0
D to

be a constant, which was shown in previous works to be sufficient for capturing
known transitions (Andersen et al. 2005a, b; Li et al. 2022). The next-order
approximation could involve a Re-dependent form based on Blasius boundary-layer
theory (Schlichting & Gersten 2016; Bhati et al. 2018).

(v) The model further assumes that the aerodynamic coefficients are independent of the
plate thickness, an approximation appropriate in the thin-plate limit of slenderness
ratio h/� � 1. The work of Li et al. (2022) showed that such a model yields good
agreement with experiments for h/� = 0.001 to 0.1, and accounting for thicker plates
would likely require slenderness-dependent coefficients.

(vi) The newly added term τRL representing the torque from rotational lift employs a
force centre �C RL = 0. This value is taken for simplicity, and future experiments or
simulations would be informative.

(vii) The newly predicted meandering state should be tested in laboratory experiments
and/or direct numerical simulations conducted for the conditions identified here. The
existence and form of this mode may depend on τRL and hence such tests could inform
on this term.

While our model strictly applies to flat plates at intermediate Reynolds numbers as
appropriate to the falling paper problem, its general form may be applicable more broadly
to thin wings. Airfoil shapes, for example, would surely have different aerodynamic
coefficients, and an appropriately modified model could be tested in future work. If
validated, such models would have a broad range of potential uses for a variety of
physical and biological systems. The computational tools for analysis introduced here
could similarly be used to efficiently explore the large parameter space, as a pen-and-
paper analysis is not feasible for such a complex set of equations. A major success of this
work is that a variety of motions, both steady and unsteady, are predicted across widely
ranging parameters. This suggests promise for the many applications involving motions in
air and through water, both in understanding biological locomotion as well as for designing
biomimetic flying and swimming vehicles.
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Appendix A
For the order-one calculations to produce figure 2, we approximate fliers as systems which
have a cylindrical fuselage body of mass M , length L and radius R, with a thin rectangular
wing of thickness h, chord length �, span length s and mass m cutting through the centre
of the cylinder (a simple ‘aeroplane’ structure). The ambient fluid has density ρ f . Bodies
which may be approximated as just wings, e.g. a piece of paper, have M = L = R = 0. To
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System M m s � L R h ρ f Reference

Bird 691 62.1 68 33.5 40 5.5 1 1.2 × 10−3 Berg & Rayner
(1995)

Watercraft 60 000 20 000 120 20 140 12 1 1 Wood & Inzartsev
(2009)

Paper in air 0 0.59 15 5.1 0 0 0.01 1.2 × 10−3 Li et al. (2022)
Plastic plate in
water

0 9.12 20.3 2.54 0 0 0.15 1 Li et al. (2022)

Stingray 0 8000 60 50 0 0 2 1 Yigin & Ismen
(2012)

Metal plate in
water

0 8.31 19 1 0 0 0.162 1 Andersen et al.
(2005b)

Flying squirrel 0 70 11 13 0 0 3 1.2 × 10−3 Thorington jr &
Heaney (1981)

Cucumber seed 0 0.21 12 6.2 0 0 0.1 1.2 × 10−3 Viola & Nakayama
(2022)

Butterfly 0 2 20 20 0 0 0.005 1.2 × 10−3 Hu & Wang (2010)
Snowflake 0 3.3 × 10−5 0.4 0.4 0 0 0.001 1.2 × 10−3 Langleben (1954)
Marine snow 0 0.0001 0.05 0.05 0 0 0.001 1 Passow et al. (2012)
Scallop 0 100 6 6 0 0 1 1 Cheng et al. (1996)
Flounder 0 2300 30 60 0 0 1 1 Takagi et al. (2010)
Air vehicle 0 0.265 10 1.5 0 0 0.1 1.2 × 10−3 Wood et al. (2007)

Table 2. Systems that may be approximated as winged cylindrical bodies. All units are cm g. Displayed are M ,
mass of the fuselage body; m, mass of the wing; s, span length of the plate; �, chord length of the wing; L ,
length of the fuselage body; R, radius of the fuselage body; h, thickness of the wing; and ρ f , density of the
fluid.

calculate dimensionless quantities for this winged cylindrical body system, we compute
using table 2 the quantities

Ibody = 1
12 M

(
3R2 + L2),

Iwing = 1
12 m

(
�2 + h2),

Iwing(air) = 1
2
ρ f πs

(
�

2

)4

, (A1)

where the wing–air moment of inertia is a cylindrical fluid column with I = (1/2)mr2.
Then, we compute

I ∗ = Ibody + Iwing

Iwing(air)

,

M∗ = M + m

πρ f s

(
�

2

)2 ,

W = g(M + m),

B = gρ f (s�h + π R2L),

W ∗ = W − B

W
. (A2)
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