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CONVOLUTIONS OF DISTRIBUTIONS WITH
EXPONENTIAL AND SUBEXPONENTIAL TAILS:

CORRIGENDUM

DAREN B. H. CLINE

(Received 13 February 1989)

The proof of Lemma 2.3(ii) as originally given is incomplete since we cannot
recursively apply (2.1) with a fixed to. This is corrected below. In addition,
we are able to extend the result so the conclusion is that H e Jz£. The
statement of Lemma 2.3(ii) is thus as follows:

AssumeK > 0 and ET=o^(F(O))n < oo. IfF eX.andH = EZo^F*",
then He&c

PROOF. We may assume without loss that k\ > 0; the proof otherwise
differs slightly. Following Embrecht and Goldie's (1980) proof of (2.1), we
obtain by recursion, for t > nto,

Tn{t-u)<{\+e)eauTn{t).

Hence, for t > nto,

j=n+\

where

8{n) = f ) Xj
j=n+\

Therefore,
H(t-u) .. .

Since both e and n are arbitrary,
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[2] Corrigendum 153

If a = 0, then it follows that H e -26 since H is nonincreasing. Assuming
a > 0, choose £ to satisfy (1 - 2e)eau > 1. Following the proof of Lemma
2.3(ii), we may find an increasing sequence /„ such that for t > tn,

T"(t-u)>(l-2e)eauTn(t).

Then for t > tn

* ( « . -

j=0

f ) XjTJ(t)
j=n+\

2e)e°" - ((1 - 2e)e*« - 1)

Thus

Again, since both e and n are arbitrary,

and this proves H G
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