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CONVOLUTIONS OF DISTRIBUTIONS WITH
EXPONENTIAL AND SUBEXPONENTIAL TAILS:
CORRIGENDUM

DAREN B, H. CLINE

(Received 13 February 1989)

The proof of Lemma 2.3(ii) as originally given is incomplete since we cannot
recursively apply (2.1) with a fixed #y. This is corrected below. In addition,
we are able to extend the result so the conclusion is that H € .%,. The
statement of Lemma 2.3(ii) is thus as follows:

Assume A > 0 and 322, An(F(0))" < 00. If F € %, and H =Y 72 (A, F*",
then H € %.,.

PrROOF. We may assume without loss that 1; > 0; the proof otherwise
differs slightly. Following Embrecht and Goldie’s (1980) proof of (2.1), we
obtain by recursion, for ¢t > ni,

F(t—u) < (1 +)e™F (1)
Hence, for t > nty,

H(it-u)<(1 +s)ea"§n:zjf""(t)+ i A;F(0Y~1F(¢)

j=0 Jj=n+1

<(1+¢) (1+ o(n) )e"“ﬁ(l),

AF(0)
where o
s(n)= Y AF(0).
Jj=n+1
Therefore, _
. H(t - u) ( d(n) > u
1 — < 1+ —2 ) e,
mswe gy SO TFe) ¢

Since both ¢ and n are arbitrary,
H (t - u) < eau'

lim sup —= <
oo H(1)
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[2] Corrigendum 153

If a = 0, then it follows that H € % since H is nonincreasing. Assuming
a > 0, choose ¢ to satisfy (1 — 2¢)e** > 1. Following the proof of Lemma
2.3(ii), we may find an increasing sequence ¢, such that for ¢ > ¢,,

F(t-u) > (1 —2e)e™F "(2).
Then for t > ¢,,

Hit-u)>(1- 2s)ea“f:,1,~7*’(t) + i AL (1)

j=0 j=n+1
d(n) )—
> | (1-28)e™ —((1 —2e)e™ - 1)— H(?).
> (12000 = (1 = 20)e - ) ) O
Thus
.. JH(t-u) o o a(n)
hlrgglf-w > ((l —2¢)e*™ — ((1 — 2¢)e™ — 1)117(0) .
Again, since both ¢ and n are arbitrary,
liminf ZE— %) 5 pau.
t—+00 H(t)
and this proves H € .%,.
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