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CONTACT PROCESS WITH DESTRUCTION
OF CUBES AND HYPERPLANES: FOREST
FIRES VERSUS TORNADOES

N. LANCHIER,∗ Arizona State University

Abstract

Nonspatial stochastic models of populations subject to catastrophic events result in the
common conclusion that the survival probability of the population is nondecreasing with
respect to the random number of individuals removed at each catastrophe. The purpose
of this paper is to prove that such a monotonic relationship is not true for simple spatial
models based on Harris’ contact processes, whose dynamics are described by hypergraph
structures rather than traditional graph structures. More precisely, it is proved that, for
a wide range of parameters, the destruction of (infinite) hyperplanes does not affect the
existence of a nontrivial invariant measure, whereas the destruction of large (finite) cubes
drives the population to extinction, a result that we depict by using the biological picture:
forest fires are more devastating than tornadoes. This indicates that the geometry of the
subsets struck by catastrophes is somewhat more important than their area, thus the need
to consider spatial rather than nonspatial models in this context.
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1. Introduction

Communities subject to the effect of catastrophic events resulting in the removal of all or part
of the individuals are ubiquitous in nature, and a number of stochastic models for the growth of
such populations have been extensively studied in the literature. The simplest and generic model
that describes these dynamics is the simple birth-and-death process supplemented with so-called
binomial catastrophes. In the absence of catastrophes, individuals give birth independently of
each other to a new individual at rate α and die at rate 1. Therefore, the system only experiences
individual deaths as individuals are removed one at a time. Including binomial catastrophes,
individuals are in addition simultaneously exposed to catastrophic events occurring at rate �

and, independently of each other, survive the catastrophe with probability p, which induces
transition rates that take the form of the binomial distribution. More precisely, letting Xt denote
the number of individuals or population size at time t , the dynamics are formally described by
the Markov generator

lim
h→0

h−1[E f (Xt+h) − E f (Xt )] = αXt [f (Xt + 1) − f (Xt )] + Xt [f (Xt − 1) − f (Xt )]

+ �

Xt∑
X=0

(
Xt

X

)
pX(1 − p)Xt−X[f (X) − f (Xt )]. (1)
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Contact process with destruction of cubes and hyperplanes 353

Even though a wide variety of stochastic models have been developed in order to understand
the effect of random catastrophic events on the survival probability of a population, most of
them, similarly to the generic model (1), exclude the presence of a spatial structure, i.e. the
state space of these stochastic processes keeps track of a number of individuals but ignores
the spatial arrangement of the population. This leads unavoidably to the following conclusion,
which directly follows from standard coupling arguments: increasing stochastically the random
number of individuals removed at each disaster given the population size can only decrease the
survival probability. The main objective of this paper is to prove that the previous conclusion
does not hold for very simple spatially explicit models based on Harris’ contact process [6]
which we express, in the spatial context, as a nonmonotonic relationship between the number
of lattice sites struck by each catastrophic event and the survival probability of the process.

Note that the inclusion of catastrophic events that hit each lattice site individually at a
constant rate in the contact process results in another contact process with a larger death rate;
therefore, the process survives whenever the birth rate is sufficiently large. At the other extreme,
if catastrophic events hit the whole lattice, thus consisting of the simultaneous removal of all
individuals, then the process starting from any configuration dies out almost surely in a finite
time regardless of the birth rate. This reveals an obvious lack of monotonicity between the
survival probability and the rate at which each individual is struck by a catastrophic event,
which holds for both spatial and nonspatial models. The two examples above also suggest that
there is a monotonic relationship between the survival probability and the number of lattice
sites (a single site versus the whole lattice) struck by each catastrophic event. We prove,
however, that, with the birth rate, the individual death rate, and the rate at which each individual
is hit by a catastrophic event being fixed, the inclusion of catastrophic events removing all
individuals in infinite subsets of the spatial structure may preserve the existence of a nontrivial
invariant measure, whereas the removal of all individuals in finite subsets may drive the process
to an almost-sure extinction. This somewhat surprising result contrasts drastically with the
predictions based on nonspatial models, which shows the importance of considering models
that include a spatial structure. The key to our proof is to compare models in which subsets struck
by catastrophes have different geometrical shapes, a component that cannot be incorporated
into nonspatial models since they do not include any geometrical structure. On the other hand,
though there are several other examples of stochastic processes including both a spatial structure
and catastrophic events [1], [2], [5], [7], [9], [11], [12], [13], these models are neither designed
to understand the impact of the geometry of the catastrophes on the survival probability of the
population, nor to support the existence of a nonmonotonic relationship between the area of
the subsets struck by each catastrophic event and the survival probability.

1.1. Description of the models

In the simple birth-and-death process, individuals give birth to a new individual at rate α

and die at rate 1. To include a spatial structure, a natural approach is to assume that individuals
are located on the d-dimensional regular lattice Z

d , with each lattice site being either empty
or occupied by one individual, and that each offspring is sent uniformly at random to one of
the 2d nearest neighbors of its parent’s site. In addition, individuals sent to a site which is
already occupied are instantaneously removed from the system in order to model competition
for space. The resulting process is Harris’ contact process [6]. The state space consists of all
the functions that map the set of lattice sites into {0, 1}, where state 0 means empty and state 1
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means occupied, and the dynamics are described by the Markov generator

Lf (ζ ) = α

2d

∑
x∈Zd

∑
y∼x

ζ(y)[f (ζx,1) − f (ζ )] +
∑
x∈Zd

[f (ζx,0) − f (ζ )], (2)

where ζx,i is the configuration obtained from ζ by assigning the value i to vertex x, and
where we use the notation y ∼ x to indicate that vertices x and y are Euclidean distance 1
apart. Thinking of the regular lattice as a graph in which edges connect nearest neighbors,
the expression of the generator indicates that deaths occur independently at each vertex while
births occur independently through the edges. Now, it is interesting to think of contact processes
including catastrophic events as being induced by a hypergraph (rather than a traditional graph)
structure. That is, we complete the regular lattice with a collection of hyperedges, i.e. subsets
of the vertex set with arbitrary cardinality, which results in a hypergraph. Then, we assume
that catastrophic events consist of the removal of all the individuals in the same hyperedge, so
there are three types of event corresponding to three types of object of the hypergraph: death
events attached to each vertex, birth events attached to each (oriented) edge, and catastrophic
events attached to each hyperedge. Since our purpose is to prove that the survival probability is
not monotonically related to the size of the catastrophic events (cardinality of the hyperedges),
for simplicity, we focus only on two special cases of hypergraphs. In the first case, the set of
hyperedges consists of the hyperplanes

Tx = {(x1, x2, . . . , xd) ∈ Z
d : x1 = x}, x ∈ Z,

while in the second case, it consists of the set of d-dimensional cubes

Fx = {y ∈ Z
d : max{|x1 − y1|, . . . , |xd − yd |} ≤ K}, x ∈ Z

d ,

where K is a large integer. The two stochastic models we consider have the same state space as,
and are naturally derived from, the contact process (2), but include in addition the removal at
some specific rates of all the individuals simultaneously present either in the same hyperplane
or in the same cube. Formally, the dynamics of the first process are described by

LT f (ξ) = α

2d

∑
x∈Zd

∑
y∼x

ξ(y)[f (ξx,1) − f (ξ)] +
∑
x∈Zd

[f (ξx,0) − f (ξ)]

+ �
∑
x∈Z

[f (ξTx ,0) − f (ξ)], (3)

where, for each B ⊂ Z
d , the configuration ξB,0 is obtained from ξ by assigning the value 0

to all the vertices belonging to the hyperedge B, while the dynamics of the second process are
given by

LF f (η) = α

2d

∑
x∈Zd

∑
y∼x

η(y)[f (ηx,1) − f (η)] +
∑
x∈Zd

[f (ηx,0) − f (η)]

+ �(2K + 1)−d
∑
x∈Zd

[f (ηFx ,0) − f (η)], (4)

where configuration ηB,0 is obtained from η in the same manner. Thinking of the two-
dimensional case, we call the stochastic model in (3) the contact process with tornadoes,
while we call the stochastic model in (4) the contact process with forest fires (see Figure 1

https://doi.org/10.1239/jap/1308662632 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662632


Contact process with destruction of cubes and hyperplanes 355

Figure 1: Pictures of the quasistationary equilibrium of the contact process with tornadoes (left) and the
contact process with forest fires (right) in the case of nearest-neighbor interactions on a 400 ×400 lattice.

In both pictures, the parameters are α = 5 and � = 1
2 , and the range of a fire is 2K + 1 = 9.

for simulation pictures). This terminology is motivated by the fact that strong tornadoes are
typically 1 km across but stay on the ground for more than 100 km, whereas forest fires start
at a specific point and basically spread out at the same speed in each direction. Although,
for simplicity, the geometric shapes we are considering are somewhat idealized, we point out
that our results for the contact process with tornadoes easily extend to hyperedges which are
basically unbounded (d −1)-dimensional objects, while our results for the contact process with
forest fires extend to hyperedges which are large bounded d-dimensional objects. We note from
the generators (3) and (4) that tornadoes occur in each hyperplane at rate �, whereas in the
process with forest fires this rate is divided by the number of vertices destroyed by each fire.
This is motivated by the fact that each lattice site is contained in one and only one hyperplane
Tx , whereas it is contained in exactly (2K + 1)d cubes Fx . The rate is thus rescaled in such a
way that, for both processes, each individual is removed due to a catastrophic event at the same
rate �. In particular, the nonspatial mean-field approximations of both processes are equal and
described by the differential equation

du

dt
= αu(1 − u) − (1 + �)u, (5)

where the function u(t) denotes the population density at time t . Therefore, we can emphasize
the fact that any disagreement between the process with tornadoes and the process with forest
fires is indeed due to the geometric structure of the underlying hypergraphs rather than an
inappropriate choice of the parameters of the processes.

1.2. Tornadoes versus forest fires

The nonmonotonic relationship between the size of the catastrophic events (cardinality of the
hyperedges) and the survival probability of the processes are expressed in terms of critical values.
Note that standard coupling arguments imply that the survival probability is nondecreasing with
respect to the birth rate α. This induces the existence of a unique phase transition; hence, for
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each � ≥ 0 and K ∈ Z+, we introduce the critical values

αc(ξ, �) = sup{α : P(ξt �= ∅ for all t > 0 | ξ0 = {0}) = 0},
αc(η, K, �) = sup{α : P(ηt �= ∅ for all t > 0 | η0 = {0}) = 0},

where processes are identified with the set of occupied sites. Our first two results state that the
contact process with tornadoes survives for reasonably large values of the birth rate, whereas,
for any choice of the birth parameter, the contact process with forest fires dies out exponentially
fast whenever the scale parameter K is sufficiently large.

Theorem 1. (Tornadoes.) We have αc(ξ, �) ≤ 2d(1 + �) and lim�→0 αc(ξ, �) = αc(ξ, 0).

Theorem 2. (Forest fires.) For all � > 0, limK→∞ αc(η, K, �) = ∞.

Theorems 1 and 2 indicate that, at least for sufficiently large K , there is a wide range of
birth rates for which the inclusion of tornadoes does not affect the existence of a nontrivial
invariant measure, whereas introducing forest fires drives the process to extinction. On the
other hand, starting from the configuration in which all sites are occupied, it can be proved that
each tornado removes infinitely many individuals, while each forest fire obviously removes
only finitely many individuals. The intuition behind these results and their proofs is that the
graph distance in Z

d between the complement of a hyperplane and any of its vertices is equal
to 1, whereas the graph distance between the complement of a cube and its center can be made
arbitrarily large. Thinking of the graph distance as a number of births in the nearest-neighbor
case, this indicates that, though infinite, hyperplanes are repopulated somewhat faster than large
cubes. Note however that this property is no longer true when the range of the interactions
increases up to the range of the forest fires, in which case we prove that the distinction between
tornadoes and forest fires is weakened. Formally, the processes with long-range interactions
are obtained from the generators (3) and (4) by assuming that individuals evolve on the rescaled
lattice Z

d/N , taking the sum over all vertices y within distance 1 of vertex x, and renormalizing
the sum by the new neighborhood size. More precisely, the Markov generator of the long-range
contact process with tornadoes is

LT f (ξ) = α(2N + 1)−d
∑

x∈Zd/N

∑
‖x−y‖≤1

ξ(y)[f (ξx,1) − f (ξ)]

+
∑

x∈Zd/N

[f (ξx,0) − f (ξ)] + �
∑

x∈Z/N

[f (ξTx ,0) − f (ξ)],

where ‖x − y‖ = max{|x1 − y1|, . . . , |xd − yd |} and

Tx =
{
(x1, x2, . . . , xd) ∈ Z

d

N
: x1 = x

}
, x ∈ Z/N.

The long-range contact process with forest fires is obtained similarly, except that cubes are also
rescaled by a factor N , which gives the Markov generator

LF f (η) = α(2N + 1)−d
∑

x∈Zd/N

∑
‖x−y‖≤1

η(y)[f (ηx,1) − f (η)]

+
∑

x∈Zd/N

[f (ηx,0) − f (η)] + �(2K + 1)−d
∑

x∈Zd/N

[f (ηFx ,0) − f (η)],
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Figure 2: Pictures of the quasistationary equilibrium of the process with forest fires. In both simulations,
the parameters are α = 5, � = 1

2 , and 2K +1 = 49. The dispersal range is equal to 2 and 10, respectively.

where we now have

Fx =
{
y ∈ Z

d

N
: max{|x1 − y1|, . . . , |xd − yd |} ≤ K

N

}
, x ∈ Z

d/N.

See Figure 2 for simulation pictures of the process with forest fires with dispersal range 2 and
10, respectively. The long-term behavior in the limit as the range of the interactions N tends
to ∞ is then described by the following two theorems.

Theorem 3. (Tornadoes.) We have limN→∞ αc(ξ, �) = 1 + �.

Theorem 4. (Forest fires.) For all K > 0, limN→∞ αc(η, K, �) = 1 + �.

Theorems 3 and 4 indicate that, for a very large range of interactions, both the contact
process with tornadoes and the contact process with forest fires result in the same predictions
as their common mean-field model (5) in terms of the convergence of their respective critical
values to the critical value of the mean-field approximation. This shows that the geometry of
the subsets struck by catastrophes, which is an important component in the case of short-range
interactions, becomes less and less relevant as the dispersal range increases. The key to proving
these two convergence results is to establish weak convergence of the contact processes to the
same branching random walk with birth rate α and death rate 1 + �.

2. Proof of Theorem 1 (tornadoes)

Let � be the orthogonal complement of T0, and let ξ̃t (α, �) be the contact process with
tornadoes modified so that particles sent outside the straight line � are killed. Noting that

1. at each birth, the new offspring is sent to a site in � with probability 1/d, and

2. for all x ∈ Z, the hyperplane Tx intersects the straight line � at exactly one site

we find that the modified process ξ̃t (α, �) is the one-dimensional basic contact process in which
particles give birth at rate α/d and die at rate 1 + �. By construction, the contact process with
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tornadoes dominates stochastically this basic contact process, which implies that

αc(ξ, �) ≤ d(1 + �)αc(d = 1) ≤ 2d(1 + �),

where αc(d = 1) is the critical value of the one-dimensional basic contact process with
normalized death parameter equal to 1. In particular, the last inequality follows from the
fact that this critical value is less than 2, a result that can be found in [8, p. 43]. This completes
the proof of the first statement of Theorem 1.

Turning to the second statement, we first observe that the monotonicity of the survival
probability with respect to the parameter � directly implies that

αc(ξ, �) ≥ αc(ξ, 0) for all � ≥ 0; therefore, lim inf
�→0

αc(ξ, �) ≥ αc(ξ, 0).

To show the reverse inequality, we fix α > αc(ξ, 0), the critical value of the d-dimensional
basic contact process, and, given L, T ∈ Z+ define the spatial and space–time regions

Dz = 2Lz + [−L, L]d for all z ∈ Z,

Bz,n = (2Lz + [−4L, 4L]d) × (nT , (n + 1)T ) for all (z, n) ∈ Z × Z+.

Then, for all ε > 0, the space and time scales L and T can be chosen in such a way that

P(card(ξ(n+1)T (α, 0) ∩ Dz±1) ≥ M | card(ξnT (α, 0) ∩ Dz) ≥ M) ≥ 1 − ε (6)

for a suitable M > 0. In addition, this holds for the basic contact process modified so that
particles sent outside the space–time box Bz,n are killed. We refer the reader to [3] for a proof of
this statement. In particular, property (6) can be extended to the contact process with tornadoes
provided that � > 0 is sufficiently small. Indeed, the space and time scales being fixed, the
probability of a tornado occurring in the space–time box Bz,n is bounded by

1 − exp(−8LT �) ≤ ε for all � ≤ �(L, T , ε).

It follows that, for all α > αc(ξ, 0) and all � ≤ �(L, T , ε),

P(card(ξ(n+1)T (α, �) ∩ Dz±1) ≥ M | card(ξnT (α, �) ∩ Dz) ≥ M) ≥ 1 − 2ε. (7)

Positive probability of survival of the contact process with tornadoes for such parameters can
be deduced from (7) by choosing ε > 0 small and by using standard coupling arguments to
compare the process with one-dependent oriented site percolation, and we again refer the reader
to [3] for a proof of this statement. In conclusion, if the process in the absence of tornadoes
survives then it does in the presence of tornadoes provided that � > 0 is sufficiently small, i.e.

α > αc(ξ, 0) implies that α > αc(ξ, �) for � > 0 small,

which is equivalent to lim sup�→0 αc(ξ, �) ≤ αc(ξ, 0). This completes the proof.

3. Proof of Theorem 2 (forest fires)

Note that Theorem 2 is equivalent to the statement: for all α < ∞ (even large) and all
� > 0 (even small), the contact process converges almost surely to the ‘all empty’configuration
whenever the size of a fire K is sufficiently large, which we prove in this section. The key idea
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is that, regardless of the initial configuration, any given cube of fixed size, say A, will be empty
at a certain deterministic time with a probability that approaches 1 as K tends to ∞. This
follows from a two-step reasoning: (i) when K is large, we can find a large cube containing A,
say B, that is quickly cleared by a catastrophic event, then (ii) even in the absence of deaths,
either natural or due to a catastrophe, once B is cleared, the time for the particles to repopulate
A is large. We prove these two statements in the next two lemmas in reverse order. Property (ii)
is true even in the absence of deaths so, for simplicity, we show the result for the Richardson
process [10] with birth parameter α, a process that we denote by �t(α). Later on, we also
add, when it is relevant, a superscript to indicate the initial configuration of the processes under
consideration, with the superscript 0 meaning that there is initially a single particle at the origin.

Lemma 1. For T ∈ Z+ and a, b > 0, we introduce the sets

A = (−aT , aT )d and B = (−8bT , 8bT )d .

There exist a ≤ b depending only on α such that, for all ε > 0,

P(�Bc

T (α) ∩ A �= ∅) ≤ 1
2ε for all sufficiently large T .

Proof. We start by applying the shape theorem for the Richardson process to obtain the
existence of a convex set H with nonempty interior such that, for all ε > 0,

P(H ⊂ t−1�0
t (α) ⊂ 2H) > 1 − 1

4ε for sufficiently large t. (8)

We will prove the lemma for the constants

a := inf
x∈∂H

‖x‖∞ and b := sup
x∈∂H

‖x‖∞,

where ∂H denotes the topological boundary of the convex set H . By applying twice (the weak
version of) the shape theorem given by (8), we obtain

P(�A
T (α) ∩ Bc �= ∅) = P(�A

T (α) �⊂ B)

≤ P(�0
2T (α) �⊂ B | �0

T (α) ⊃ A)

≤ P(�0
2T (α) �⊂ B)

P(�0
T (α) ⊃ A)

≤ P(�0
2T (α) �⊂ 8T H)

P(�0
T (α) ⊃ T H)

≤ P((2T )−1�0
2T (α) �⊂ 4H)

P(T −1�0
T (α) ⊃ H)

≤ ( 1
4ε

)(
1 − 1

4ε
)−1

≤ 1
2ε

for all sufficiently large T since 8T H ⊂ B and A ⊂ T H . Finally, by invoking the fact that the
Richardson process is self-dual, we can conclude that

P(�Bc

T (α) ∩ A �= ∅) = P(�A
T (α) ∩ Bc �= ∅) ≤ 1

2ε

for all sufficiently large T . This completes the proof.
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The proof of property (i) along with its combination with (ii) that leads to Theorem 2 are
given in the next lemma. To state the latter, we introduce,

Ax,j = (aT x + A) × ( 1
2jT + (

0, 1
2T

))
for all (x, j) ∈ Z

d × Z+

with a = a(α) and A defined as in Lemma 1, and declare site (x, j) to be open whenever the
corresponding space–time box Ax,j is empty for the contact process with catastrophes.

Lemma 2. Assume that � > 0. For all ε > 0, there exist T and K(ε) such that

P((x, j) is open) ≥ 1 − ε for all (x, j) ∈ Z
d × Z

∗+ and K ≥ K(ε).

Proof. Since the evolution rules are translation invariant in space and time, and the contact
process is attractive, it suffices to prove the result for site (x, j) = (0, 1) and when all lattice
sites are initially occupied, which is equivalent to

P
(
ηt (α, �) ∩ A �= ∅ for some t ∈ ( 1

2T , T
)) ≤ ε for large K. (9)

We prove (9) for large T and all K ≥ 16bT , where b = b(α) is defined as in Lemma 1. Since
each K-cube centered at a site within distance K/2 of the origin contains the set B, introducing
independent exponential random variables Xi with parameter �(2K + 1)−d , we have

P
(
ηt (α, �) ∩ B �= ∅ for all t ∈ (

0, 1
2T

)) ≤
(K−1)d∏

i=1

P
(
Xi > 1

2T
)

≤
(K−1)d∏

i=1

exp
(− 1

2�(2K + 1)−dT
)

≤ exp

(
− �T

2d+2

)

≤ 1
2ε (10)

for large T since each K-cube is cleared by a fire at rate �(2K + 1)−d . Using the facts that
the Richardson model dominates stochastically the contact process, can only increase as a pure
birth process, and is attractive, and applying Lemma 1, we also have

P
(
ηt ∩ A �= ∅ for some t ∈ ( 1

2T , T
) ∣∣ ηt ∩ B = ∅ for some t < 1

2T
)

≤ P
(
�t ∩ A �= ∅ for some t ∈ ( 1

2T , T
) ∣∣ �t ∩ B = ∅ for some t < 1

2T
)

≤ P
(
�t ∩ A �= ∅ for some t ∈ ( 1

2T , T
) ∣∣ �0 ∩ B = ∅

)
≤ P

(
�t ∩ A �= ∅ for some t ∈ ( 1

2T , T
) ∣∣ �0 = Bc)

≤ P(�Bc

T ∩ A �= ∅)

≤ 1
2ε (11)

for all large T . Combining (10) and (11), we obtain (9). The lemma follows.

To complete the proof of Theorem 2, the idea is to couple the contact process properly
rescaled in space and time with a certain oriented site percolation process. Let H be the
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directed graph with vertex set Z
d × Z+ in which there is an edge directed from (x, i) to (y, j)

if and only if

‖x − y‖ = 1 and i = j or x = y and j = i + 1.

Lemma 2 indicates that, for all ε > 0, parameters can be chosen in such a way that the
set of open sites for the contact process dominates stochastically the set of open sites in the
oriented site percolation process with parameter 1 − ε on the directed graph H . For small
ε > 0, the probability of a path of length n of closed sites in the percolation process decreases
exponentially fast with n, as proved in [14, Inequality (8.2)]. Since the presence of an individual
at time (n + 1)T /2 in the contact process implies the existence of a path of length n of closed
sites, extinction of the contact process when K is large follows, which completes the proof of
Theorem 2.

4. Proofs of Theorems 3 and 4 (long-range interactions)

The proofs of both theorems are based on the analogous result for branching random walks.
In this section, the branching random walk Zt with birth rate α and death rate 
 is the Markov
process whose state at time t consists of all functions Zt : R

d → N, where Zt(x) has to be
thought of as the number of particles at point x. Particles die independently at rate 
, while
a particle at point x gives birth at rate α to a particle which is then sent to point x + U ,
where U is uniformly distributed over the cube (−1, 1)d . Uniform random variables used to
determine the locations of the offspring are chosen independently at each birth event. Note
that contact processes and branching random walks differ in that births onto already occupied
sites are suppressed in the former, which allows at most one particle per site, but not in the
latter, which allows several particles per site. However, since the location of the offspring in the
branching random walk is chosen according to a continuous random variable, the probability
of the offspring being sent to any given point, or more generally any given finite set of points,
is equal to 0. In particular, starting with finitely many particles, each point is occupied by at
most one particle at all times with probability 1, provided that this property holds at time 0,
just as in the contact process. This idea will be used below in Lemmas 4 and 5 to prove weak
convergence of the contact process to the branching random walk. Note also that, starting with
a finite number of particles, we may identify Zt with the set of points that are occupied by one
particle. It is a well-known result that

P(Zt �= ∅ for all t > 0 | Z0 = {0}) �= 0 if and only if α > 
,

since the number of particles in Zt is a simple birth-and-death process. Note that, for both the
contact process with tornadoes and the contact process with forest fires, the number of particles
is dominated stochastically by the number of particles in a birth-and-death process with birth
rate α and death rate 
 = 1 + �, regardless of the range of the interactions. It directly follows
that the critical birth parameters are bounded from below by the death rate; hence,

lim
N→∞ αc(ξ, �) ≥ 1 + � and lim

N→∞ αc(η, K, �) ≥ 1 + � for all K > 0.

To establish the reverse inequalities, it suffices to prove that, for any α > 1 + �, there is a
positive probability of survival whenever the range of the interactions N is sufficiently large.
The idea is to show weak convergence of both contact processes to the branching process Zt and
deduce the result from its analog for the branching process. Weak convergence is only true for
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the processes restricted to finite space–time regions, but combined with a rescaling argument
it implies both theorems. More precisely, let L ∈ Z+ and, for all k ∈ Z, introduce the subsets

Ik = 2kLe1 + [−L, L]d ⊂ R
d and Jk = 2kLe1 + (−4L, 4L)d ⊂ R

d ,

where e1 denotes the first unit vector in Z
d . Let Z̄t be the branching random walk modified

so that offspring sent outside J0 are killed. Again, we use a superscript to indicate the initial
set. The next well-known lemma implies that, when properly rescaled in space and time, the
branching random walk Zt dominates oriented site percolation provided that α > 
 = 1 + �.

Lemma 3. Let T = L2 and α > 1 + �. Then, for all ε > 0, there exists L = L(ε) such that

P(card(Z̄T ∩ I±1) ≤ L | card(Z̄0 ∩ I0) ≥ L) < ε.

Proof. This is classical and we refer the reader to [4, pp. 166–167] for a proof.

Taking ε > 0 small such that 1−ε is larger than the critical value of oriented site percolation
in two dimensions and then choosing L = L(ε) accordingly, the previous lemma implies that
there is a positive probability that the branching random walk Zt survives. Theorems 3 and 4
are proved following the same strategy, so it suffices to show that the contact processes modified
so that offspring sent outside J0, which we also distinguish from their unrestricted versions by
adding a bar, converge weakly to the restricted branching random walk Z̄t up to time T . This
result is well known for the basic contact process, that is, when � = 0, and relies on the fact
that the probability of a particle being sent to a site already occupied in a given finite space–time
box tends to 0 as the range of the interactions tends to ∞. The basic idea to extend this result in
the presence of catastrophic events is to prove in addition that the probability of two particles
being in the same hyperplane or in the same K-cube tends to 0 as the range of the interactions
tends to ∞, as this implies that particles die individually at rate 1+� and never simultaneously.
In particular, we also need to prove that these good properties are retained by the dynamics. In
the following, we use the symbol ‘⇒’ to denote weak convergence in the Skorokhod space of
càdlàg functions defined on the interval [0, T ] and with range the subsets of R

d . We first deal
with the contact process with tornadoes and then explain how to adapt the proof to the process
with forest fires.

Definition 1. A set A ⊂ Z
d/N is said to be good if

π(x) �= π(y) for all x, y ∈ A with x �= y,

where π denotes the orthogonal projection on the first axis.

Lemma 4. Let A ⊂ I0 ∩ Z
d/N be a good set with cardinal L. As N → ∞,

ξ̄A
t (α, �) ⇒ Z̄A

t (α, 1 + �) and P(ξ̄A
t (α, �) is good for all t ∈ (0, T )) → 1.

Proof. First we observe that the number of offspring in the contact process produced by time
t is dominated by the number of particles in ZA

t (α, 0), which is a pure birth process. Hence,

E |ξ̄A
t (α, K, �)| ≤ E |ZA

t (α, 0)| = L exp(αt) ≤ L exp(αT ) for all t ≤ T .

Then, by Markov’s inequality we have

lim
N→∞ P(|ξ̄A

t (α, K, �)| > N1/3 for some t ≤ T ) ≤ lim
N→∞ N−1/3L exp(αT ) = 0. (12)
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Table 1: Harris’ graphical representation.

Notation Description Interpretation

Tn(x) Poisson process with parameter α Time of a birth event
Un(x) Uniform random variable on (−1, 1)d Position of the new offspring
Vn(x) Poisson process with parameter 1 Time of an individual death
Wn(x) Poisson process with parameter � Time of a catastrophic event

Now, conditional on the event E1 that the number of particles does not exceed N1/3 by time
T , at each birth, the probability that the offspring is sent to the same hyperplane as an existing
particle is bounded by N1/3(2N + 1)−1, from which it follows that

lim
N→∞ P(E2 | E1) ≥ 1 − lim

N→∞
N1/3N1/3

2N + 1
= 1, (13)

where E2 is the event that no two particles’ locations have the same first coordinate. The fact
that the set of particles is almost surely good up to time T in the limit as the range of the
interactions tends to ∞ thus follows from the combination of (12) and (13). To prove the weak
convergence of the contact process with tornadoes to the branching random walk, it suffices to
show that, conditional on the event E1 ∩ E2, we can create a coupling such that

(i) the number of particles in both processes is the same at any time by time T ,

(ii) each particle in one process is arbitrarily close to its counterpart in the other process
provided that the range of the interactions N is large.

To create such a coupling, we construct the processes from the graphical representation that
consists of the independent processes introduced in Table 1. The first three processes in the
table are defined for each vertex x ∈ Z

d/N , but the last process is defined only for each
vertex x ∈ Z/N . Recall that both processes start with the same initial set A. We number the
particles in A from particle 1 to particle L by choosing one of the possible orderings uniformly
at random and, for each process, call particle number L+ i the particle produced at the ith birth
event. We claim that the contact process and branching random walk can be simultaneously
constructed from the collections of independent processes of Table 1 in such a way that (i) and
(ii) above hold. We simultaneously prove (i) and construct the processes, and then show that
(ii) follows. Assume that (i) is true by the time u of a Poisson process. We have the following
alternative.

1. u = Tn(x) for some n. If site x is occupied by a particle of the contact process at time
u−, say particle i, let y = πN(Un(x)) be the (unique) vector such that

y ∈ Z
d

N
and ‖Un(x) − y‖∞ <

1

2N
,

and let z ∈ R
d denote the position of particle i in the branching random walk. Then, put

a particle at site x + y in the contact process and a particle at point z + Un(x) in the
branching random walk. If there is no particle at site x at time u− then nothing happens.

2. u = Vn(x) for some n. If site x is occupied by a particle of the contact process at time
u−, say particle i, then particle i is killed in both processes. Otherwise, nothing happens.
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3. u = Wn(x) for some n. Conditional on the event E2, there is at most one particle of the
contact process in the hyperplane Tx at time u−. If there is one, say particle i, then we
remove particle i from both processes. Otherwise, nothing happens.

Note that rules 1–3 indicate that, conditional on the event E2, property (i) holds at time u;
hence, it holds up to time T by a simple induction. Furthermore, the processes thus defined
are indeed the contact process with tornadoes and the branching random walk, respectively.
Finally, since the distance between a particle and its parent differs from at most 1/2N between
both processes, letting yi and zi denote the location of particle i in the contact process and the
branching random walk, respectively, adding the errors, and recalling the definitions of E1 and
E2, we obtain

lim
N→∞ ‖yi − zi‖∞ ≤ lim

N→∞ ‖yi−1 − zi−1‖∞ + 1

2N
≤ · · · ≤ lim

N→∞
N1/3

2N
= 0

almost surely on E1 ∩ E2, which establishes property (ii). Since, in addition, E1 ∩ E2 occurs
almost surely in the limit as N → ∞ according to (12) and (13), the result follows.

We now turn to the case of the contact process with forest fires.

Definition 2. A set A ⊂ Z
d/N is said to be K-good if

‖x − y‖∞ >
2K

N
for all x, y ∈ A with x �= y.

Lemma 5. Let A ⊂ I0 ∩ Z
d/N be a K-good set with cardinal L. As N → ∞,

η̄A
t (α, K, �) ⇒ Z̄A

t (α, 1 + �)

and

P(η̄A
t (α, K, �) is K-good for all t ∈ (0, T )) → 1.

Proof. Observe first that the analog of (12), which is

lim
N→∞ P(|η̄A

t (α, K, �)| > N1/3 for some t ≤ T ) = 0,

follows from the same comparison with a branching process as in Lemma 4. Moreover,
conditional on the event F1 that the number of particles does not exceed N1/3 by time T ,
at each birth, the probability that the offspring is sent to a K-cube containing at least one
particle, i.e. the offspring is sent within distance 2K/N of an occupied site, is less than

N1/3
(

2N + 1

2K + 1

)−d

,

the maximum number of particles divided by the minimum number of K-cubes needed to cover
an interaction neighborhood. This implies that

lim
N→∞ P(F2 | F1) ≥ 1 − lim

N→∞ N1/3N1/3
(

2N + 1

2K + 1

)−d

= 1,

where F2 is the event that each K-cube has at most one particle by time T . Hence, the set
of particles is almost surely good up to time T in the limit as N tends to ∞. To prove weak
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convergence on the event F1 ∩ F2, we couple the contact process and the branching random
walk by ordering the particles as in Lemma 4 and by using the graphical representation of
Table 1, except that the process W·(x) now has intensity �(2K + 1)−d and is defined for all
x ∈ Z

d/N , and that rule 3 in the proof of Lemma 4 is replaced by the following rule.

3′. If u = Wn(x) for some n then, conditional on the event F2, there is at most one particle of
the contact process in the K-cube with center x at time u−. If there is one, say particle i,
then we remove particle i from both processes. Otherwise, nothing happens.

The fact that the number of particles is the same in both processes follows from the conditioning
on the event F2, which implies that each forest fire kills at most one particle. Finally, the same
calculation as in Lemma 4 implies that the distance between each particle in one process and
its counterpart in the other process tends to 0 as N tends to ∞.

As previously explained, Theorem 3 follows from the combination of Lemmas 3 and 4, while
Theorem 4 follows from the combination of Lemmas 3 and 5.
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