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Abstract

Suppose that a ring is a sum of its nilpotent subrings. We use directed graphs to give new conditions
sufficient for the whole ring to be nilpotent.

1991 Mathematics subject classification (Amer. Math. Soc): primary 16N40; secondary 16N60.

The investigation of rings which are sums of their subrings has been carried out
by Bahturin and Giambruno [1], Bahturin and Kegel [2], Beidar and Mikhalev [3],
Ferrero and Puczylowski [5], Fukshansky [6], Herstein and Small [7], Kegel [8,9],
Kelarev and McConnell [13], Kepczyk and Puczylowski [14, 15], Puczylowski [16],
Salwa [17] and the author [10-12]. Although there are several positive results which
show that some properties are preserved by sums of two subrings, it turns out that
relatively few ring-theoretic properties are inherited by rings which are sums of their
two subrings, and there are no known nontrivial properties which are inherited by
sums of three or more subrings.

A strong negative result of this sort was obtained by Bokut' [4]: Every algebra over
a field of characteristic zero can be embedded in a simple algebra which is a sum of
three nilpotent subalgebras. In [10] the author constructed a ring which is not nil but
is a direct sum of two locally nilpotent subrings. A primitive ring which is a sum of
two Wedderburn radical subrings was given in [11] with the use of a homomorphic
image of the construction introduced in [10].

Therefore some additional restrictions on the interaction of the summands are
needed in order to obtain positive results.

A natural restriction is to require that some products of the subrings are equal to
zero. Suppose that a ring R is a sum of its subrings /?,., v € V, and assume that for
some pairs u, v e V it is known that the product RllRv is equal to zero.
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We use directed graphs (digraphs) to keep information about all pairs u, v e V
with /?„/?, = 0. Denote by E the set of all ordered pairs u, v G V such that /?„/?,. = 0,
and consider the digraph A = (V, E). By the complement of A we mean the digraph
G = A = (V, E), where E = V x V\E. Then we shall say that R is a G-sum of the
/?,.. The digraph A will be called the annihilator digraph of /?.

This situation arises in several ring constructions. For example, if U,,(F) is the ring
of« x n upper triangular matrices over a field F, and eu denotes the standard matrix
unit, then U,,(F) = ®\<,srlnFejj and Fe^Fe^ — 0 whenever j ^ k. For a finite set
V, a ring /? is a direct product of /?,,, u 6 V, if and only if R is a G-sum, where the
annihilator digraph A = G is the complete digraph on V.

We say that a digraph G = (V, E) is 2-connected if, for any u, v € V, there exists
ID e V\{u, v] such that (M. U'), (W, V) G £ .

THEOREM 1. Let G be a digraph without 2-connected subgraphs. If a ring R is a
G-sum of nilpotent subrings, then R is nilpotent too.

PROOF. Assume that the digraph G(V, E) does not contain any 2-connected sub-
graphs. Take a ring R which is a G-sum of nilpotent subrings /?,,, v e V. Let R1 be
the ring R with identity 1 adjoined.

Put H(R) = UveVRv. For any r e H(R), we fix an element ind(r) € V such that

If U c V, \U\ = k > 1 and m > k, then by L(U,m) we denote the set of
all products of the form sltls2t2 • • • s^tksk+i such that there exist positive integers
ax ak s a t i s f y i n g ax + a 2 + • • • + a k > m , w h e r e t i , ... , t k £ H ( R ) , t, e /?•„<](»,)
for/ = 1 Jt, {ind(fi), . . . , ind(r*)} = U, and s{, ... ,sk+i e / ? ' .

For positive integers &, w . n, if & > |V | , then we put P(k. m, n) — {0}.

For positive integers k, m. n with 1 < k < | V | and m > k, denote by P(k, m, n)

the set consisting of zero and all products rtr2- • • r,, such that there exists a subset

U c V satisfying \U\ = k and r, rn e L(U, m).

We claim that every product in P(k,m,3(\V\ + l)n) is a sum of e lements from

P(k,m + l , n ) and P(k + 1. m + \,n).

For k > | V| the assertion is trivial. Assume that k < \V\. Take any product w =

nr2---rMlvl+i)n € P(k,m.3(\V\ + \ ) n ) . B y t h e d e f i n i t i o n o f P(k, m , 3 ( | V | + 1 ) « )

there exists a subset U c V such that | ( / | = /t and rt, . . . , r3(|vi+i>n e L(U, m).
For any / = 0 , 1 , . . . , (| V | + 1 )n — 1, we rewrite the elements r3i+i, r3,+2, rii+i and

introduce an auxiliary set w, which characterizes the way we rewrite them.

The definition of L(U,m) shows that r3i+j = ^.1^.1^.2^.2 • • • Sj.ktj.kSj.k+\, for
j — 1, 2, 3, where there exist positive integers ajA,... , ajM such that

fl/.i + aj.2 + • • • + ctj.k > m,
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tJA,... , tj.k € H(R), tjj e R"ndUli) for / = 1, . . . . * , {ind(r,-.,) ind(rM)} = U,
and*,.,, . . . , s M + , € /?' .

If the three sets of pairs

{(ind(o.,) ,a;. ,) , . . . , (ind(rM), a,-.*)}. J = 1.2,3

are not equal to each other, then for each value of ind(/>./) we can choose the maximum
power djj out of the three available powers ajh y = 1,2,3. Since for some ind(f7.,)
the elements a,-,,, j = 1, 2, 3 are not all equal, it follows that the sum of exponents
of the chosen maximal powers is strictly greater than m. We keep the corresponding
maximal elements tjj € /?"„<,'„ /( and multiply together the other elements which are
between them. In this way we rewrite r3,+1r3,+2r3,+3 as a product in L(U, m + 1).
In this case we put w, = 0 to remember that r3,+ir3,+:r,,+3 has been rewritten as a
product in L(U, m + 1).

Next consider the case where all three sets of pairs

{(ind(r,-.,),a;.,),... ,(ind(rM),a,-.t)}, j = 1,2,3

are equal to each other. In this case we rewrite rw+ir.^+irii+.i a s a s u m of several
elements, we consider only one summand and we introduce u.>, to characterize this
summand.

Given that the graph G(V, E) is not 2-connected, we can find ut,u2 € U such that
for any w e U\{u\, u2] either (u\,w) & E or (w, u2) & E. Then we can find /,. /:
such that ind(/2./,) = «i and ind(?3.,,) = u2- Letr3,+2 = ci\W^b\ andr1/+3 = a2t"][2b2-
Multiplying together bxa2 we use the fact that R — 0 l 6 l Rv and represent the product
as a sum b\a2 = Ylvev c '" w r i e r e cv ^ Rv When we substitute the sum for b\ai, the
product r3,+ir3,+2r3,+3 turns into a sum of several elements ry+la\t1jlCvhj,b2, where
v € V. We consider only one of these elements, for an arbitrary v € V. Naturally,
the product r, • • • r3(|V|+i),, also becomes a sum of several summands, and we consider
only one of these summands.

If v = Mi, then ?2./,c, € ^«,''' • Using this we can rewrite rili+lri,+2rii+i as a
product in L(f/, m + 1) and we put it', = 0.

If v = u2, then c,.f3/, € Rul' . Using this we can rewrite r3;+i''3/+2''3i+3 as a
product in L(£/, w + 1) and we put wt = 0.

If v e [ / \{MI, U2], then either (M,, U) ^ £ or (u, M2) ^ £• ^ follows that either
? 2 / c r = 0 or ct,r3./, = 0, respectively. Therefore rii+iait2.ilcvtT,j,b2 = 0. In this case
the corresponding summand of r, • • • rMlvl+l},, is zero and belongs to P(k, m + 1, n),
as claimed.

If v € V\f/, then we rewrite r3;+1r3,+2r3,+3 as a product in L(U U {11}, m + 1) and
we put iy,- = {cr}.

Thus all products r3/+ir3,+2r3,+3 have been rewritten. Therefore the whole prod-
uct r, • • r3(|V|+i),, has also been rewritten. We consider only one summand s of
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r, • • -rM;Vl+Un. The corresponding elements wt wi[Vl+ltl, characterizing this sum-

mand s have been introduced.

Since the elements w\, ... , w(ivi+])n are chosen in V U {0}, there exist

such that wh = • • • = win = w.

If w = 0, then all the summands of r ^ ^ r ^ ^ r , , , ^ , / = 1 , . . . . n, which we

considered, have been rewritten as elements of L(U,m + 1). Therefore we can

rewrite the whole summand v as an element of P(k, m + 1, n) , as claimed.

If w = {v} for v € V, then all the summands of rT,il+lr^l+2r)il+i, / = 1 n,

which we considered, have been rewritten as elements of L(UU{v},m + l). Therefore

we can rewrite the whole summand 5 as an element of P(k, m + 1, n), as claimed.

Thus every product in P(k. m, 3(| V| + l)«) is a sum of elements from P(k, m + \, n)

and P(k+ 1. m + 1,«).

Denote by N the maximum of the nilpotency indices of the rings /?,,, v € V. Then

#;v = 0 for all v. Easy induction shows that every product in

is a sum of elements from the sets P(k, 1 + N\V\, 1), for 1 < k < \V\.

Take any element r in P(k, 1 + N\V\, 1). By the definition there exists a subset

( / a such that \U\ = k and r e L(U, 1 + A^|V|). Therefore r = sitis2t2-•-SkhSk+\

and there exist positive integers a\ ak satisfying a, + a2 + • • • + ak > 1 + N\ V\,

where / tt e H(R), t, e R^w for / = 1, . . . , k, {ind(/,), . . . , ind(rA.)} = U,

and s} sk+i € Rl. We can choose a maximum exponent a, for some 1 < / < k.

Clearly, a,- > N, and so r, e R"^dUi) = 0. It follows that r = 0.

Thus P(k, 1 + N\V\, 1) = {0}. Therefore P ( l , 1, [3( |V| + \)]N^vl) = 0.

Put n = |V|{[3( |V| + \)]N]Vl - 1} + 1, and consider an arbitrary product w =

r, • • • r,,, where r, , . . . , rn e H(R). Since ind(r,) e V for all / , clearly there exist

numbers

such that

ind(r,-,) = ind(r,,) = • • • = i ^ ^ ^

Every element r,; belongs to L({v], 1). Therefore w can be rewritten as a product in

P ( l , 1,[3( |V| + \)]N]V]) = 0. T h u s / / ( / ? ) " = 0 , and so R" = 0 . •

COROLLARY 2. For a graph G = (V, E) the following conditions are equiva-

lent:
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(i) if a ring R is a G-sum of nilpotent subrings, then R is nilpotent too;
(ii) G does not contain triangles.

PROOF, (i) =>• (ii): Suppose that (ii) is not satisfied, that is G contains a triangle.
Then Bokut's example of a ring which is not nilpotent but is a sum of three nilpotent
subrings can be easily made a G-sum of the three nilpotent subrings and several zero
subrings. Thus (i) does not hold. Thus (i) implies (ii).

(ii) =>• (i): We can view the graph G as a digraph associating with every undirected
edge two directed edges. Then it is easily seen that every 2-connected graph contains
a triangle. Thus G does not contain 2-connected subgraphs by (ii). Theorem 1 yields
(i). •

There exist directed graphs which are 2-connected but contain no triangles. For
example, take G = (V, E) with V = {O, Au ... , A,,}, where O is connected to all
A |, . . . , A,, by two-sided edges, each A, is connected to Ai+l and A,, is connected to
A] by directed edges.

Next, we discuss an example which shows that our Theorem 1 is probably not
improvable. Let G = (V, E) be a digraph containing a 2-connected digraph H =
(W, F) where W c V, F c E. We define a ring R which is an //-sum of subrings
/?„., it' G W, with zero multiplication. If, after that, we put /?, = 0 for all v e V\W,
then we see that R is a G-sum of the /?,.. Hence we may throw out the vertices of G
which do not belong to the 2-connected digraph H and assume that G is 2-connected
from the very beginning. We also assume that E contains no loop (v, v), since we
can throw away all loops from E without changing the 2-connectedness of G. Let
n = \V\. To simplify further notation we assume that V = [\, . . . , « } .

Let M be the set of terms formed by variables X\, . . . . xn with respect to n nonas-
sociative operations / i , . . . , / „ . It can be defined recursively by the following two
conditions:

(i) X\ x,, € M;
(ii) / (v, z) for all y, z € M and / € { 1 , . . . , n}.

For / = 1, . . . , n, we define the sets

Mi = { J C , - } U { / • ( > > , z ) | v , z € M\.

Then M = Mi U • • • U Mn. For any y e M, there exists an integer ind(y) such that
y € Mind(v).

Let OS be the field of real numbers. We define an IR-algebra R generated by the set
M subject to relations

(1) yz-My,z) My, z) = 0
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for all v, z e M such that (ind(y), ind(z)) € E;

(2) MU = / 1 ( M , U ) = . . . = / n ( M , W ) = 0

for all u, v € M such that (ind(w), ind(u)) g E.
For / = 1, . . . , n, denote by /?, the subspace spanned over K by M,. The relations

(1) and (2) show that R = YH=\ ^»ls a G-sum. Given that E contains no loops (v, v),
v € V, it follows from (2) that all R\,... , Rn are rings with zero multiplication.

Obviously, every 2-connected graph contains a directed cycle. Let it, . . . , ik, /, be
a directed cycle in G. Then it seems that w = (*,-, • • • xik)'" is nonzero for all positive
integers m. The diamond lemma suggests itself as a tool for proving this.

In conclusion we look at the ring SU,,(R) of strictly upper triangular matrices over
any ring R to illustrate Theorem 1. Clearly, SU,,(R) = Yli<j ^eu^ w n e r e e:j is the
standard matrix unit. All the rings /?e,j have zero multiplication for 1 < / < j < n.
If we put G = (V, E), where V = {(/, j) \ 1 < ; < j < n} and E = {((/, j), (j, k)) \

1 < i < j < k < «}, then we see that SU,,(R) is a G-sum of the rings Retj. It follows
from Theorem 1 that SU,,(R) is nilpotent.
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