J. Austral. Math. Soc. (Series A) 65 (1998), 326-332

DIRECTED GRAPHS AND NILPOTENT RINGS

A. V. KELAREV
(Received 3 September 1997; revised 10 September 1998)

Communicated by J. R. J. Groves

Abstract

Suppose that a ring is a sum of its nilpotent subrings. We use directed graphs to give new conditions
sufficient for the whole ring to be nilpotent.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 16N40; secondary 16N60.

The investigation of rings which are sums of their subrings has been carried out
by Bahturin and Giambruno {1], Bahturin and Kegel [2], Beidar and Mikhalev [3],
Ferrero and Puczylowski [5], Fukshansky [6], Herstein and Small [7], Kegel {8, 9],
Kelarev and McConnell [13], Kepczyk and Puczylowski [14, 15], Puczylowski [16],
Salwa [17] and the author [10~12]. Although there are several positive results which
show that some properties are preserved by sums of two subrings, it turns out that
relatively few ring-theoretic properties are inherited by rings which are sums of their
two subrings, and there are no known nontrivial properties which are inherited by
sums of three or more subrings.

A strong negative result of this sort was obtained by Bokut’ [4]: Every algebra over
a field of characteristic zero can be embedded in a simple algebra which is a sum of
three nilpotent subalgebras. In [10] the author constructed a ring which is not nil but
is a direct sum of two locally nilpotent subrings. A primitive ring which is a sum of
two Wedderburn radical subrings was given in [11] with the use of a homomorphic
image of the construction introduced in [10].

Therefore some additional restrictions on the interaction of the summands are
needed in order to obtain positive results,

A natural restriction is to require that some products of the subrings are equal to
zero. Suppose that a ring R is a sum of its subrings R,, v € V, and assume that for
some pairs u, v € V it is known that the product R, R, is equal to zero.
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We use directed graphs (digraphs) to keep information about all pairs u. v € V
with R, R, = 0. Denote by E the set of all ordered pairs u. v € V suchthat R,R. = 0,
and consider the digraph A = (V, E). By the complement of A we mean the digraph
G=A=(V.E), where E = V x V\E. Then we shall say that R is a G-sum of the
R.. The digraph A will be called the annihilator digraph of R.

This situation arises in several ring constructions. For example, if U, (F) is the ring
of n x n upper triangular matrices over a field F, and e;; denotes the standard matrix
unit, then U, (F) = @,<;<;-,Fe;; and Fe;; Fe,; = 0 whenever j # k. For a finite set
V,aring R is a direct product of R,, v € V, if and only if R is a G-sum, where the
annihilator digraph A = G is the complete digraph on V.

We say that a digraph G = (V, E) is 2-connected if, for any u, v € V, there exists
w € V\{u, v} such that (u. w), (w,v) € E.

THEOREM . Let G be a digraph without 2-connected subgraphs. If a ring R is a
G-sum of nilpotent subrings, then R is nilpotent too.

PROOF. Assume that the digraph G(V. E) does not contain any 2-connected sub-
graphs. Take aring R which is a G-sum of nilpotent subrings R,, v € V. Let R! be
the ring R with identity 1 adjoined.

Put H(R) = U,y R,. For any r € H(R), we fix an element ind(r) € V such that
re Rind(r)~

IfU € V,{U| =k = 1| and m > k, then by L(U, m) we denote the set of
all products of the form s,7,8:f2 - - - sifiSky such that there exist positive integers
ay.....aq satisfyinga, +a>+---+a, > m, where t,, ..., t, € H(R), t, € R,
for/{ = 1,... ,k, {ind(s;),...,ind(#,)} = U, and s, ..., s+ € R".

For positive integers &, m. n, if kK > |V|, then we put P(k.m, n) = {0}.

For positive integers k, m.n with 1 < k < |V| and m > k, denote by P(k, m, n)
the set consisting of zero and all products ryrs - - - r, such that there exists a subset
U C Vsatisfying (U =kandr,...,r, € L(U, m).

We claim that every product in P(k, m,3(|V| + 1)n) is a sum of elements from
Pk,m+1l.nyand P(k+ 1.m+1,n).

For k > |V/| the assertion is trivial. Assume that kK < |V|. Take any product w =
rir - Fuyviene € Pk, m.3(|V|+ Dn). By the definition of P(k, m,3(|V| + 1)n)

there exists asubset U € V suchthat |U| =k and ry, ..., rigvic1 € L(U. m).
Foranyi =0,1,..., (V| + 1)n — 1, we rewrite the elements r3; |, r34». r3,+3 and
introduce an auxiliary set w; which characterizes the way we rewrite them.
The definition of L(U, m) shows that ry; = s;.¢;15;2t2- -5kt S;441, fOr
J = 1,2, 3, where there exist positive integers a; ;, ... , a, such that

djg+ajgy+---+a;=m,
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aji

Lite.oo s tix € H(R), 1, € Ry, forl = 1,...  k, {ind(r;1).... .ind(1; )} = U,
and Sits s Sjkel € R'.
If the three sets of pairs

{(ind(¢;1), a;1). ... . (ind(t; ). ;1)) j=123

are not equal to each other, then for each value of ind(¢; ;) we can choose the maximum
power a;,; out of the three available powers a;,, j = 1, 2. 3. Since for some ind(z, )
the elements a,,;, j = 1, 2. 3 are not all equal, it follows that the sum of exponents
of the chosen maximal powers is strictly greater than m. We keep the corresponding
maximal elements ¢;; € Rf'n’(',’(,/_l , and multiply together the other elements which are
between them. In this way we rewrite r3;r3 427343 as a product in L(U,m + 1).
In this case we put w; = @ to remember that r3; 73,733 has been rewritten as a
product in L(U.m + 1).
Next consider the case where all three sets of pairs

{Gnd(t; ), a;0), ..., (ind(t; 1), a; )}, J=1273

are equal to each other. In this case we rewrite ri;, 71321343 as a sum of several
elements, we consider only one summand and we introduce w; to characterize this
summand.

Given that the graph G(V, E) is not 2-connected, we can find u;, u> € U such that
for any w € U\{u,, u,} either (u,, w) € E or (w, u») ¢ E. Then we can find /,. [,
such that ind(f2,,) = u; and ind(13,.) = us. Letryp0 = aity," by and ry43 = asty ;" by
Multiplying together b;a, we use the fact that R = ), R, and represent the product
asasum bja> = Y _, ¢,, where ¢, € R.. When we substitute the sum for b,a;, the
product ry; 4173427343 turns into a sum of several elements ry;,a,f2,,¢. 13,02, where
v € V. We consider only one of these elements, for an arbitrary v € V. Naturally,
the product r, - - - r3v|+1,, also becomes a sum of several summands, and we consider
only one of these summands.

a>; +1 . . .
If v = uy, then t,,,c, € R, "' . Using this we can rewrite rs 7427343 as a
product in L(U, m + 1) and we put w; = .
az,+1 . . .
If v = u,, then ¢.t;;, € R,,” . Using this we can rewrite ry; 73427343 8s a

product in L(U, m + 1) and we put w; = .

If v € U\{u,, u>}, then either (u,,v) € E or (v,u,) & E. It follows that either
1, ¢, = 0or c 3, = 0, respectively. Therefore r3;,a,12,, ¢ t3,,0> = 0. In this case
the corresponding summand of ry - - - 3y 41y, iS zero and belongs to P(k.m + 1, n),
as claimed.

If v € V\U, then we rewrite ryr32r3+3 as a product in L(U U {v}, m + 1) and
we put w; = {c.}.

Thus all products ry; 473 12r3+3 have been rewritten. Therefore the whole prod-
uct r, - - r3qv+n, has also been rewritten. We consider only one summand s of
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ri -+ Faovien- Lhe corresponding elements w;, ... , Wyvi41), characterizing this sum-
mand s have been introduced.
Since the elements w, ... , wqv ;1) are chosen in V U {@}, there exist

suchthat w;, = --- = w;, = w.

If w = ¢, then all the summands of ry, . 73,4273,43, [ = 1,... .n, which we
considered, have been rewritten as elements of L{(U.m 4 1). Therefore we can
rewrite the whole summand s as an element of P(k, m + 1, n), as claimed.

If w = {v} for v € V, then all the summands of ry;, . \rs, 2rs43. L = 1.... .1,
which we considered, have been rewritten as elements of L (U U{v}, m+1). Therefore
we can rewrite the whole summand s as an element of P(k, m + 1, n), as claimed.

Thus every productin P (k. m, 3(|V |+ 1)n) is asum of elements from P (k. m+1. n)
and P(k+1.m+ 1, n).

Denote by N the maximum of the nilpotency indices of the rings R,, v € V. Then
RY = 0 for all v. Easy induction shows that every product in

P, LBV + DY

is a sum of elements from the sets P(k, 1 + N|V|, 1), for 1l <k < |V|.
Take any element r in P(k, 1 + N|V|, 1). By the definition there exists a subset
U C Vsuchthat [U| =kandr € L(U, 14+ N|V|). Therefore r = s,t,5>t5 - - - SitiSi 41

and there exist positive integers a,. ... , a; satisfyinga, +a; +---+a, = 1 + N|V|,
where 1, ... .5, € H(R), 1, € Riny,, for I = 1,...  k, {ind(z)), ... .ind(1,)} = U,
and s;, ... .8, € R'. We can choose a maximum exponent a; for some 1 <i < k.

q,

Clearly,a; > N,and so f; € Ry, , = 0. It follows that r = 0.

Thus Pk, 1 + N|V|, 1) = {0}. Therefore P(1, 1, [3(|V| + DIV = 0.

Putn = [V{{3(|V| + DI¥Y! — 1} + 1, and consider an arbitrary product w =
ry---r,, where ry, ... ,r, € H(R). Since ind(r;) € V for all i, clearly there exist
numbers

I <iy <iy<- <ipgunpy < IVHIBAVI+ DIV — 1)+ 1
such that
ind(r,'!) = ind(ri:) == ind(ril}”“'hl\ v ) = V.

Every element r;, belongs to L({v}, 1). Therefore w can be rewritten as a product in
P(1, 1, 3(1V] + D" = 0. Thus H(R)" =0, andso R" = 0. O

COROLLARY 2. For a graph G = (V, E) the following conditions are equiva-
lent:
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(1) ifaring R is a G-sum of nilpotent subrings, then R is nilpotent too;
(i1) G does not contain triangles.

PROOF. (i) = (ii): Suppose that (it) is not satisfied, that is G contains a triangle.
Then Bokut’s example of a ring which is not nilpotent but is a sum of three nilpotent
subrings can be easily made a G-sum of the three nilpotent subrings and several zero
subrings. Thus (i) does not hold. Thus (i) implies (ii).

(i1) = (i): We can view the graph G as a digraph associating with every undirected
edge two directed edges. Then it is easily seen that every 2-connected graph contains
a triangle. Thus G does not contain 2-connected subgraphs by (ii). Theorem 1 yields
(i). O

There exist directed graphs which are 2-connected but contain no triangles. For
example, take G = (V, E) with V = {0, A, ... . A,}, where O is connected to all
A,...., A, by two-sided edges, each A; is connected to A, and A, is connected to
A, by directed edges.

Next, we discuss an example which shows that our Theorem 1 is probably not
improvable. Let G = (V, E) be a digraph containing a 2-connected digraph H =
(W.F) where W C V, F C E. We define a ring R which is an H-sum of subrings
R,., w € W, with zero multiplication. If, after that, we put R, = O forall v € VAW,
then we see that R is a G-sum of the R,. Hence we may throw out the vertices of G
which do not belong to the 2-connected digraph H and assume that G is 2-connected
from the very beginning. We also assume that £ contains no loop (v, v), since we
can throw away all loops from E without changing the 2-connectedness of G. Let

n = |V|. To simplify further notation we assume that V = {1, ..., n}.

Let M be the set of terms formed by variables x;, ... .. x,, with respect to » nonas-
sociative operations fj, ..., f,. It can be defined recursively by the following two
conditions:

A x.....x, € M;

(i) fi(v,z)forally,ze Mandi €{l,..., n}

Fori =1, ..., n, we define the sets

M, ={x}Ul{filyv.2) | y,z€ M}
Then M = M, U.--UM,. For any y € M, there exists an integer ind(y) such that
Y € Ming.

Let R be the field of real numbers. We define an R-algebra R generated by the set
M subject to relations

(D 2= fiy.d) == fi(3.2) =0
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for all v, z € M such that (ind(v), ind(z)) € E;
(2) wv = filu,v)=---= f(u,v) =0

for all u, v € M such that (ind(u), ind(v)) & E.

Fori =1,...,n, denote by R; the subspace spanned over R by M;. The relations
(1)and (2) show that R = Y _"_, R, is a G-sum. Given that E contains no loops (v, v),
v € V, it follows from (2) that all Ry, ... , R, are rings with zero multiplication.

Obviously, every 2-connected graph contains a directed cycle. Let i, ... , i, i be
a directed cycle in G. Then it seems that w = (x;, - - - x;, )" is nonzero for all positive
integers m. The diamond lemma suggests itself as a tool for proving this.

In conclusion we look at the ring SU, (R) of strictly upper triangular matrices over
any ring R to illustrate Theorem 1. Clearly, SU,(R) = Z,(j. Re;;, where ¢;; is the
standard matrix unit. All the rings Re;; have zero multiplication for 1 <i < j < n.
IfweputG = (V,E),where V ={(i, j) |1 <i < j <n}and E = {((i, j). (j, k)) |
1 <i < j <k < n}, then we see that SU, (R) is a G-sum of the rings Re;;. It follows
from Theorem 1 that SU, (R) is nilpotent.
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