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General Preservers of Quasi-Commutativity

Gregor Dolinar and Bojan Kuzma

Abstract. Let Mn be the algebra of all n × n matrices over C. We say that A, B ∈ Mn quasi-commute

if there exists a nonzero ξ ∈ C such that AB = ξBA. In the paper we classify bijective not necessarily

linear maps Φ : Mn → Mn which preserve quasi-commutativity in both directions.

1 Introduction

Let Mn be the algebra of all n × n matrices over a complex field C, with the standard

basis Ei j . We say that A, B ∈ Mn quasi-commute if there exists a nonzero ξ ∈ C such

that AB = ξBA. When A and B quasi-commute we write A
#↔B. We also define the

quasi-commutant of a set Ω ⊂ Mn by

Ω
#
= {X ∈ Mn : X

#↔ A for every A ∈ Ω} =
⋂

A∈Ω

⋃

ξ 6=0

{X ∈ Mn : XA = ξAX}

and let A#
= {A}#.

To avoid possible misunderstandings, we emphasize that there is a similar-looking,

but in fact essentially different, relation from quasi-commutativity. It is called com-

mutativity up to a (fixed) factor ζ ∈ C and is defined as follows. We say that

A, B ∈ Mn commute up to a factor ζ if AB = ζBA. The difference from quasi-

commutativity is that ζ is fixed here. In particular, the quasi-commutant of a given

matrix is not necessarily a linear subspace in Mn (see Examples 2.1–2.3).

We also mention that the terms quasi-commutativity and commutativity up to

a factor have also been used in a different sense, see for example McCoy [14], Pot-

ter [21], Holtz, Mehrmann, and Schneider [10], and Molnár [16]. Our notion of

quasi-commutativity is the same as in Radjavi and Šemrl [22].

Commutativity up to a fixed factor and quasi-commutativity are interesting from

different points of view. For example, the classical commutativity relation, that is,

commutativity up to the factor ξ = 1, is important in quantum mechanics. It is

linked to quantum observables, and one of the basic relations among observables

is compatibility, where two observables are compatible if the operators represent-

ing them commute [18]. A related relation of quasi-commutativity has important

applications in quantum mechanics as well, see [3]. Furthermore, transformations

on quantum structures that preserve some relation or operation are usually called

symmetries in physics and are of fundamental importance (see, for example, [4]).
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From a mathematical point of view, maps preserving a given algebraic property are

called preservers and are extensively studied. We refer to [6, 19, 27] for linear (or

additive) maps that preserve commutativity up to a factor ζ . Linear bijections that

preserve quasi-commutativity in both directions were classified by Molnár [16]. Re-

cently, Radjavi and Šemrl [22] improved his result by dropping the assumption of

bijectivity and assuming that quasi-commutativity is preserved in one direction only.

However, the maps they considered were still linear. It turned out that in many in-

stances, the linearity assumption is superfluous. Without the linearity assumption,

one can concentrate solely on the given structure. Among the first examples in this

area, we mention Hua’s result on adjacency preserving maps [13]. Recently the area

of general preservers i.e., not necessarily linear ones, has become very active, see, for

example, [1, 5, 7, 15, 17, 20, 26].

In this paper, we follow this direction of research, and study (possibly nonlinear)

maps that preserve quasi-commutativity. Without imposing linearity, however, the

problem becomes much more difficult. We will therefore limit ourselves to bijective

maps and will also assume that quasi-commutativity is preserved in both directions.

Within these restrictions we obtain a nice structural result outside a certain rather

small subset Ξ of Mn. This is best possible, since there is an example of a noncon-

stant bijection that preserves quasi-commutativity in both directions, fixes every ma-

trix outside Ξ, but permutes elements of Ξ in a nonstandard way. It is given after

the statement of the main theorem. We remark that, in a way, our result resem-

bles other results on general preservers of commutativity up to a factor ξ ∈ {0, 1} by

Šemrl [23,25] and by Chan, Li, and Sze [5], where similar obstructions were detected.

In [23] it is also shown that, up to similarity, transposition, and field isomorphism

applied entry-wise, nonlinear preservers of commutativity are regular locally polyno-

mial maps outside a small pathological set. This means that for each A outside of this

set, there are polynomials pA and qA such that Φ(A) = pA(A) and A = qA(pA(A)).

But then the classical commutant of A is equal to A ′
= pA(A) ′ = Φ(A) ′. Our main

theorem below is of the same kind, except that commutant is replaced with quasi-

commutant.

Before giving our main result we introduce the necessary notation. First, define

the relation
#∼ on Mn by A

#∼B if and only if A#
= B#. This is obviously an equiva-

lence relation and as such it partitions Mn into equivalence classes [ · ]. Next, given

a matrix A and a field isomorphism σ : C → C (i.e., an additive and multiplicative

bijection on C), let Aσ be the matrix obtained from A by applying σ entry wise. Also

let Atr be the transpose of A. Observe that A
#↔B is equivalent to SAS−1 #↔SBS−1, to

Atr #↔Btr, and to Aσ #↔Bσ . Moreover, it is easily seen (cf. Subsection 2.2) that any bi-

jection Ψ : Mn → Mn with Ψ(X) ∈ [X] also preserves quasi-commutativity in both

directions.

Lastly, let Ξ ⊂ Mn be the subset that consists of all matrices with at least two

nonzero eigenvalues and whose minimal polynomial is of the form m(λ) = λ2q(λ),

q(0) 6= 0. Equivalently, their Jordan structure contains a nilpotent part of nil-index

two and an invertible part with at least two invertible Jordan cells having different

eigenvalues. Outside the set Ξ, our map will have a simple structure, but inside Ξ it

is less tame. We are now ready to state our main theorem.

https://doi.org/10.4153/CJM-2010-041-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-041-x


760 G. Dolinar and B. Kuzma

Theorem 1.1 Let n ≥ 3. Suppose Φ : Mn → Mn is a bijective map such that for any

A, B ∈ Mn, we have

(1.1) A
#↔ B ⇐⇒ Φ(A)

#↔ Φ(B).

Then there exists a field isomorphism σ : C → C and a similarity S such that

(i) Φ(A) ∈ [S Aσ S−1], A ∈ Mn\Ξ
(ii) Φ(A) ∈ [S (Aσ)tr S−1], A ∈ Mn\Ξ.

Remark 1.2 We can describe Φ on the whole Mn in the following way. Both maps

Ψ(X) = S−1
Φ(Xσ−1

)S and Ψ(X) = S−1
Φ(Xσ−1

)trS, where Φ is from (i) or (ii), re-

spectively, satisfy Ψ(A) ∈ Poly(A), see Lemma 2.36. Hence, Ψ is a locally polynomial

map on the whole algebra Mn.

We conclude the section with an example that shows we cannot hope to get a nice

structural result for every matrix in Mn.

Example 1.3 Let Φ : M4 → M4. For an arbitrary invertible P ∈ M2, nonzero scalar

α ∈ C, diagonal matrices diag(α, 2α), diag(α, 3α), and nonzero nilpotent N ∈ M2,

we define a map Φ with

Φ
(

P diag(α, 2α)P−1 ⊕ N
)

=
(

P diag(α, 3α)P−1 ⊕ N
)

,

Φ
(

P diag(α, 3α)P−1 ⊕ N
)

=
(

P diag(α, 2α)P−1 ⊕ N
)

,

Φ
(

N ⊕ P diag(α, 2α)P−1
)

=
(

N ⊕ P diag(α, 3α)P−1
)

,

Φ
(

N ⊕ P diag(α, 3α)P−1
)

=
(

N ⊕ P diag(α, 2α)P−1
)

,

and Φ(A) = A for all other matrices. This is well defined since P1 diag(α, 2α)P−1
1 =

P2 diag(α, 2α)P−1
2 if and only if P−1

2 P1 is diagonal, and this further gives

P1 diag(α, 3α)P−1
1 = P2 diag(α, 3α)P−1

2 .

It is easy to see that Φ is bijective and preserves quasi-commutativity in both

directions. Moreover, A = Φ(A) ∈ [A] for every rank-one and every diagonal-

izable matrix A. However, a matrix C = ((E11 + 2E22) ⊕ E12) is mapped into

Φ(C) = ((E11 + 3E22) ⊕ E12) /∈ [C], because (E21 + E33 + 2E44) ∈ C# \ Φ(C)#.

2 Proof

2.1 Basic Properties

We start by listing some examples which will clarify the properties of the quasi-

commutativity relation on certain matrices. These properties will be used in the

sequel.
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Example 2.1 Let D = diag(d1, . . . , dn) be an invertible diagonal matrix. It induces

the equivalence relation ∼D between ordered pairs from the set Nn × Nn = {(i, j) :

1 ≤ i, j ≤ n}, defined by

(i, j) ∼D (u, v) if and only if
di

d j

=
du

dv

.

Then

D#
=

⋃

e∈(Nn×Nn)/∼D

Lin{Ei j : (i, j) ∈ e},

where Lin Ω is a linear span of a set Ω. We emphasize that D# is not a linear subspace.

In the following example we expose a quasi-commutant of a very special invertible

diagonal matrix: the one with only ±1 on a diagonal. It will be shown later that its

quasi-commutant is maximal in some sense.

Example 2.2 Let D = Idk ⊕ (− Idn−k). Then,

D#
=

{

(

∗ 0

0 ∗

)

,

(

0 ∗
∗ 0

)

}

.

Example 2.3 Let D = diag(d1, . . . , dk, 0, . . . , 0) be a noninvertible diagonal ma-

trix, with d1, . . . , dk 6= 0. Then D#
= D#

k ⊕ Mn−k, where Dk = diag(d1, . . . , dk) is an

invertible k × k matrix.

A special type of diagonalizable matrix is also an idempotent. In that case, how-

ever, the quasi-commutant is a linear subspace.

Example 2.4 If A2
= A, then A# equals A ′, the classical commutant of A. The same

is true also for scalar multiples of idempotents.

We continue by stating two well-known lemmas. The first one is an easy conse-

quence of properties of elementary operators of length two. Namely, given complex

matrices A ∈ Mk and B ∈ Mp, the spectrum of the elementary operator T : Mk×p →
Mk×p, defined on k × p complex matrices by X 7→ AX + µXB, equals Sp T =

Sp A + µ Sp B = {α + µβ : α ∈ Sp A, β ∈ Sp B}. For a proof see, for exam-

ple, [12, Theorem 4.4.5], or [2, page 2] for some further properties. We will use

only the following weak consequence of this fact.

Lemma 2.5 If 0 6∈ Sp A + µ Sp B, then AX + µXB = 0 implies X = 0.

The second lemma on the bicommutant of an arbitrary matrix A is also well

known, see, for example, [28, page 106].

Lemma 2.6 Let A ∈ Mn. Then A ′ ′
= Poly(A) = {p(A) : p ∈ C[x]}.

Using Lemma 2.6, some further properties of the quasi-commutant can be ex-

plained.
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Lemma 2.7 Let A ∈ Mn. Then A## ⊆ A ′ ′.

Proof Pick any Z ∈ A##. Clearly A ′ ⊆ A# so, in particular, Z must quasi-commute

with every matrix X ∈ A ′. We need to show that Z actually commutes with every

X ∈ A ′; once this is done, we have Z ∈ A ′ ′, as claimed. Now, assume erroneously

that Z does not commute with some X ∈ A ′. Then, for some nonzero µ 6= 1,

(2.1) ZX = µXZ.

However, (λ Id +X) ∈ A ′ ⊆ A#, so Z must quasi-commute with (λ Id +X) for every

λ ∈ C. That is, Z(λ Id +X) = µλ(λ Id +X)Z. If we rearrange this equation with the

help of (2.1) we obtain

λ(1 − µλ)Z = (µλ − µ)XZ

for every λ ∈ C. If Z and XZ are linearly independent, this immediately gives µ =

µλ = 1, a contradiction. If, on the other hand, XZ = αZ, the above equation reduces

to λ(1−µλ)Z = α(µλ −µ)Z. Clearly αZ 6= 0, otherwise XZ = 0 and equation (2.1)

would force ZX = 0 hence Z would commute with X. So, with λ = −α 6= 0, we

get −(1 − µλ) = (µλ − µ) and once again µ = 1, a contradiction. Indeed, Z must

commute with X ∈ A ′.

By Lemmas 2.6 and 2.7, we obtain the following corollary.

Corollary 2.8 Let A ∈ Mn. Then A## ⊆ Poly(A).

Corollary 2.9 Let A, B ∈ Mn. Then A# ⊆ B# implies B ∈ A##. More precisely,

B = p(A) for some polynomial p.

Proof A# ⊆ B# implies B## ⊆ A##. We also have B ∈ B##, hence B ∈ A## ⊆
Poly(A).

Lemma 2.10 Let A ∈ Mn. Then A#
= Mn if and only if A is a scalar matrix.

Proof Suppose A#
= Mn, that is, A quasi-commutes with every matrix. Since A

#↔Eii

for every i ∈ Nn, it follows that A is diagonal. And since A
#↔(Eii + Ei j) for every

i, j ∈ Nn, we obtain that A is a scalar matrix. The opposite implication is trivial.

Corollary 2.11 Let Φ be as in Theorem 1.1. Then Φ(C Id) = C Id.

Proof The map Φ is surjective, therefore condition (1.1) is equivalent to Φ(A#) =

Φ(A)#, and the result follows immediately from Lemma 2.10.

We finish this subsection with the quasi-commutant of elementary Jordan nilpo-

tent.

Lemma 2.12 If Nk =
∑k−1

i=1 Ei,i+1 is an elementary Jordan nilpotent with nil-index k

and rank k − 1, k ≥ 2, then

N##
k = {C Id, CNk, CN2

k , . . . , CNk−1
k }.
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Proof There exists an invertible matrix X with NkX = 2XNk; for example, we might

take X = diag(1, 2, 22, . . . , 2k) ⊕ (2Idn−k). Then N i
kX = 2iXNk. Now, by Corol-

lary 2.8, any B ∈ N##
k is a polynomial in Nk. So for some αi , we have

B = α0 Id +α1Nk + · · · + αk−1Nk−1
k .

Clearly X ∈ N#
k so B

#↔X. That is, for some µ 6= 0 we have

k−1
∑

i=0

αiN
i
kX = BX = µXB = µ

k−1
∑

i=0

αiXN i
k = µ

k−1
∑

i=0

2−iαiN
i
kX.

Compare the first and the last equation. We may cancel out the invertible X to get

k−1
∑

i=0

αiN
i
k = µ

k−1
∑

i=0

2−iαiN
i
k.

But N0
k , . . . , Nk−1

k are linearly independent matrices, so αi = µ2−iαi for each i =

0, . . . , k − 1. Now, if αi 6= 0 for some i, we have µ = 2i in which case α j = 0 for

indices j 6= i. Hence, B = αiN
i
k as claimed.

2.2 Poset Structure

Recall the definition of equivalence relation A
#∼B by A#

= B#. The corresponding

equivalence classes are [A] = {X : X#
= A#}. On these equivalence classes we define

the partial order with [A] ≤ [B] if and only if A# ⊆ B#, and we say that [A] connects

to [B].

We have already observed that a bijective map Φ : Mn → Mn preserves quasi-

commutativity in both directions if and only if Φ(A#) = Φ(A)# for each A ∈ Mn.

Hence, [A] = [B] if and only if [Φ(A)] = [Φ(B)]. Therefore such Φ induces a well

defined bijection Φ̂ : Mn/ #∼ → Mn/ #∼ via Φ̂ : [A] 7→ [Φ(A)], which preserves the

partial order in both directions.

Observe also that a map satisfying condition (1.1) is determined only up to an

equivalence class. Namely, assume Ψ is any bijection with Ψ(X) ∈ [Φ(X)] for

every X. If A
#↔B then Φ(A)

#↔Φ(B), so Φ(A) ∈ Φ(B)#
= Ψ(B)#, and therefore

Φ(A)
#↔Ψ(B). Hence, Ψ(B) ∈ Φ(A)#

= Ψ(A)#, so Ψ(B)
#↔Ψ(A). Therefore, A

#↔B

implies Ψ(A)
#↔Ψ(B). The reversed implication is similar. This proves that Ψ also

satisfies condition (1.1).

We say that a nonscalar matrix A ∈ Mn is maximal if its equivalence class [A]

is maximal, that is, for any B ∈ Mn, the relation [A] ≤ [B] implies [A] = [B] or

[B] = [Id]. Notice that [B] = [Id] is equivalent to B#
= Mn. Similarly, we say that

A ∈ Mn is minimal if its equivalence class [A] is minimal, that is [B] ≤ [A] implies

[A] = [B] for any B ∈ Mn. Moreover, B is an immediate predecessor of A if the

following conditions are met:

(i) [B] ¯ [A],

(ii) there exists no matrix C with [B] ¯ [C] ¯ [A].
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Likewise we define an immediate successor.

We next consider the poset structure of equivalence classes of diagonal matrices.

Observe first that each nonscalar diagonal matrix with ±1 on the diagonal is al-

ways maximal. Indeed, let D = diag(±1, . . . ,±1) be a nonscalar diagonal ma-

trix. Using similarity, we may assume that D = Idk ⊕(−Idn−k). Suppose now

that D# ⊆ B# for some nonscalar B ∈ Mn. Then by Corollary 2.9, B = p(D) for

some polynomial p, that is B = α Idk ⊕βIdn−k. If either α = 0 or β = 0, then

B#
= B ′ ⊆ D# by Examples 2.4 and 2.2. If α and β are both nonzero and α 6= −β,

then again B# ⊆ D# by Example 2.1 and 2.2. Lastly, if α = −β 6= 0, then D#
= B#.

However, there are more maximal diagonal matrices. For example, it can be

shown that D = diag(1, ω, ω2), ω = e2πi/3 is also maximal.

Lemma 2.13 There are only finitely many maximal equivalence classes among diag-

onal matrices, and each of them contains only invertible diagonal matrices. No singular

diagonal matrix is maximal.

Proof Clearly, a singular diagonal matrix cannot be maximal. For if a diagonal D is

singular, we can find a permutation matrix S such that D = S−1(D̃⊕0n−k)S, with D̃ ∈
Mk invertible diagonal. Then, D#

= S−1(D̃# ⊕ Mn−k)S. This is strictly contained in a

quasi-commutant of a diagonal A = S−1(Idk ⊕ (−Idn−k))S, see Example 2.2.

Hence, among diagonal matrices, maximal equivalence classes consist only of in-

vertible matrices. But in view of Example 2.1, the quasi-commutant of each invertible

diagonal matrix is in bijective correspondence with equivalence relations on Nn ×Nn

subject to some constraints. Clearly, on a set with n2 elements, we may choose at

most finitely many such relations.

Lemma 2.14 Let λ1, . . . , λk be nonzero scalars and let n1, . . . , nk ≥ 1 be integers.

Then λ1Idn1
⊕ · · · ⊕ λkIdnk

is a maximal n × n matrix (n =
∑

ni) if and only if

diag(λ1, . . . , λk) is a maximal k × k matrix.

Proof First, let us prove that given invertible A = diag(λ1, . . . , λk) and B =

diag(µ1, . . . , µk), we have A# ⊆ B# if and only if λi/λ j = λu/λv implies µi/µ j =

µu/µv for every i, j, u, v ∈ Nk.

Indeed, suppose A# ⊆ B#. Then λi/λ j = λu/λv implies X = Ei j + Euv ∈ A# ⊆ B#.

So there exists a nonzero ξ with XB = ξBX which yields (µ jEi j + µvEuv) = ξ(µiEi j +

µuEuv), that is µi/µ j = ξ−1
= µu/µv. Inversely, given the condition on the quotients,

X ∈ A# implies

X ∈ Lin{Ei j : λi/λ j = λu0
/λv0

} ⊆ Lin{Ei j : µi/µ j = µu0
/µv0

} ⊆ B#

(see Example 2.1).

From there we easily deduce that A# ⊆ B# if and only if Â# ⊆ B̂#, where Â =

λ1Idn1
⊕ · · · ⊕ λkIdnk

and B̂ = µ1Idn1
⊕ · · · ⊕ µkIdnk

.

Now, we argue as follows: let A = diag(λ1, . . . , λk) be maximal. Consider Â =

λ1Idn1
⊕ · · · ⊕ λkIdnk

. Suppose Â# ⊆ B̂#. Then B̂ is a polynomial in Â, so B̂ =

µ1Idn1
⊕ · · · ⊕ µkIdnk

. If all µi = 0, then B̂ is scalar. Further, if at least one diagonal

element of B̂ is nonzero and at least one is zero, say µ1 6= 0 and µk = 0, then E1n ∈ Â#.
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But E1n /∈ B̂#, a contradiction. Thus B̂ is invertible in this case. By the previous

paragraph, B = diag(µ1, . . . , µk) also satisfies A# ⊆ B#. Regarding maximality, B is

scalar or B#
= A#, wherefrom Â#

= B̂#. Thus, A is maximal. Similar arguments can

be used for the reverse implication.

We now turn our attention to minimal matrices. Let us start by showing that

D0 = diag(2, 3, . . . , pn), where pn is the n-th consecutive prime, is minimal. The

matrix D0 will play an important role in the proof of Theorem 1.1.

Lemma 2.15 The matrix D0 is minimal. Moreover, given any invertible diagonal B,

we have [D0] ≤ [B].

Proof Since pi/p j = pu/pv precisely when either (i, j) = (u, v) or i = j and u = v,

Example 2.1 gives that D0 is below every invertible diagonal matrix B. To prove its

minimality, suppose [A] ≤ [D0], i.e., A# ⊆ D#
0 for some A ∈ Mn. Then, D0 = p(A)

for some polynomial p by Corollary 2.9. Observe that D0 has n distinct eigenval-

ues. So, by the Spectral Mapping Theorem, A also has n distinct eigenvalues and is

therefore diagonalizable. Moreover A and D0 are simultaneously diagonalizable since

D0 = p(A). So we may assume that A = diag(a1, . . . , an). If, say, an = 0 then

E12 + Enn ∈ A# \ D#
0, a contradiction. Hence, an 6= 0, and likewise for any other ai .

Therefore, A is an invertible diagonal matrix, and as we showed at the beginning of

the proof, A# ⊇ D#
0. Hence, D0 is minimal.

As a consequence of Lemma 2.15, there is only one minimal equivalence class

among invertible diagonal matrices, and it equals [D0].

Lemma 2.16 Let D ∈ [D0]. Then

D##
= {diag(a1, . . . , an) : ai ∈ C \ {0}, i = 1, . . . , n} ∪ {0}.

Proof Since D## ⊆ Poly D by Corollary 2.8, any X ∈ D## is diagonal. Note that

Ei j ∈ D# for all i, j ∈ Nn and X = diag(x1, . . . , xn)
#↔Ei j if and only if xi and x j are

either both nonzero or both zero. Hence X is invertible diagonal or zero.

Lemma 2.17 A nonzero singular diagonal matrix D = diag(d1, . . . , dn) is mini-

mal if and only if di = 0 for exactly one index i = i0 and the diagonal matrix

D̃ = diag(d1, . . . , di0−1, di0+1, . . . , dn) is a minimal invertible (n−1)×(n−1) matrix.

Proof Without loss of generality we may assume that D = Dk ⊕ 0n−k where Dk

is an invertible diagonal matrix. Then D#
= D#

k ⊕ Mn−k by Example 2.3. If Dk

is not minimal then, by Lemma 2.15, there exists a minimal invertible matrix D̃,

D̃# ( D#
k and (D̃ ⊕ 0n−k)# ( D#. If k ≥ 2, then (Dk ⊕ Jn−k(0))# ( D#, where

Js(α) = αIds +
∑s−1

i=1 Ei,i+1.

To prove the opposite direction, assume D = Dn−1 ⊕ 0 with Dn−1 a minimal

invertible (n − 1) × (n − 1) diagonal matrix, and suppose [A] ≤ [D] for some A ∈
Mn. Observe that D has n distinct eigenvalues since Dn−1 has n − 1 distinct nonzero

eigenvalues (this follows easily from Lemma 2.15 and Example 2.1). By Corollary

2.9, D = p(A) for some polynomial p, so by the Spectral Mapping Theorem, A

also has n distinct eigenvalues and is therefore diagonalizable. Moreover, A and D
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are simultaneously diagonalizable since D = p(A). So we may assume that A =

diag(a1, . . . , an) and D = Dn−1 ⊕ 0. If an 6= 0 then ai 6= 0 for some i ∈ Nn−1, and so

Eni ∈ A# \ D#, a contradiction. Hence an = 0 and ai 6= 0 for every i = 1, . . . , n − 1.

It follows that A#
= diag(a1, . . . , an−1)# ⊕ C, so diag(a1, . . . , an−1)# ⊆ D#

n−1. Since

Dn−1 is minimal we obtain diag(a1, . . . , an−1)#
= D#

n−1, hence [A] = [D].

We continue by showing how to distinguish between minimal invertible diagonal

matrices and singular diagonal ones, using only the quasi-commutativity relation.

Corollary 2.18 Let D be a minimal diagonal matrix. Then the following two facts are

equivalent:

(i) D is singular;

(ii) D## contains precisely one nonscalar maximal matrix, up to equivalence.

Proof (i) =⇒ (ii) Suppose D is singular. We can find a permutation matrix S such

that SDS−1
= D1 ⊕0n−k for some invertible diagonal k× k matrix D1. Clearly k ≥ 1,

for otherwise D = 0 which is not minimal. Now, Corollary 2.8 gives D## ⊆ Poly(D).

Hence, any X ∈ D## takes the form X = S(diag(x1, . . . , xk) ⊕ αIdn−k)S−1.

If α = 0, such X can never be maximal (see Lemma 2.13). On the other hand,

if α 6= 0, then X must quasi-commute with every matrix from D#
= S(D#

1 ⊕
Mn−k)S−1. In particular, with Z = S(Ek×k

i j ⊕ Idn−k)S−1, where Es×t
i j is an s × t

rectangular matrix unit. Hence, for some nonzero µ, we have XZ = µZX. Therefore,

xiEi j = µx jEi j and αIdn−k = αµIdn−k, which gives µ = 1 and, consequently, xi = x j

for i, j ∈ Nk. So, X = S
(

x Idk ⊕αIdn−k

)

S−1. Clearly, this is maximal precisely

when x = −α 6= 0. However, all such matrices are equivalent.

(i) ⇐= (ii) Suppose D is not singular. By Lemma 2.16, D## contains nonequivalent

matrices diag(−1, 1,−1 . . . ,−1,−1) and diag(−1, . . . ,−1, 1) (cf. Example 2.2),

which we have already shown to be maximal.

2.3 Classifying Minimal Diagonal Matrices

In this subsection, we will show how to distinguish minimal diagonalizable matrices

from minimal nondiagonalizable ones. This will be done by counting the number of

maximal equivalence classes that an equivalence class of a matrix connects to.

Let d(n) denote the number of pairwise, nonequivalent, maximal diagonal n × n

matrices. In view of Lemma 2.13, there are only finitely many such, and each one

contains only invertible diagonal matrices. So d(n) < ∞. On the other hand, we

can show that d(n) ≥ 2(n−1) − 1. Namely, recall that each nonscalar diagonal matrix

with ±1 on its diagonal is maximal. Moreover, two such, say B1, B2, are equivalent

precisely when B1 = −B2. We have 2n possible choices for ±1. Grouping together

the equivalent pairs, while avoiding the scalars, yields that there are at least 2(n−1) −1

pairwise nonequivalent maximal diagonal matrices.

Lemma 2.19 Given a positive integer k, we have d(k + 1) ≥ d(k) + 1. Moreover,

if k ≥ 2, then d(k + 1) ≥ d(k) + 2.

Proof By Lemma 2.14, if diag(µ1, . . . , µk) ∈ Mk is maximal, then so also is

diag(µ1, . . . , µk, µk) ∈ Mk+1. Hence we easily deduce d(k) ≤ d(k+1). In addition, we
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can choose precisely 2k−1−1 maximal diagonal k×k matrices with ±1 entries on the

diagonal, while we can choose 2(k+1)−1 −1 > 2k−1 −1 such (k + 1)× (k + 1) matrices.

This gives d(k) + 1 ≤ d(k + 1). Actually, k ≥ 2 implies 2(k+1)−1 − 1− (2k−1 − 1) ≥ 2,

and so d(k + 1) ≥ 2 + d(k).

Lemma 2.20 Let an invertible diagonal matrix A be minimal. Then, [A] connects to

precisely d(n) maximal equivalence classes.

Proof By Lemma 2.15, [A] = [D0], and it connects to every maximal diagonal ma-

trix. So, it connects to at least d(n) maximal classes. Next, let [B] be any maximal

equivalence class. If [A] ≤ [B] then, by Corollary 2.9, B ∈ Poly(A). Consequently

B is diagonal and invertible (see Lemma 2.13). Hence, [A] connects to precisely d(n)

maximal classes.

We continue with analyzing minimal nondiagonalizable matrices. It should be

remarked that we will not prove that such a matrix exists. We will only show that,

if there is one, it never connects to precisely d(n) maximal equivalence classes. To

demonstrate this we require some auxiliary results.

Lemma 2.21 Any square-zero nonscalar matrix is maximal.

Proof Let N2
= 0. If [N] ≤ [B] then B is a polynomial in N. The only possibilities

are B = λ Id +µN, λ, µ ∈ C. If µ = 0 then B is scalar. Assume µ 6= 0. On

the one hand, if λ = 0, then, trivially, [B] = [N]. On the other hand, if λ 6= 0,

then Sp B = {λ} 6= {0} implies B#
= B ′ (see Lemma 2.5). However, B ′

= N ′ ⊆ N#,

so [B] = [N], as anticipated.

Lemma 2.22 We have X# ⊆ (X2)#. Consequently, [X] ≤ [X2].

Proof Suppose Z ∈ X#. Then there exists nonzero µ ∈ C such that XZ = µZX.

Then X2Z = µ2ZX2 and Z ∈ (X2)#.

Lemma 2.23 Suppose A = Â⊕N(0) is a block-diagonal matrix, with Â its invertible

part and N(0) nilpotent. If a corresponding block-matrix Z = (Zi j)1≤i, j≤2 is in A#,

then Z12 = 0 = Z21.

Proof If Z ∈ A#, then AZ = µZA, µ 6= 0. So the block (12) of this equation

is ÂZ12 = µZ12N(0). Equivalently, ÂZ12 − Z12(µN(0)) = 0. However, Sp Â −
Sp(µN(0)) = Sp Â − {0} = Sp Â does not contain zero so, by Lemma 2.5, this

equation has only a zero solution. In the same way we prove that Z21 = 0.

Recall that a matrix is nonderogatory provided each eigenvalue has geometric

multiplicity one, i.e., no two Jordan cells share the same eigenvalue.

Lemma 2.24 Let A = Â⊕0 with Â invertible. There exists t ∈ N and a nonderogatory

matrix B̂ such that (B̂ ⊕ 0)2t

= A and such that the quotients of its eigenvalues are

pairwise distinct, i.e., for any λ, µ, α, β ∈ Sp B̂ with λ 6= µ, we have λ/µ = α/β
precisely when (λ, µ) = (α, β).
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Proof Assume with no loss of generality that Â =
⊕k

i=1 Jni
(λi) is already in its

Jordan form. Now, given any p-th root µi =
p
√

λi , it is easy to construct a matrix B̂,

similar to
⊕k

i=1 Jni
(µi), such that B̂p

= Â. Therefore, it only remains to find p = 2t

and p-th roots µi of λi = |λi |e2π
√
−1φi (0 ¯ φi ≤ 1) that have pairwise distinct

quotients.

To this end, we rearrange φi in nondecreasing order and recursively construct a

strictly increasing sequence of positive integers ri in such a way that |(ri + φi) − (r1 +

φ1)| < |(ri+1 +φi+1)− (ri +φi)|. For xi = (ri +φi), we obtain that |xi −x j | = |xu −xv|
precisely when (i, j) = (u, v) or i = j and u = v.

Pick any p = 2t > 4(rk + φk) and let µi =
p
√

|λi |e2π
√
−1 (ri +φi )/p. Then, µi are the

p-th roots of λi and for these µi/µ j = µu/µv is possible only when either (i, j) =

(u, v) or i = j and u = v.

We now count the maximal equivalence classes that a nondiagonalizable minimal

matrix A connects to. Clearly, this number depends solely on the Jordan cell struc-

ture of A. It turns out that in the presence of invertible Jordan cells this number is

different than in the presence of singular Jordan cells. We will cover all possibilities

by examining the following cases separately.

(i) At least one cell of dimension ≥ 4 is invertible.

(ii) The above does not apply, but at least one invertible cell and at least one singular

cell have dimensions ≥ 2.

(iii) Neither of the above applies, but all invertible cells of A (if any) have dimen-

sions 1, and there exists a singular cell of dimension ≥ 2.

(iv) All remaining possibilities: the maximal dimension of invertible Jordan cells

of A is d ∈ {2, 3}, however, all singular cells (if any) are 1 × 1.

We start with (i).

Lemma 2.25 If a Jordan structure of A contains an invertible cell of dimension at least

four, then [A] connects to infinitely many maximal classes.

Proof Assume with no loss of generality that A = Â ⊕ N(0) = Jn1
(λ1) ⊕ · · · ⊕

Jnk
(λk) ⊕ N(0) is already in its Jordan form with dimensions ni of invertible Jordan

cells arranged in decreasing order and with N(0) containing all nilpotent Jordan cells

(we omit N(0) if A itself is invertible). For an arbitrary α ∈ C, consider the matrix

Aα = Âα ⊕ 0 =

k
⊕

i=1

(

α Jni
(0)max −2 + λ1

λi
Jni

(0)max −1
)

⊕ 0, max = n1.

By the assumptions, n1 ≥ 4, so Aα is a nonzero but square-zero matrix. Moreover,

[Aα] = [Aβ] implies Aα ∈ A##
α = A##

β ⊆ Poly(Aβ). So Aα is a polynomial in Aβ

which is possible only when α = β. We conclude that, as α ∈ C varies, [Aα] consists

of infinitely many pairwise distinct maximal equivalence classes. It remains to show

that [A] ≤ [Aα], i.e., A# ⊆ A#
α.

To this end, let Z ∈ A#. There exists some nonzero µ such that AZ = µZA. Now,

decompose Z =
(

(Xi j )i j U
V Y

)

according to the block structure of A = Â ⊕ N(0) and

consider the above equation. It follows from invertibility of Â that U = 0 = V (see
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Lemma 2.23). That is, Z is block-diagonal. Consider now the Xi j block of the above

equation. We get

(2.2) Jni
(λi)Xi j = µXi j Jn j

(λ j).

So by Lemma 2.5, either Xi j = 0 or else λi = µλ j , in which case (2.2) further reduces

into (λiIdni
+ Jni

(0))Xi j = Xi j(µλ jIdn j
+ µ Jn j

(0)), or equivalently into Jni
(0)Xi j =

µXi j Jn j
(0). However, if we consecutively pre-multiply this by Jni

(0), we deduce, by

induction, that Jni
(0)rXi j = µrXi j Jn j

(0)r
= ( λi

λ j
)rXi j Jn j

(0)r holds for any positive

integer r. Therefore,

(

α Jni
(0)max −2 + λ1

λi
Jni

(0)max −1
)

Xi j = µmax −2Xi j

(

α Jn j
(0)max −2 + λ1

λ j
Jn j

(0)max −1
)

.

This remains valid even if Xi j = 0 (when possibly λi 6= µλ j). Since the in-

dices (i, j) were completely arbitrary, we deduce that (Xi j)i j satisfies Âα(Xi j)i j =

µmax −2(Xi j)i jÂα. On the other hand, Z = (Xi j)i j ⊕Y is block-diagonal, and it is easy

to deduce that then

AαZ −µmax −2ZAα =
(

Âα ⊕ 0
)(

(Xi j)i j ⊕Y
)

−µmax −2
(

(Xi j)i j ⊕Y
)(

Âα ⊕ 0
)

= 0,

so, indeed, Z ∈ A#
α.

We now proceed with (ii) of the above plan.

Lemma 2.26 If a Jordan structure of A contains invertible and singular cells of dimen-

sion ≥ 2 simultaneously, then [A] connects to infinitely many maximal classes.

Proof Decompose A as in the proof of Lemma 2.25 and retain the notation. Note

that by Lemma 2.25 we only need to consider the case where max, the maximal di-

mension of invertible Jordan cell, is at most three. Let max0 ≥ 2 be the nil-index

of N(0) (so, N(0)max0 −1 6= 0, but N(0)max0 = 0), and consider

Aβ =

k
⊕

i=1

(

( λ1

λi
)m Jni

(0)max −1
)

⊕
(

βN(0)max0 −1
)

for m = max−max0. Since max, max0 ≥ 2, the matrices Aβ are nonzero but square-

zero, and no polynomial transforms Aβ into Aγ if β 6= γ. Hence, as β ∈ C varies,

[Aβ] is comprised of infinitely many maximal equivalence classes.

Similar arguments as in the proof of Lemma 2.25 also validate [A] ≤ [Aβ].

Case (iii), however, is fundamentally different.

Lemma 2.27 Suppose all invertible Jordan cells of nondiagonalizable A (if present)

have dimension 1. Then, [A] connects to less than d(n) maximal classes.

Proof As before, we may assume A = Jn1
(λ1) ⊕ · · · ⊕ Jnk

(λk) is already in its Jor-

dan block form with dimensions ni of Jordan cells arranged in a nonincreasing or-

der. Unlike the previous two cases, however, we do not treat nilpotent Jordan cells
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separately, so λi can now be zero as well. If for a maximal B, [A] ≤ [B], then B

must be a polynomial in A. Assume first that B is diagonalizable. Then it must

be diagonal (use that B is a polynomial in an upper-triangular A), and of the form

B = (µ1Idn1
) ⊕ · · · ⊕ (µkIdnk

). Moreover, by Lemma 2.13, it is invertible. In view of

Lemma 2.14, B is maximal precisely when diag(µ1, . . . , µk) is maximal k×k. We may,

consequently, choose a total of d(k) distinct maximal classes of diagonal matrices.

Now assume a maximal B is nondiagonalizable. It is easy to see that each Jordan

cell of B must have zero diagonal, for otherwise the matrix B0 with zero diagonal and

the same off diagonal entries as B satisfies B# ⊆ B#
0. So B is a nilpotent – actually, a

nilpotent of nil-index 2 by the fact that [B] ≤ [B2] (see Lemma 2.22).

Recall once more that B is a polynomial in A, and simultaneously B2
= 0. Re-

call also that at least one singular cell of A has dimension greater than one and all

invertible cells (if present) are 1 × 1. Therefore, the only possibilities for a maximal

nondiagonalizable [B] ≥ [A] are that

B =
⊕

ni>1

p( Jni
(0)) ⊕ 0

for some polynomial p(x) = ζr xr+ζr+1 xr+1+. . . , where r ≥ 1/2 max0, and max0 ≥ 2

is the maximal dimension of singular cells. Note that A# ⊆ B# implies

B ∈ B## ⊆ A## ⊆
⊕

ni>1

(

Jni
(0)

) ## ⊕
(

⊕

λi 6=0

C

)

.

However, Jni
(0)##

= C{Id, Jni
(0), Jni

(0)2, . . . , Jni
(0)ni−1} in view of Lemma 2.12.

This rules out the possibility of a polynomial, which would not act in monomial

fashion on the aggregation of singular Jordan cells. Hence,

B = ξr

((

⊕

ni>1

Jni
(0)

) r

⊕ 0
)

, r ≥ 1
2

max0 .

Denote the integer part of x by ⌊x⌋. We can choose ⌊1/2 max0⌋ such r, which gives

at most ⌊1/2 max0⌋ additional maximal nondiagonalizable equivalence classes that A

connects to.

All together A connects to at most d(k) + ⌊1/2 max0⌋ = d(k) + ⌊1/2n1⌋ maximal

nonscalar equivalence classes. On the other hand, note that k + ⌊n1/2⌋ ≤ n so, after

an easy exercise, Lemma 2.19 gives d(k) + ⌊n1/2⌋ ¯ d(n).

Up till now we did not use the fact that A is minimal. In the final case (iv), however,

we will use a weak consequence of this.

Lemma 2.28 Let A = Â ⊕ 0, with Â invertible, be minimal and nondiagonalizable.

Then it does not connect to precisely d(n) maximal classes.

Proof Assume with no loss of generality that Â is in its Jordan form, so A =

(
⊕k

1 Jni
(λi)) ⊕ 0, with n1 ≥ n2 ≥ · · · . Since it is minimal, we may further as-

sume that λi are pairwise distinct with distinct quotients. Otherwise we would use

Lemma 2.24 to find B with that property, and with B2t

= A. Lemma 2.22 would then

give [B] ≤ [A].
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We only need to examine the possibility when n1 ≤ 3; if it is greater, we al-

ready know A connects to infinitely many maximal classes. Now, as in the proof

of Lemma 2.27, we may choose a total of d(k) distinct maximal classes of diagonaliz-

able matrices. In addition, every nondiagonalizable maximal B that A connects to is

equivalent to a nilpotent of nil-index 2, which is at the same time a polynomial in A

(see the proof of Lemma 2.27). We may therefore assume that

B =

( k
⊕

1

αi Jni
(0)ni−1

)

⊕ 0

for some αi . We recall that 3 ≥ n1 ≥ n2 . . . . If n1 = 3, then all αu, corresponding to

2 × 2 cells vanish. To see this, take X = (Xi j)i j , with all blocks zero, except for

X1u =





λu 0

0 λ1

0 0



 .

It is elementary that AX = (λ1/λu)XA, so X ∈ A#. However, XB = µBX is equivalent

to αuλuµ = 0, forcing αu = 0.

With this information, we may rewrite B as

(2.3) B =

( k
⊕

1

αi Jni
(0)max −1

)

⊕ 0; max = n1 ∈ {2, 3}.

We are now facing two options.

Option 1 Only the first cell of A is of maximal dimension. Then A connects to

exactly one nondiagonalizable maximal equivalence class: [ Jn1
(0)n1−1⊕0]. Counting

also diagonalizable ones, the totality of maximal classes that such an A connects to

is d(k) + 1. But this is strictly less than d(n) because k ≤ n − 1, and hence d(n) ≥
d(n − 1) + 2 ≥ d(k) + 2 (see Lemma 2.19).

Option 2 Two or more invertible cells of A are of maximal dimension. We will

show that A connects to infinitely many pairwise, nonequivalent, maximal B from

equation (2.3) where in addition each αi 6= 0. Now, Z ∈ A# implies AZ = µZA.

Since Â is invertible, we deduce Z = (Xi j)i j ⊕ Y . Moreover, by Lemma 2.5, Xi j 6= 0

precisely when λi = µλ j . Eigenvalues λ1, . . . , λk have pairwise distinct quotients,

therefore either µ = 1 and (Xi j)i j is block-diagonal or all its blocks but at most one

are zero.

Consequently, if µ = 1, then Z commutes with A, and therefore also with any

polynomial in A, that is also with B. Otherwise, at most one block, say Xi0 j0
, is

nonzero and we can show that BZ =
αi0

α j0
µmax −1ZB similarly as in the proof of Lem-

mas 2.25 and 2.26.

In either case, Z also quasi-commutes with B, whatever the nonzero scalars αi

in (2.3) are. Such A, therefore, connects to infinitely many maximal equivalence

classes.
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Corollary 2.29 If X is a minimal invertible diagonal matrix, then Φ(X) is a minimal

diagonalizable invertible matrix.

Proof Clearly, Φ(X) must be minimal. By Lemmas 2.20, and 2.25–2.28, we know

that Φ(X) must be diagonalizable. However, by Corollary 2.18, Φ(X) cannot be sin-

gular. The only possibility left is that Φ(X) is indeed a minimal invertible and diago-

nalizable.

2.4 Proof of Theorem 1.1

Recall from Lemma 2.15 that D0 = diag(2, 3, 5, . . . , pn) is, up to equivalence, the

only minimal, diagonal, invertible matrix. By Corollary 2.29, Φ(D0) is also a min-

imal, diagonalizable, invertible matrix. Hence, with a suitably chosen similarity,

SΦ(D0)S−1 ∈ [D0].

By Lemma 2.16, the set D##
0 consists of precisely all invertible diagonal matrices

plus the zero matrix. Consequently, the map SΦ( · )S−1 which remains bijective and

preserves quasi-commutativity in both directions, maps the set of invertible diagonal

matrices bijectively onto itself.

Next, if µ 6= 0 and i 6= j, then µEi j ∈ D#
0. In view of Example 2.1, SΦ(µEi j)S−1 ∈

(SΦ(D0)S−1)#
= D#

0 equals either some λEuv, u 6= v, or it must be mapped into

a diagonal matrix which would have to be maximal because µEi j is maximal by

Lemma 2.21. However, the latter contradicts bijectivity of SΦ( · )S−1. Namely, we

already know that invertible diagonal matrices are permuted among themselves and

that singular diagonal matrices are not maximal by Lemma 2.13. Hence, for each

nonzero µ and for each i 6= j, we can find some u 6= v and nonzero scalar λ such

that SΦ(µEi j)S−1
= λEuv.

Next, D#
0 consists precisely of all diagonal matrices and all CEi j . We have just

shown that SΦ( · )S−1 permutes the elements of
⋃

i 6= j(C \ {0})Ei j and since the same

holds true for invertible diagonal matrices, we see that SΦ( · )S−1 also permutes sin-

gular diagonal matrices among themselves. Therefore, it also permutes minimal sin-

gular diagonal ones.

Further, let us show that Φ preserves rank one nilpotents. Indeed, let N =

TE12T−1. We define a bijective map ΨT(X) = Φ(TXT−1). Then Φ(N) = ΨT(E12).

However, the map ΨT preserves quasi-commutativity in both directions so, as we

did for Φ, we can find invertible ST with STΨT(E12)S−1
T = λEuv for some λ 6= 0

and u 6= v. Consequently, Φ(N) = ΨT(E12) is a nilpotent of rank-one. Applying

the same procedure to Φ
−1, we see that the set of rank-one nilpotents is bijectively

mapped onto itself by Φ.

We proceed by showing that N1, N2 and (N1 + N2) are all rank-one nilpotents pre-

cisely when the same holds for their Φ-images. Indeed, it is known, and easy to see

with the help of tensors, that (N1, N2) are simultaneously similar to either (E12, µE12),

or (E12, E13), or (Etr
12, Etr

13). Assume T is this similarity. We then introduce a bijec-

tion ΨT(X) = Φ(TXT−1) which possesses all the properties we have proved so far

for Φ. So, there exists an invertible matrix WT , such that WTΨT(D0)W−1
T ∈ [D0].

Moreover, Φ(N1), which equals either ΨT(E12) or ΨT(E21), is mapped into some

λ1W−1
T EstWT , s 6= t , λ1 6= 0. Likewise, Φ(N2) = λ2W−1

T EuvWT , u 6= v,
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λ2 6= 0. Notice that neither of E12, µE12, nor E12, E13, nor Etr
12, Etr

13 quasi-commutes

with a minimal singular diagonal matrix D̃ = diag(0, 2, 3, . . . , pn−1), pi being

the i-th prime. Also, notice that WTΨT( · )W−1
T maps singular diagonal matrices

into themselves. Hence, WTΨT(D̃0)W−1
T is a singular minimal diagonal matrix

diag(d1, . . . , dn). In particular, it must have precisely one zero diagonal entry, say

di0
= 0 (see Lemma 2.17). It follows that neither λ1Est nor λ2Euv quasi-commutes

with diag(d1, . . . , dn), hence either s = i0 or t = i0, and either u = i0 or v = i0. If

s = v or u = t , then Est and Euv do not quasi-commute, but E12
#↔µE12, E12

#↔E13,

and Etr
12

#↔Etr
13, a contradiction. In the remaining two cases s = u or t = v, we obtain

Φ(N1)+Φ(N2) is a rank-one nilpotent. We apply the map Φ
−1 to show also the other

direction.

Since the bijective map Φ has the property that N1, N2 and (N1 + N2) are all rank-

one nilpotents precisely when the same holds for their Φ-images, we can apply the

result by Du, Hou, and Bai [8, Lemma 2.2] which states that there exists an invertible

matrix T such that

Φ(N) = λN TNσT−1 for every rank-one nilpotent N, or

Φ(N) = λN T(Nσ)trT−1 for every rank-one nilpotent N,

where λN is a nonzero scalar depending on N and σ is a field automorphism.

If we compose Φ with either similarity, transposition, or the map X 7→ Xσ−1

, the

resulting map will still preserve quasi-commutativity in both directions. So we can

assume in the sequel that Φ fixes all rank-one nilpotents, modulo a scalar factor.

We proceed by showing that Φ fixes rank-one idempotents and minimal invertible

diagonalizable matrices, up to equivalence.

Lemma 2.30 Φ fixes the equivalence classes of every minimal invertible diagonalizable

matrix, and of every rank-one matrix.

Proof By Lemma 2.15, every minimal, invertible, diagonalizable matrix is of the

form A = SDS−1, D ∈ [D0]. We temporarily replace Φ with a bijection Ψ : X 7→
S−1

Φ(SXS−1)S, which still preserves quasi-commutativity in both directions and

fixes all rank-one nilpotents, modulo a scalar factor.

It is easy to see that the j-th row of any matrix from E#
i j can have a nonzero entry

only on the diagonal. Therefore, the intersection
⋂

i 6= j E#
i j is included in the set of all

diagonal matrices. Note that D
#↔Ei j , so Ψ(D) ∈

⋂

i 6= j Ψ(Ei j)
#
=

⋂

i 6= j E#
i j . Moreover,

the matrix Ψ(D) is also minimal, diagonal, and invertible, and since there is only one

such up to equivalence, it follows that Ψ(D) ∈ [D0]. Indeed,

Φ(A) = SΨ(D)S−1 ∈ S[D0]S−1
= S[D]S−1

= [A].

Since Φ fixes equivalence classes of scalar multiples of rank-one nilpotents, it

remains to consider scalar multiples of rank-one idempotents. Suppose P =

S(λE11)S−1 is such a matrix. Again, we temporarily replace Φ by the map Ψ : X 7→
S−1

Φ(SXS−1)S. By the first part of the proof, Φ(SD0S−1) ∈ [SD0S−1], so Ψ(D0) ∈
[D0]. As we have shown at the beginning of Subsection 2.4, Ψ then preserves the
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set of singular diagonal matrices, and so Ψ(λE11) = D̃ with D̃ = diag(d1, . . . , dn)

noninvertible.

Next, λE11 does not quasi-commute with rank-one nilpotent matrices E1i for i =

2, . . . , n. The same then holds for Ψ(λE11) = D̃ and Ψ(E1i) = λE1i
E1i . Consequently,

no nonzero µ can satisfy d1E1i = µdiE1i , so either d1 = 0 and d2, . . . , dn 6= 0 or

else d1 6= 0 and d2 = 0 = · · · = dn.

In the last case we have Φ(P) = SΨ(λE11)S−1
= S(d1 ⊕ 0n−1)S−1 ∈ [P], as

claimed. In the first case, note that λE11 does quasi-commute with the rank-one

nilpotent R = (E2n + · · · + E(n−1)n). The same holds for their Ψ–images, i.e., d2E2n +

· · · + dn−1E(n−1)n = µ(dnE2n + · · · + dnE(n−1)n). Therefore, d2 = · · · = dn−1 =

µdn = d. To see that µ = 1, we repeat the arguments on a rank-one nilpotent R1 =
∑n

i=2(Ein −Ei2) in place of R. Hence, in the first case, Φ(P) = SΨ(λE11)S−1
= S(0⊕

dIdn−1)S−1. But this is a scalar multiple of an idempotent, so its quasi-commutant

equals the usual commutant, which equals P ′
= P#. So, also in the first case, Φ(P) =

S(0 ⊕ dIdn−1)S−1 ∈ [P].

Remark 2.31 Let Y ∈ [X], that is, X#
= Y #. If B is any matrix, then Y

#↔B precisely

when X
#↔B. To see this, note that Z

#↔B if and only if B ∈ Z#. This fact will be

used to show that Φ fixes the equivalence class of some matrix A as follows. Suppose

Φ(X) ∈ [X]. Then, A
#↔X precisely when Φ(A)

#↔X. When there are enough such

matrices X, this will give Φ(A) ∈ [A].

We use the above idea to show that Φ acts locally polynomially on diagonalizable

matrices. First, assume A is diagonal. Then, B = Φ(A) is also. Given column vectors

x, y ∈ C
n, we form the rank-one R = xytr. Then, R quasi-commutes with A if and

only if

Axytr
= µxytrA = µx(Atry)tr,

which is possible if and only if x is an eigenvector of A, and y is an eigenvector of Atr.

Note that A quasi-commutes with R precisely when Φ(A) = B quasi-commutes with

Φ(R) ∈ [R]. This, in turn, is equivalent to B quasi-commuting with R. Consequently,

both A and B have exactly the same eigenvectors (though not necessarily correspond-

ing to same eigenvalues). That is, if A =
∑

λiIdni
, with λi pairwise distinct, then

Φ(A) =
∑

λ̃iIdni
, with λ̃i pairwise distinct. Therefore, Φ(A) is a polynomial in A.

The above holds also for diagonalizable Ã = SDS−1; just apply the arguments to

Ψ : X 7→ S−1
Φ(SXS−1)S while keeping in mind that, in view of Lemma 2.30, Ψ maps

D0 into [D0], so Ψ preserves the set of diagonal matrices and maps R into [R] for

any rank-one R. Therefore, Φ acts locally polynomially on diagonalizable matrices as

well as on rank-one nilpotents.

With some extra work we will show that Φ actually fixes equivalence classes of

those matrices. Recall from Lemma 2.30 that Φ(R) ∈ [R] for every rank-one R.

Lemma 2.32 Φ fixes the equivalence classes of every diagonalizable matrix with at

most two nonzero eigenvalues.

Proof Pick any such A. If A is scalar, we have nothing to do (see Corollary 2.11).

Assume next that A has precisely one nonzero eigenvalue λ. Then, there is a simi-

larity S such that A = S(λIdk ⊕ 0n−k)S−1 for some 1 ≤ k ≤ n − 1. We already know
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that Φ(A) is a polynomial in A. So, Φ(A) = p(A) = S(ξIdk ⊕ ζIdn−k)S−1. Now, A

does not quasi-commute with R = SE1nS−1, so Φ(A) = S(ξIdk ⊕ ζIdn−k)S−1 does

not quasi-commute with Φ(R) ∈ [R], and hence also with R. This is possible only

when ξ = 0, ζ 6= 0 or when ζ = 0, ξ 6= 0. In both cases, however, A#
= Φ(A)#, so

indeed [Φ(A)] = [A].

Assume lastly that A = S(λ1Idk1
⊕ λ2Idk2

⊕ 0n−k1−k2
)S−1 has two nonzero eigen-

values (possibly k1 + k2 = n; then, the last term is omitted). Again Φ(A) = p(A) =

S
(

µ1Idk1
⊕µ2Idk2

⊕αIdn−k1−k2

)

S−1, where µ1, µ2, α are distinct (see discussion fol-

lowing Remark 2.31). Note that, when n − k1 − k2 6= 0, A does not quasi-commute

with SE1nS−1 nor with SE(k1+1)nS−1. The same holds for Φ(A). Due to the fact that

µ1, µ2, α are distinct, this gives α = 0. If, however, n − k1 − k2 = 0, then A
#↔E1n,

which yet again yields µ1µ2 6= 0. So,

Φ(A) = S
(

µ1 Idk1
⊕µ2 Idk2

⊕0n−k1−k2

)

S−1.

Consequently, Φ preserves the set

{S(γ1Idk1
⊕ γ2Idk2

⊕ 0n−k1−k2
)S−1 : γ1 6= γ2, γ1γ2 6= 0},

which splits into precisely two equivalence classes:

[S(Idk1
⊕ 2Idk2

⊕ 0n−k1−k2
)S−1] ¯ [S(−Idk1

⊕ Idk2
⊕ 0n−k1−k2

)S−1].

However, Φ induces a bijection on equivalence classes, so this relation is also pre-

served by Φ. Indeed, both classes are fixed by Φ.

Lemma 2.33 Given any matrix units Ei j , Euv, we have Φ(Ei j + Euv) ∈ [Ei j +αEuv] =

[Euv + (1/α)Ei j] for some nonzero α.

Proof If rk(Ei j + Euv) = 1, we can take α = 1, by Lemma 2.30. Assume

rk(Ei j + Euv) = 2. We can find a permutation matrix S such that the unordered pair

{Ei j , Euv} is simultaneously similar to precisely one of the following: (i) {E12, E34},

(ii) {E12, E23}, (iii) {E11, E23}, (iv) {E11, E22}, or (v) {E12, E21}. Actually, we may

assume that {Ei j , Euv} already equals one of the above, for otherwise we might tem-

porarily replace Φ with a map X 7→ SΦ(S−1XS)S−1, which still fixes the equivalence

classes of all rank-one matrices, and D0, and preserves quasi-commutativity in both

directions.

Now, the last two possibilities fit the assumptions of Lemma 2.32, so their equiva-

lence class is fixed, and we might take α = 1.

Next, consider case (i). A = (E12 + E34) quasi-commutes with every idempo-

tent Xi = Eii for i ≥ 5 as well as with the idempotent X = E11 + E22. By Lemma 2.32

and Example 2.4, B = Φ(A) ∈ Φ(X#
i ) = X#

i = X ′
i and B ∈ X#

= X ′
= M2 ⊕ Mn−2.

But then the matrix B commutes with idempotents Xi , so its i-th row/column is zero,

except possibly at the diagonal (ii) entry. This holds for every i ≥ 5. Moreover, B also

commutes with X = E11 + E22. Combining these we easily derive that

B = B1 ⊕ diag(λ5, . . . , λn); B1 ∈ M2 ⊕ M2.
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In addition, A = (E12 + E34) also quasi-commutes with diagonal

Y = (E11 + 2E22 + E33 + 2E44) ⊕ Idn−4,

which fits the assumptions of Lemma 2.32. Therefore, B
#↔Φ(Y ) ∈ [Y ]. We derive

that either B is diagonal, or B = (uE12 + vE34)tr, or B = xE12 + yE34. The first

case is contradictory, for the diagonal B would quasi-commute with the idempotent

E11 + E33, but Φ
−1(B) = A does not quasi-commute with Φ

−1(E11 + E33) ∈ [E11 +

E33]. The second case is also contradictory. Namely, A
#↔E12 and A

#↔E34, and so

B
#↔Φ(E12) ∈ [E12] as well as B

#↔Φ(E34) ∈ [E34]. This is possible only when u = 0 =

v, so B would be a scalar matrix, and hence so A = Φ
−1(B), a contradiction. Hence,

B = xE12 + yE34.

Finally, [E12] 6= [E12 + E34] 6= [E34] implies [E12] 6= [Φ(E12 + E34)] 6= [E34] and

therefore, xy 6= 0 so that B ∈ [E12 + y/xE34], as anticipated.

We proceed with (ii) and show that E12 + E23 is also mapped into [E12 + αE23]. To

this end, note that E12 + E23 ∈ M3 ⊕ 0n−3. With the help of idempotents Xi = Eii we

may, as above, deduce that

B = Φ(E12 + E23) = B1 ⊕ diag(λ4, . . . , λn); B1 ∈ M3.

Note that E12 + E23 is elementary Jordan nilpotent. It is easy to see that, of all rank-

one matrices inside M3 ⊕ 0, it quasi-commutes with precisely one equivalence class,

namely with [E13] = [e1etr
3 ]. The same must hold for B. This gives rather easily

that e1 is the only eigenvector of B1, and e3 the only eigenvector of Btr
1 . Hence, B1 also

has only one eigenvalue, say λ. Now, from B1e1 = λe1 and Btr
1 e3 = λe3, we easily

derive

B1 = λ Id3 +





0 x12 x13

0 x22 x23

0 0 0



 .

Also, x22 = 0, otherwise we would have an additional eigenvalue.

Note that (E12 + E23) quasi-commutes also with the matrix

D = (E11 − E22 + E33) ⊕ Idn−3,

which fits the assumptions of Lemma 2.32. Thus, B ∈ D#, wherefrom, after an easy

calculation, B = x12E12 + x23E23, or B = (x13E13 + λ
∑3

i=1 Eii) +
∑n

i=4 λiEii or B =

0. The latter two cases would wrongly imply that B1 = (x13E13 + λ
∑3

i=1 Eii) will

quasi-commute with at least two nonequivalent rank-one matrices: E22 as well as

E13. Hence, B = x12E12 + x23E23. Since [E12] 6= [E12 + E23] 6= [E23] implies [E12] 6=
[Φ(E12 + E23)] 6= [E23], we have x12x23 6= 0, as anticipated.

Consider lastly (iii). As in case (ii), we deduce

B = Φ(E11 + E23) = B1 ⊕ diag(λ4, . . . , λn); B1 ∈ M3.

Moreover, E11 + E23 quasi-commutes with the idempotent X = E22 + E33. Hence,

B
#↔Φ(X) ∈ [X], which gives B1 ∈ C ⊕ M2. We next follow the arguments from
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case (ii). Of all rank-one matrices inside 0 ⊕ M2 ⊕ 0, E11 + E23 quasi-commutes with

precisely one equivalence class, i.e., [E23] = [e2etr
3 ]. The same holds for B, which gives

B = xE11 + (λE22 + yE23 + λE33) +
∑n

i=4 λiEii . Further, E11 + E23 quasi-commutes

with D = −E22 +
∑n

i=3 Eii , which fits the assumptions of Lemma 2.32. This gives that

either B is diagonal, or B = xE11 + yE23. The former case is contradictory, for then B

would quasi-commute with at least two rank-one matrices E22, E23 ∈ 0⊕M2⊕0. Only

the last case is possible, and we must also have xy 6= 0 due to [E11] 6= [E11 + E23] 6=
[E23], for example, E32 ∈ E#

11\(E11 + E23)#, and E21 ∈ E#
23\(E11 + E23)#.

Lemma 2.34 Φ fixes equivalence classes of every diagonalizable matrix.

Proof It suffices to prove this for diagonal matrices. Indeed, once this is established,

we can choose any A = SDS−1, where D is diagonal, and temporarily replace Φ with a

map Ψ : X 7→ S−1
Φ(SXS−1)S, which still preserves quasi-commutativity, fixes every

rank-one matrix, and acts bijectively on equivalence classes. So all the above claims

are available for Ψ and, consequently, Ψ must fix equivalence classes of diagonal ma-

trix D. Equivalently, Φ must fix [A].

By the same reasoning, it suffices to assume D = diag(d1, . . . , dk) ⊕ 0n−k with

d1, . . . , dk nonzero, and 1 ≤ k ≤ n (when k = n, D is invertible, and the last term is

omitted). Now, if D has at most two nonzero eigenvalues, the result follows from

Lemma 2.32. So we only need to consider the case when D has at least three nonzero

eigenvalues. Furthermore, as in the proof of Lemma 2.32, we can then see that

B = Φ(D) = diag(β1, . . . , βk) ⊕ 0n−k,

with βi nonzero.

Now, assume di/d j = du/dv. Then, by Examples 2.1–2.3, Ei j + Euv is in D#, hence

Φ(Ei j +Euv) ∈ Φ(D#) = B#. But Φ(Ei j +Euv) ∈ [Ei j +αEuv]. Therefore, Ei j +αEuv ∈ B#

and, since α is nonzero, we derive βi/β j = βu/βv. We may reverse implications, since

quasi-commutativity is preserved in both directions. If βi/β j = βu/βv, then X ∈ B#

for every member X ∈ [Ei j + αEuv] and each nonzero α. We know Φ(Ei j + Euv) is

one such a member for certain α, so Ei j + Euv ∈ D#, and so di/d j = du/dv. That is,

di/d j = du/dv precisely when βi/β j = βu/βv.

In view of Examples 2.1–2.3, this gives D#
= B#, so B = Φ(D) ∈ [D].

We next show that every nilpotent is fixed, modulo equivalence.

Lemma 2.35 Let Ω ⊆ Mn be the subset of all matrices, equivalent to rank-one or to

diagonalizable ones, and let N ∈ Mn be a nonzero nilpotent. Then, the following claims

are equivalent for B ∈ Mn:

(i) N# ∩ Ω = B# ∩ Ω;

(ii) B = λN for some nonzero λ.

Proof Let us prove only the nontrivial implication, (i) implies (ii). Without loss of

generality we may assume N = Jn1
(0) ⊕ · · · ⊕ Jnk

(0) is already in its Jordan form,

with decreasing size of Jordan cells Jni
(0), where Jni

(0) =
∑ni−1

j=1 E j( j+1) and J1(0) is

a zero matrix of dimension 1 × 1.
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Now, a diagonal matrix D = diag(2, 22, . . . , 2n) quasi-commutes with N (namely,

D# contains every super-diagonal matrix). So, it also quasi-commutes with B. This

gives that B ∈ D#, so B is either diagonal or equals some matrix with nonzero

entries only on one of sub–diagonals or on one of the super–diagonals. That is,

B =
∑n−r0

i=1 αiE(i+r0)i or B =
∑n−r0

i=1 αiEi(i+r0) for some 0 ≤ r0 ≤ n − 1 and some

scalars αi . Note that B cannot be diagonal (and in particular, B 6= 0), for otherwise,

E11 would quasi-commute with B, which is not the case with E11 and N.

Actually, B lies on the first super-diagonal. To see this, notice first that the idem-

potents Pi = 0n1
⊕ · · · ⊕ 0ni−1

⊕ Idni
⊕ 0ni+1

⊕ · · · ⊕ 0nk
quasi-commute with N, so

also with B. Hence,

(2.4) B ∈ ⋂

i

P#
i =

⋂

i

P ′
i = Mn1

⊕ · · · ⊕ Mnk
.

In particular, since n1 ≥ n2 ≥ . . . , this implies that a nonzero B cannot occupy the

r’th sub/super diagonal when r ≥ n1. Hence, 0 ≤ r0 ≤ (n1 − 1). Also, r0 = 0 is

ruled out since B is not diagonal. Assume erroneously that r0 ≥ 2. Then, we would

consider the idempotent

Qr0
=

⌊(n1−1)/r0⌋
∑

i=0

E(1+ir0)(1+ir0) = E11 + E(1+r0)(1+r0) + · · · + E(1+sr0)(1+sr0)

with (n1 − r0) < 1 + sr0 ≤ n1, which does not quasi-commute with N, but Qr0

does so with B, a contradiction. Therefore, B lies either on the first sub-diagonal

or on the first super–diagonal. Now, since En1 and N do not quasi-commute, the

same is true for B and En1. However, any sub-diagonal B would quasi-commute

with En1, a contradiction. So, B =
∑n−1

i=1 αiEi(i+1) is a super-diagonal matrix. From

equation (2.4) we further deduce that αn1
= 0 = αn1+n2

= · · · = αn1+···+nk
because

B = B1 ⊕ · · · ⊕ Bk is block-diagonal with blocks of the same sizes as in N = Jn1
(0) ⊕

· · · ⊕ Jnk
(0). In particular, if n j = 1 for some j then B j = 0.

Consider now a block-diagonal matrix A, with all blocks zero except the j-th one.

Suppose n j > 1 and define the j-th block with A j =
∑n j

i=1 2i−1Eii +
∑n j−1

i=1 2iEi(i+1).

Clearly, A is diagonalizable and quasi-commutes with N, so it also quasi-commutes

with B. That is, A j quasi-commutes with B j . But we already know B j can be nonzero

only on the first super-diagonal, so this implies that B j = λ j Jn j
(0). Since A j does not

quasi-commute with E11, the same holds for B j , so λ j 6= 0. Therefore,

B = λ1 Jn1
(0) ⊕ · · · ⊕ λk Jnk

(0).

It only remains to show that all λ j are equal. Clearly, we need to consider only the

blocks of dimensions n j ≥ 2. For simplicity, we will consider only the first two

blocks and assume, therefore, that n1 ≥ n2 ≥ 2. Now, the matrix X = E(n1+1)(n1−1) +

2E(n1+2)n1
+

∑n
i=1 2i−1Eii quasi-commutes with N. Since it is diagonalizable, it must

quasi-commute also with B. This easily gives the desired λ1 = λ2.

Recall that every X ∈ Ω is mapped into Φ(X) ∈ [X] ⊂ Ω. We can thus apply

Lemma 2.35 on nilpotent N and matrix B = Φ(N). As a consequence, B = Φ(N) =

(λN) ∈ [N], i.e., Φ fixes equivalence class of every nilpotent matrix.
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Assume now that A = S
(
⊕k

i=1 Jni
(αi)

)

S−1 is an arbitrary matrix, where Jni
(αi),

as usual, denotes the Jordan cell of dimension ni with αi on its diagonal. If A is

nilpotent or diagonalizable, we already know [A] is fixed. Otherwise, we can further

permute its blocks to achieve that the first r ≥ 1 blocks are invertible, and the re-

maining k − r, if any, are nilpotent. Moreover, we can assume that S = Id, that is

A = A1 ⊕ · · · ⊕ Ak, Ai = Jni
(αi), is block diagonal, otherwise we would regard a

Ψ( · ) = S−1
Φ(S . S−1)S. We also collect the first r invertible blocks into Â and the

last n− r into a nilpotent N(0), thus A = Â⊕N(0). If n− r = 0, we have A = Â and

omit N(0).

Let B = Φ(A). Notice first that the idempotents Pi = 0n1
⊕ · · · ⊕ 0ni−1

⊕ Idni
⊕

0ni+1
⊕ · · · ⊕ 0nk

quasi-commute with A. So, Φ(Pi) ∈ [Pi] also quasi-commutes with

Φ(A) = B for every i. As in equation (2.4), we deduce that B = B1 ⊕ · · · ⊕ Bk is

block-diagonal, with Bi ∈ Mni
. Notice that A

#↔(0n1
⊕ · · · ⊕ Xi ⊕ · · · ⊕ 0nk

) precisely

when Ai
#↔Xi . With this in mind we can temporarily regard only one block or one

group of blocks. We proceed in several steps.

Step 1 Assume A = Â ⊕ N(0) has a nilpotent part; that is, N(0) is a matrix

of dimension m ≥ 1. When N(0) 6= 0, the same arguments as in the proof of

Lemma 2.35 give Br+1 ⊕ · · · ⊕ Bk = λN(0) for some nonzero λ. When N(0) = 0,

then Br+1 ⊕ · · · ⊕ Bk is a scalar, for otherwise A quasi-commutes with the rank-one

X = 0n−m ⊕ (Em×m
11 + · · · + Em×m

1m ), m = nr+1 + · · · + nk, but B = Φ(A) would

not. Actually, this scalar is 0. Assume otherwise. Since A is not diagonalizable, the

same holds for B by Lemma 2.34. So, at least one block, say B1, is nonzero and of

dimension n1 ≥ 2. By Lemma 2.35, B1 is not nilpotent, since the corresponding A1

is invertible. Find a similarity S = S1 ⊕ Idn−n1
such that the matrix S−1

1 B1S is in

Jordan form with (1, 1)-element nonzero. It follows that a rank-one matrix SE1nS−1

quasi-commutes with B, but it does not quasi-commute with Φ
−1(B) = A. In this

case Br+1 ⊕ · · · ⊕ Bk = λN(0), and we can take any nonzero λ.

Step 2 Consider any invertible cell Ai of A. Then we claim that the corresponding

cell Bi of B = Φ(A) satisfies Bi ∈ [Ai]. In particular, Bi ∈ Poly(Ai) is invertible

upper-Toeplitz.

Say for simplicity that Ai = A1 = Jn1
(α1). Notice that Jn1

(0)
#↔A1, so also

Jn1
(0)

#↔B1. It is elementary, then, that

(2.5) B1 =

n1
∑

i=1

β0µ
i−1Eii +

n1−1
∑

i=1

β1µ
iEi(i+1) + · · · + βn1−1µ

n1−1E1n1
,

for some βi and some nonzero µ. We claim B1 is invertible, that is, β0 6= 0. To

see this, assume first that the dimension of A1, i.e., n1 ≥ 2. We then argue with

contradiction. If B1 would be nilpotent, it would quasi-commute with a nonscalar

n1 × n1 diagonalizable matrix (use the Jordan form of B1). However, this is not the

case with A1 = α1Idn1
+ Jn1

(0) because α1 6= 0 forces A#
1 = A ′

1 (see Lemma 2.5) and

A ′
1 = Poly(A1). On the other hand, assume A1 is a 1× 1 block. Then, B1 is also of the

same dimension. We next consider two cases separately. First, if A = Â ⊕ N(0) has a

nilpotent part, then E1n 6∈ A#. Recall from Step 1 that B = (B1 ⊕· · ·⊕Br)⊕ (λN(0)).
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But then, E1n 6∈ B# implies B1 6= 0. Second, if A is invertible and diagonal, we

have nothing left to do (see Lemma 2.34). Otherwise, at least one block, say A2, is of

dimension greater than one. We have already proven that the corresponding block B2

is also upper-triangular and invertible. Notice that E1(1+n2) ∈ A#, and since nilpotents

are fixed, also E1(1+n2) ∈ B#. But this is possible only if B1 6= 0, as anticipated.

Next we show B1 is upper-Toeplitz with β1 6= 0. If n1 ≥ 3, then A1
#↔( Jn1

(0) +

Jn1
(0)2), therefore also B1

#↔( Jn1
(0)+ Jn1

(0)2), that is B1( Jn1
(0)+ Jn1

(0)2) = ξ( Jn1
(0)+

Jn1
(0)2)B1 for some nonzero scalar ξ. Comparing the first row of the products on

both sides, we obtain equations β0 = ξβ0µ and β0 + β1µ = ξ(β0µ
2 + β1µ

2). Since

β0 6= 0, it follows from the first equation that ξ =
1
µ 6= 0, and then from the

second equation, that µ = 1. If n1 = 2, then also µ = 1, for otherwise A1 would

quasi-commute with rank-one matrix E11 + β1

µ β0−µ2 β0
E12, but B1 would not. The case

n1 = 1 is trivial. It now follows from equation (2.5) that B1 is upper-Toeplitz, hence

a polynomial in A1. Moreover, β1 6= 0, for otherwise B1 would quasi-commute with

nilpotent E1,n1−1 + 2E2,n1
, but A1 does not. Since Φ fixes nilpotents, up to a scalar

multiple, we have a contradiction. So β1 6= 0.

It remains to show that B1 and A1 are equivalent. If their dimension equals 1,

there is nothing to do. Otherwise, note that the spectrum, Sp A1 = {α1} /∈ {0},

implies A#
1 = A ′

1 = Poly(A1) (see Lemma 2.5). With the same argument, we also

deduce that B#
1 = B ′

1 = Poly(B1). Obviously, Poly(A1) = Poly( Jn1
(0)) is an algebra

of dimension n1. Since its generator Jn1
(0) commutes with B1, we actually have

Poly(A1) = Poly( Jn1
(0)) ⊆ B ′

1 = (B1 − β0Idn1
) ′.

But β1 6= 0 implies (B1−β0Idn1
) is a nilpotent of maximal nil-index, so dim B ′

1 = n1.

This forces equality in A ′
= Poly(A) ⊆ B ′. Therefore, B1 ∈ [A1].

Similar arguments show that each invertible cell Ai is equivalent to the corre-

sponding cell Bi .

Step 3 We now consider two invertible cells simultaneously, Ai = Jni
(αi) and A j =

Jn j
(α j). We have just shown that the corresponding cells in B, Bi , B j are invertible,

upper-Toeplitz. Hence, Bi =
∑ni−1

j=0 βi, j Jni
(0) j , and likewise for B j . We claim now

that αi = α j implies βi,0 = β j,0.

Assume first that A1 = Jn1
(α1) and A2 = Jn2

(α2), where α1α2 6= 0. Then N1 =

E1n1
+ E1(n1+n2) is of rank-one, and A quasi-commutes with N1 if and only if α1 = α2.

Since rank-one matrices are fixed by Φ, we obtain the same conditions for B. Hence

if α1 = α2, then β1,0 = β2,0. The same arguments and the same results are valid for

arbitrary invertible blocks in place of A1, A2.

Step 4 We now describe the quasi-commutant of A = Â ⊕ N(0). The following

notation will prove handy. Given a nonzero µ, let A#µ = {X : AX = µXA}. Also,

given a subset Γ ⊂ C\{0}, let Γ

Γ
= {γ1/γ2 : γ1/γ2 ∈ Γ}. We claim that

(2.6) A#
= (0 ⊕ N(0)#) ∪

⋃

µ∈ Sp Â

Sp Â

Â#µ ⊕ N(0)#µ ,
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and that a block matrix (Xi j)i, j is an element of Â#µ , with µ = αi0
/α j0

, precisely

when the following condition is met: Xi j = 0 for αi/α j 6= µ, and Jni
(αi)Xi j =

αi/α jXi j Jn j
(α j), when αi/α j = µ.

To show equation (2.6), pick any X =
(

X1 U
V X2

)

∈ A#. Then, there is a nonzero µ
with AX = µXA. Comparing the blocks gives four equations:

ÂX1 − µX1Â = 0, ÂU − µU N(0) = 0,

N(0)V − µV Â = 0, and N(0)X2 − µX2N(0) = 0.

Note that in the second equation, Sp Â − µ Sp N(0) = Sp Â 6∋ 0. Hence, by

Lemma 2.5, its only solution is U = 0. Likewise we see V = 0. Furthermore, unless

0 ∈ Sp Â−µ Sp Â, we have X1 = 0, and therefore X = 0⊕X2 with X2 ∈ N(0)#, which

gives X ∈ 0 ⊕ N(0)#. However, if 0 ∈ Sp Â − µ Sp Â or equivalently µ ∈ Sp Â/Sp Â,

then X1 ∈ Â#µ , while X2 ∈ N(0)#µ , giving X ∈ (Â#µ ⊕ N(0)#µ ).

Next, let us determine Â#. It will turn out that the result is similar to Exam-

ple 2.1. Start with any block-matrix X = (Xi j)i j ∈ Â#
= (

⊕r
i=1 Jni

(αi))#. So, there

is some nonzero µ such that ÂX = µXÂ. Considering only the (i j)-th block gives

Jni
(αi)Xi j = µXi j Jn j

(α j). If αi 6= µα j , Lemma 2.5 implies that Xi j = 0. However,

when αi = µα j , we easily solve this equation and see that the ni × n j matrix Xi j has

a similar structure to the square matrix in (2.5): it is upper-triangular, equal to

(2.7) Xi j =

(

x1

m0
∑

s=1

µs−1E
ni×n j

s (n j−m0+s)

)

+ · · · + xm0
µm0−1E

ni×n j

1n j
,

where m0 = min{ni , n j}. We define Λ
(i j) ⊆ Â# to be the set of all block matrices

(Xst )st with all the blocks equal to zero, except for the (i j)-th block, which is of the

same form as in equation (2.7) for µ = αi/α j . In particular, E(i j) ∈ Λ
(i j), where E(i j)

has only one nonzero entry, which equals 1, and it lies at the upper-right corner of the

(i j)-th block. Notice that rk E(i j)
= 1. Notice also that Λ

(ii)
= 0⊕· · ·⊕A#

i ⊕0⊕· · ·⊕0,

and corresponds to µ = 1.

As usual, given two subsets Ω1,Ω2 ∈ Mn, we let

Ω1 + Ω2 = {X + Y : X ∈ Ω1,Y ∈ Ω2}.

It is now easy to deduce the following for Â#:

(2.8) Â#
=

⋃

µ∈ Sp Â

Sp Â

(

∑

(i, j)∈
{

(i, j):
αi

α j
=µ

}

Λ
(i j)

)

.

Step 5 This can also be rewritten as follows. First, according to the block-structure

of Â, which is the same as that for B̂, we introduce B
(i j) to denote the set of all those

block-matrices of same dimension as Â or B̂ that have all blocks but the (i j)-th one

equal to zero. It now follows from equation (2.8) that Λ
(i j)

= Â# ∩ B
(i j). Moreover,
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we introduce the equivalence relation on ordered pairs from Nr×Nr by (i, j) ∼ (u, v)

if and only if αi/α j = αu/αv. Then, equation (2.8) can be rewritten as

(2.9) Â#
=

⋃

p∈(Nr×Nr)/∼

(

∑

(i, j)∈p

(Â# ∩ B
(i j))

)

.

Step 6 Recall from Steps 1 and 2 that B also decomposes into B = B̂ ⊕ (λN(0)),

where each cell Bi in B̂ is invertible, upper-Toeplitz, with βi,0 on the main diagonal,

and equivalent to the corresponding cell in Â. We claim here that αi/α j = αu/αv

precisely when βi,0/β j,0 = βu,0/βv,0.

Namely, it follows from equation (2.8) that αi/α j = αu/αv precisely when E(i j) +

E(uv) ∈ Â#. In view of equation (2.6), this is further equivalent to (E(i j) ⊕0) + (E(uv) ⊕
0) ∈ A#. Notice that (E(i j) ⊕ 0), (E(uv) ⊕ 0) are both matrix units. By Lemma 2.33,

Φ
(

(E(i j) + E(uv)) ⊕ 0
)

∈ [(E(i j) + αE(uv)) ⊕ 0] for some α 6= 0. Therefore, also

(E(i j) + αE(uv)) ⊕ 0 ∈ B#. But then, E(i j) + αE(uv) ∈ B̂#. A simple calculation shows

that βi,0/β j,0 = βu,0/βv,0.

The reversed implication follows since Lemma 2.33 is valid also for Φ
−1 because

it also fixes equivalence classes of diagonalizable and nilpotent matrices.

Step 7 We now consider all invertible cells combined and claim that Â#
= B̂#. The

same arguments we used to prove equation (2.6) are valid also for B = B̂ ⊕ (λN(0)),

so

(2.10) B#
= (0 ⊕ (λN(0))#) ∪

⋃

µ∈ Sp B̂

Sp B̂

B̂#µ ⊕ (λN(0))#µ .

By Lemma 2.5,

B̂# ⊕ 0 =

⋃

µ∈(Sp B̂/Sp B̂)

B̂#µ ⊕ 0,

hence B̂#⊕0 ⊆ B#; similarly, Â#⊕0 ⊆ A#. Next, let B
(i j) be as in Step 5. When N(0) is

present, we can augment matrices from B
(i j) with a zero tail, so that B

(i j) ⊕ 0 ⊆ Mn.

Now, if i 6= j, then B
(i j) ⊕ 0 consists of nilpotents only, and their equivalence classes

are held fixed by Φ and by Φ
−1. Therefore, given i 6= j, we have A# ∩ (B(i j) ⊕ 0) =

B# ∩ (B(i j) ⊕ 0). By equations (2.6) and (2.10), this is equivalent to

Λ
(i j)

= Â# ∩ B
(i j)

= B̂# ∩ B
(i j)

(recall that Λ
(i j) was defined in equation (2.8)). If, however, i = j, then Λ

(ii)
=

0 ⊕ · · · ⊕ 0 ⊕ A#
i ⊕ 0 ⊕ · · · ⊕ 0. But A#

i = B#
i by Step 2, so yet again, Λ

(ii)
=

Â# ∩ B
(ii)

= B̂# ∩ B
(ii). A formula similar to (2.9) is valid also for B̂#, namely

B̂#
=

⋃

p∈(Nr×Nr)/≈

(

∑

(i, j)∈p

(B̂# ∩ B
(i j))

)

,
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with (i, j) ≈ (u, v) if and only if
βi,0

β j,0
=

βu,0

βv,0
, an equivalence relation similar to ∼ for

Â. But we have already shown that (B̂# ∩ B
(ii)) = Λ

(i j), and we know that αi/α j =

αu/αv precisely when βi,0/β j,0 = βu,0/βv,0 by Step 6. Therefore, (i, j) ∼ (u, v)

precisely when (i, j) ≈ (u, v). So,

B̂#
=

⋃

p∈(Nr×Nr)/∼

(

∑

(i, j)∈p

Λ
(i j)

)

= Â#.

Step 8 It remains to compare A# and B#. They are clearly equal when A is invertible

(i.e., when there is no nilpotent part) by Step 7. Assume next the nilpotent part

contains a cell of nil-index ≥ 3. With no loss of generality,

A = Â ⊕ Jnr+1
(0) ⊕ · · · ⊕ Jnk

(0) and nr+1 ≥ 3.

We claim that the quotients of eigenvalues in Â match those in B̂, that is, αi/α j =

βi,0/β j,0.

Indeed, if αi/α j = 1, then αi/α j = α1/α1, and we already know from Step 6

that the same holds true for βi,0/β j,0 = β1,0/β1,0, i.e., βi,0/β j,0 = 1. If, however,

µ = αi/α j 6= 1, then in view of equation (2.6), we know that

Xµ = E(i j) ⊕ (
∑

s

(αi/α j)
s−1Enr+1×nr+1

s(s+1) ) ⊕ 0 ⊕ · · · ⊕ 0 ⊆ A#.

It now follows from i 6= j that Xµ is nilpotent, hence its equivalence class is held

fixed by Φ. So, also Xµ ∈ B#. Then, however, we see from the middle block, i.e., from
∑

s µ
s−1Enr+1×nr+1

s(s+1) , that BXµ = ξXµB, ξ = βi,0/β j,0, and so βi/β j = µ = αi/α j . In

particular, Sp B̂/Sp B̂ = Sp Â/Sp Â.

It is now easy to see that Â#µ = B̂#µ , so that

A#
= (0 ⊕ N(0)#) ∪

⋃

µ∈ Sp Â

Sp Â

Â#µ ⊕ N(0)#µ

= (0 ⊕ (λN(0))#) ∪
⋃

µ∈ Sp Â

Sp Â

B̂#µ ⊕ (λN(0))#µ

= (0 ⊕ (λN(0))#) ∪
⋃

µ∈ Sp B̂

Sp B̂

B̂#µ ⊕ (λN(0))#µ

= B#.

This completes the proof of Theorem 1.1.
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We finish this section by proving Remark 1.2.

Lemma 2.36 Let Φ satisfy (i)–(ii) in Theorem 1.1. Then for Ψ(X) = S−1
Φ(Xσ−1

)S,

respectively, for Ψ(X) = S−1
Φ(Xσ−1

)trS we have that Ψ(A) ∈ Poly(A).

Proof We use the same notation as in the proof of Theorem 1.1. Let Bi be an arbi-

trary invertible cell. By Step 2 we have Bi ∈ Poly(Ai). Now, assume Sp Ai1
= Sp Ai2

=

· · · = Sp Aiu
. Consider any pair among this tuple, say i1 and i2. For simplicity we

can take i1 = 1, i2 = 2; then Sp A1 = Sp A2. Then also Sp B1 = Sp B2, by Step

3. In this case, we take a nilpotent N = (Ni j)i j with all blocks, but (1, 2)-th, zero

and with N12 =
∑min{n1,n2}

s=1 Es (max{n1,n2}+s) ∈ A#. Being nilpotent, it is fixed by Φ, so

N ∈ B#. Therefore, BN = µNB hence B1N12 = µN12B2, for some µ 6= 0. However,

N12 6= 0 while Sp B1 = Sp B2. Consequently, Lemma 2.5 gives µ = 1. Recall that

B1, B2 are upper Toeplitz which easily shows that B1, B2 have the same elements on

the corresponding super-diagonals. This implies that (B1 ⊕ B2) ∈ Poly(A1 ⊕ A2).

But our choice of pair was arbitrary, and it follows that actually (Bi1
⊕ · · · ⊕ Biu

) ∈
Poly(Ai1

⊕ · · · ⊕ Aiu
).

Recall from Step 1 that for noninvertible cells we also have

(Br+1 ⊕ · · · ⊕ Bk) = λ(Ar+1 ⊕ · · · ⊕ Ak) ∈ Poly(Ar+1 ⊕ · · · ⊕ Ak).

Now, recall that, given any two matrices X,Y with distinct minimal polynomial, we

have Poly(X ⊕Y ) = Poly(X)⊕Poly(Y ). This follows since the projections Idk ⊕0n−k

and 0k ⊕ Idn−k are polynomials in X ⊕ Y [11, p. 221]; see also [9, Theorem 2 and

Remark on p. 127] for more on this theme. This gives B = (B1 ⊕ · · · ⊕ Bk) ∈
Poly(A1 ⊕ · · · ⊕ Ak) = Poly(A).

3 Concluding Remark

The map in Theorem 1.1is described with the help of equivalence classes, defined by

[A] = {X : X#
= A#}. Here we describe the elements inside [A] in more detail.

Remark 3.1 When A is nilpotent, then [A] = (C\{0})A, see Lemma 2.35.

When A is invertible, then B ∈ [A] implies

(i) B ∈ Poly(A),

(ii) B is invertible, with Jordan cells of the same size as in A, and

(iii) if the spectrum, Sp A = (α1, . . . , αk), respectively, Sp B = (β1, . . . , βk) is a k-

tuple, arranged according to the Jordan cell structure of A, and of B, respectively,

then αi/α j = αu/αv if and only if βi/β j = βu/βv.

See Step 6 of the proof.

When A = S(Â ⊕ N)S−1 is similar to a block-diagonal with invertible part Â and

nilpotent N, then B ∈ [A] implies B = S
(

B̂ ⊕ (λN)
)

S−1 for some nonzero λ, and

for some B̂ ∈ [Â] with αi/α j = αu/αv if and only if βi/β j = βu/βv. When the

nil-index of N is greater than two, we have even more restrictive condition on B:

αi/α j = βi/β j . See Step 8 of the proof.
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[7] G. Dolinar, S. Du, J. Hou, and P. Legiša, General preservers of invariant subspace lattices. Linear
Algebra Appl. 429(2008), no. 1, 100–109. doi:10.1016/j.laa.2008.02.007

[8] S. Du, J. Hou, and Z. Bai, Nonlinear maps preserving similarity on B(H). Linear Algebra Appl.
422(2007), no. 2–3, 506–516. doi:10.1016/j.laa.2006.11.008

[9] F. A. Fillmore, D. A. Herrero, and W. E. Longstaff, The hyperinvariant subspace lattice of a linear
transformation. Linear Algebra Appl. 17(1977), no. 2, 125–132.
doi:10.1016/0024-3795(77)90032-5

[10] O. Holtz, V. Mehrmann, and H. Schneider, Potter, Wielandt, and Drazin on the matrix equation
AB = ωBA: new answers to old questions. Amer. Math. Monthly 111(2004), no. 8, 655–667.
doi:10.2307/4145039

[11] K. Hoffman and R. Kunze, Linear algebra. Second ed., Prentice-Hall, Englewoods Cliffs, NJ, 1971.
[12] R. A. Horn and C. R. Johnson, Topics in matrix analysis. Cambridge University Press, Cambridge,

1991.
[13] L.-K. Hua, A theorem on matrices over a sfield and its applications. J. Chinese Math. Soc. (N.S.)

1(1951), 110–163.
[14] N. McCoy, On quasi-commutative matrices. Trans. Amer. Math. Soc. 36(1934), no. 2, 327–340.

doi:10.2307/1989841

[15] L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces:
generalization of Uhlhorn’s version of Wigner’s theorem. J. Funct. Anal. 194(2002), no. 2, 248–262.
doi:10.1006/jfan.2002.3970

[16] , Linear maps on matrices preserving commutativity up to a factor. Linear and Multilinear
Algebra 57(2009), no. 1, 13–18. doi:10.1080/03081080701210211
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[23] P. Šemrl, Non-linear commutativity preserving maps. Acta Sci. Math. (Szeged) 71(2005), no. 3–4,
781–819.

[24] , Maps on idempotent matrices over division rings. J. Algebra 298(2006), no. 1, 142–187.
doi:10.1016/j.jalgebra.2005.08.010

[25] , Maps on matrix spaces. Linear Algebra Appl. 413(2006), no. 2–3, 364–393.
doi:10.1016/j.laa.2005.03.011

https://doi.org/10.4153/CJM-2010-041-x Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0024609399006426
http://dx.doi.org/10.1112/S0024609396001828
http://dx.doi.org/10.1098/rspa.2001.0858
http://dx.doi.org/10.1017/S1446788700015809
http://dx.doi.org/10.1016/j.laa.2008.02.007
http://dx.doi.org/10.1016/j.laa.2006.11.008
http://dx.doi.org/10.1016/0024-3795(77)90032-5
http://dx.doi.org/10.2307/4145039
http://dx.doi.org/10.2307/1989841
http://dx.doi.org/10.1006/jfan.2002.3970
http://dx.doi.org/10.1080/03081080701210211
http://dx.doi.org/10.1093/qmath/hah058
http://dx.doi.org/10.1016/S0022-4049(99)00154-1
http://dx.doi.org/10.1006/jfan.1993.1086
http://dx.doi.org/10.2307/2306202
http://dx.doi.org/10.4064/sm184-2-7
http://dx.doi.org/10.1016/j.jalgebra.2005.08.010
http://dx.doi.org/10.1016/j.laa.2005.03.011
https://doi.org/10.4153/CJM-2010-041-x


786 G. Dolinar and B. Kuzma

[26] , Commutativity preserving maps. Linear Algebra Appl. 429(2008), no. 5–6, 1051–1070.
doi:10.1016/j.laa.2007.05.006

[27] W. Watkins, Linear maps that preserve commuting pairs of matrices. Linear Algebra and Appl.
14(1976), no. 1, 29–35. doi:10.1016/0024-3795(76)90060-4

[28] J. H. M. Wedderburn, Lectures on matrices. Dover Publications, New York, 1964.

Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
e-mail: gregor.dolinar@fe.uni-lj.si

University of Primorska, Koper, Slovenia

and

Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
e-mail: bojan.kuzma@pef.upr.si

https://doi.org/10.4153/CJM-2010-041-x Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.laa.2007.05.006
http://dx.doi.org/10.1016/0024-3795(76)90060-4
https://doi.org/10.4153/CJM-2010-041-x

