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Abstract
The purpose of this paper is to expose and investigate natural phase-space formulations of two longstand-
ing problems in the restriction theory of the Fourier transform. These problems, often referred to as the
Stein and Mizohata–Takeuchi conjectures, assert that Fourier extension operators associated with rather general
(codimension 1) submanifolds of Euclidean space may be effectively controlled by the classical X-ray transform
via weighted 𝐿2 inequalities. Our phase-space formulations, which have their origins in recent work of Dendri-
nos, Mustata and Vitturi expose close connections with a conjecture of Flandrin from time-frequency analysis, and
rest on the identification of an explicit ‘geometric’ Wigner transform associated with an arbitrary (smooth strictly
convex) submanifold S of R𝑛. Our main results are certain natural ‘Sobolev variants’ of the Stein and Mizohata–
Takeuchi conjectures and involve estimating the Sobolev norms of such Wigner transforms by geometric forms of
classical bilinear fractional integrals. Our broad geometric framework allows us to explore the role of the curvature
of the submanifold in these problems, and in particular we obtain bounds that are independent of any lower bound
on the curvature; a feature that is uncommon in the wider restriction theory of the Fourier transform. Finally, we
provide a further illustration of the effectiveness of our analysis by establishing a form of Flandrin’s conjecture in
the plane with an 𝜀-loss. While our perspective comes primarily from Euclidean harmonic analysis, the procedure
used for constructing phase-space representations of extension operators is well-known in optics.

Contents

1 Introduction 2
1.1 Background: the Stein and Mizohata–Takeuchi problems . . . . . . . . . . . . . . . . 2
1.2 Phase-space formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The paraboloid: a quantum mechanical viewpoint 9
3 The sphere: an optical viewpoint 14
4 General submanifolds: a geometric viewpoint 18

4.1 Surface-carried Wigner transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Proof of the Sobolev–Stein inequality (Theorem 1.7) . . . . . . . . . . . . . . . . . . 24
4.3 Proof of the Sobolev–Mizohata–Takeuchi inequality (Theorem 1.8) . . . . . . . . . . . 30
4.4 Improved Sobolev–Stein constants in the plane . . . . . . . . . . . . . . . . . . . . . 30

5 Estimating distances: the proof of Proposition 4.4 30

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/fms.2025.10127 Published online by Cambridge University Press

doi:10.1017/fms.2025.10127
https://orcid.org/0000-0003-3284-6441
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/fms.2025.10127


2 J. Bennett et al.

6 Computing Jacobians: the proof of Proposition 4.5 32
6.1 Computing J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Computing Δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Relating J and Δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Surface-carried fractional integrals 39
8 Surface-carried maximal operators 41
9 Tomographic constructions 47
10 Applications to a variant of Flandrin’s conjecture 49
11 Questions 52
References 53

1. Introduction

1.1. Background: the Stein and Mizohata–Takeuchi problems

A central objective of modern harmonic analysis is to reach an effective quantitative understanding of
Fourier transforms of measures supported on submanifolds of Euclidean space, such as the sphere or
paraboloid. Problems of this type are usually formulated in terms of Fourier extension operators: to
a smooth codimension-1 submanifold S of R𝑛, equipped with surface measure d𝜎, we associate the
extension operator

𝑔d𝜎(𝑥) :=
∫
𝑆

𝑔(𝑢)𝑒−2𝜋𝑖𝑥 ·𝑢d𝜎(𝑢); (1.1)

here 𝑔 ∈ 𝐿1 (d𝜎) and 𝑥 ∈ R𝑛. The extension operator (1.1) is often referred to as an adjoint restriction
operator, as its adjoint restricts the n-dimensional Fourier transform of a function to the submanifold S.
The estimation of extension operators in various settings is known as (Fourier) restriction theory.
A key instance of this is the celebrated restriction conjecture, which concerns bounds of the form
‖𝑔d𝜎‖𝑞 � ‖𝑔‖𝑝 . Surprisingly many problems from across mathematics call for such an understanding,
from dispersive PDE to analytic number theory; see [50] for a recent survey. Such connections are often
quite intimate, as hopefully this paper serves to illustrate – in this case with regard to optics, or optical
field propagation.

In this paper we look to estimate extension operators in the setting of 𝐿2 norms with respect to
general weight functions w. This setting has been the subject of some attention since the influential
work of Stein and others in the 1970s in the closely related context of Bochner–Riesz summability. At
its centre is a variant of a question posed by Stein in the 1978 Williamstown conference on harmonic
analysis [47] (see [11] for further historical context). In its global form, for a given S, this asks whether
there is a constant 𝐶 < ∞ for which∫

R𝑛
|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝐶

∫
𝑆
|𝑔(𝑢) |2 sup

𝑣 ∈𝑇𝑢𝑆
𝑋𝑤(𝑁 (𝑢), 𝑣)d𝜎(𝑢) (1.2)

for all nonnegative weight functions w. Here 𝑁 : 𝑆 → S𝑛−1 is the Gauss map, and X denotes the classical
X-ray transform

𝑋𝑤(𝜔, 𝑣) :=
∫ ∞

−∞

𝑤(𝑣 + 𝑡𝜔)d𝑡, (1.3)

where 𝜔 ∈ S𝑛−1 and 𝑣 ∈ 〈𝜔〉⊥ together parametrise the Grassmannian manifold of lines ℓ = ℓ(𝜔, 𝑣) :=
〈𝜔〉 + {𝑣} in R𝑛; here 𝑇𝑢𝑆 = 〈𝑁 (𝑢)〉⊥ denotes the tangent space of S at the point 𝑢 ∈ 𝑆. This is a
natural inequality for a number of reasons, and it is instructive to begin by considering the simple case
where g is the indicator function of a small cap (the intersection of S with a small ball in R𝑛). The key
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observation is that |𝑔d𝜎 |2 is then bounded below on a neighbourhood of a line segment with direction
normal to S, so that the left-hand side of (1.2) computes a variant of the X-ray transform of the weight
w. The inequality (1.2) therefore proposes that |𝑔d𝜎 |2 concentrates on lines, or families of lines, rather
more generally. An affirmative answer to this question is easily given in the case that S is contained
in a hyperplane – a fact that follows quickly from Plancherel’s theorem. More substantial results in
support of (1.2) have been obtained for restricted classes of weights, notably when S is the sphere S𝑛−1

and the weights are radial [22, 5, 4]; see also [15] and the references there. Inequalities of this general
type, where an operator is estimated with respect to a general weight function, are often referred to as
Fefferman–Stein inequalities – see [6] for a recent example. We shall also be interested in the simpler
Mizohata–Takeuchi inequality∫

R𝑛
|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝐶‖𝑔‖2

𝐿2 (d𝜎) sup
(𝑢,𝑣) ∈𝑇 𝑆

𝑋𝑤(𝑁 (𝑢), 𝑣), (1.4)

where the supremum is restricted to 𝑢 ∈ supp (𝑔), as suggested by (1.2), and 𝑇𝑆 denotes the tangent
bundle of S. This emerged independently of (1.2) through work of Mizohata and Takeuchi on the well-
posedness of Schrödinger equations in the 1980s. We refer to [5] and the references there for further
context.

Remark 1.1 (The strength of (1.2)). The original motive for establishing (1.2), or some appropriate
variant of it, is that it would allow the restriction conjecture to follow (and almost immediately) from
the Kakeya maximal function conjecture, the Kakeya maximal function being a close relative of

sup
𝑣 ∈𝑇𝑢𝑆

𝑋𝑤(𝑁 (𝑢), 𝑣),

at least when S is suitably curved. We refer to [14] and the references there for further details and
discussion. In the original setting proposed by Stein, this amounts to the implication of the Bochner–
Riesz conjecture from the Nikodym (or Kakeya) maximal conjecture. There is a number of precedents
for this sort of integro-geometric control of oscillatory integral operators – see, for example, [11, 7].

Remark 1.2 (Failure of the global inequalities (1.2) and (1.4)). Very recently, and since earlier drafts of
this paper, Cairo [18] has succeeded in constructing a counterexample to (1.4) (and thus (1.2)) whenever
S is not contained in a hyperplane. However, her subtle example does not exclude the possibility that
the local variants∫

𝐵 (0,𝑅)
|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 � 𝑅𝛼

∫
𝑆
|𝑔(𝑢) |2 sup

𝑣 ∈𝑇𝑢𝑆
𝑋𝑤(𝑁 (𝑢), 𝑣)d𝜎(𝑢) (1.5)

and ∫
𝐵 (0,𝑅)

|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 � 𝑅𝛼‖𝑔‖2
𝐿2 (d𝜎) sup

(𝑢,𝑣) ∈𝑇 𝑆
𝑋𝑤(𝑁 (𝑢), 𝑣) (1.6)

of (1.2) and (1.4) (resp.) might hold for exponents 𝛼 > 0; here R denotes a large parameter. That (1.5)
(and thus (1.6)) holds for some 𝛼 > 0 is an elementary exercise, and we refer to [21] for recent local
results of this type. In order to be meaningful for general w the inequalities (1.2) and (1.4) may therefore
be qualified with the additional assumption that w is supported in a ball of fixed radius 𝑅 
 1, accepting
some growth in R in the constant factors. We clarify that such considerations are not relevant to the
results presented in this paper.

Remark 1.3 (The role of curvature). Somewhat unusually in the setting of Fourier extension estimates
it appears that the above Stein and Mizohata–Takeuchi-type inequalities should not require that S has
nonvanishing curvature; we have already noted that (1.2) is easily verified when S is a hyperplane. Related
to this fact is the observation that (1.2) and (1.4) are dilation invariant in the sense that their validity for a
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given S and a given (dilation-invariant) class of weights, implies their validity for any isotropic dilate 𝑘𝑆
of S, uniformly in 𝑘 > 0; this follows by a routine scaling argument. This scale-invariance is important
in applications, as may be seen in the established setting of the sphere and radial weights – see [5].

1.2. Phase-space formulations

Recently in the setting of quadratic submanifolds, Dendrinos, Mustata and Vitturi [24] observed that the
Mizohata–Takeuchi inequality (1.4) may be reformulated in terms of the classical Wigner distribution,
providing it with a natural phase-space interpretation. The purpose of this paper is to establish and
explore such phase-space formulations of the Stein and Mizohata–Takeuchi inequalities for quite general
(codimension-1) submanifolds, exposing the role played by the underlying geometry. The starting point
is the surprising observation that a rather general Fourier extension operator (in modulus square) has a
natural and explicit phase-space representation, namely,

|𝑔d𝜎 |2 = 𝑋∗
𝑆𝑊𝑆 (𝑔, 𝑔); (1.7)

see the forthcoming Proposition 4.8. Here 𝑊𝑆 (𝑔1, 𝑔2) : 𝑇𝑆 → R is a certain geometric (or S-carried)
Wigner transform, and 𝑋𝑆 is the pullback of the X-ray transform by the Gauss map; concretely,

𝑋𝑆𝑤(𝑢, 𝑣) := 𝑋𝑤(𝑁 (𝑢), 𝑣)

for (𝑢, 𝑣) ∈ 𝑇𝑆. Such phase-space representations have their origins in quantum mechanics in the case
that S is the paraboloid – a perspective that we develop in Section 2. They are also well-known in optics,
particularly when S is the paraboloid or the sphere, and we develop this perspective in Section 3. As
we shall see in the later sections, identifying a suitable Wigner transform 𝑊𝑆 explicitly in terms of the
geometry of a general (strictly convex) submanifold S requires some careful geometric analysis. This
is one of the main achievements of this paper, and it is hoped that it will also find some interesting
applications beyond harmonic analysis. From the point of view of harmonic analysis, our treatment
of these surface-carried Wigner transforms naturally involves controlling associated surface-carried
singular integral and maximal averaging operators, which we hope will be of some independent interest.

By duality the representation (1.7) immediately gives rise to the phase-space integral formula∫
R𝑛

|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 =
∫
𝑇 𝑆

𝑊𝑆 (𝑔, 𝑔) (𝑢, 𝑣)𝑋𝑆𝑤(𝑢, 𝑣)d𝑣d𝜎(𝑢), (1.8)

leading to phase-space formulations of the Stein and Mizohata–Takeuchi problems. Here the integral on
the tangent bundle 𝑇𝑆 is defined in the usual way, by first integrating with respect to Lebesgue measure
on the tangent space 𝑇𝑢𝑆, and then with respect to surface measure d𝜎(𝑢) on S.

Remark 1.4 (Connections with Flandrin’s conjecture). The phase-space formulation of the Mizohata–
Takeuchi problem has striking similarities with a conjecture of Flandrin [27] and its variants [37] in the
setting of the classical Wigner transform W. A recent form of this conjecture states that∬

𝐾
𝑊 (𝑔, 𝑔) � ‖𝑔‖2

2 (1.9)

uniformly over all convex subsets K of phase-space; this was originally formulated by Flandrin with
constant 1, although a counterexample to this stronger statement was constructed recently in [25].
The methods of this paper are also effective here, and we illustrate this in Section 10, establishing a
form of this conjecture in the plane involving an 𝜀-loss in the measure of K and by establishing that
the Flandrin-type conjecture (1.9) implies the parabolic Mizohata–Takeuchi inequality under a simple
convexity assumption on the weight function w.
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Remark 1.5 (Connections to maximally modulated singular integrals). The Flandrin-type conjecture
(1.9) in the plane (and thus (1.2) and (1.4)) is also intimately connected to boundedness questions for
the maximally modulated bilinear Hilbert transform

𝐻∗( 𝑓1, 𝑓2) (𝑥) := sup
𝜆∈R

����∫
R

𝑓1

(
𝑥 +

𝑦

2

)
𝑓2

(
𝑥 −

𝑦

2

)
𝑒𝑖𝜆𝑦

𝑑𝑦

𝑦

����.
We refer to Section 10 for details.

Evidently the phase-space formula (1.8) goes some way to motivate the original inequalities (1.2)
and (1.4). The first remark to make is that the most naive use of (1.8) is easily seen to fail for any S
through the observation that the 𝐿1 estimate∫

𝑇𝑢𝑆
|𝑊𝑆 (𝑔, 𝑔) (𝑢, 𝑣) |d𝑣 � |𝑔(𝑢) |2, (1.10)

fails, despite 𝑊𝑆 (𝑔, 𝑔) satisfying the marginal property∫
𝑇𝑢𝑆

𝑊𝑆 (𝑔, 𝑔) (𝑢, 𝑣)d𝑣 = |𝑔(𝑢) |2 (1.11)

(possibly under some additional minor regularity assumption on S); see Section 8 for details, along with
the sense in which such pointwise identities hold. Of course if 𝑋𝑆𝑤(𝑢, 𝑣) is independent of v, then the
failure of (1.10) is of no consequence, and (1.2) follows quickly from an application of Fubini’s theorem
and (1.11).

Our explicit phase-space representation (1.7) requires rather little of the submanifold S. The main
assumption is that S is smooth and strictly convex in the sense that its shape operator is strictly positive
definite at all points. On a technical level we also assume that its set of unit normals 𝑁 (𝑆) is geodesically
convex (i.e., the intersection of 𝑁 (𝑆) with any great circle is connected), along with a mild additional
differentiability hypothesis (see Remark 4.2), which we expect to be automatic from the smoothness of S.

For the purposes of our phase-space approach to the Stein (1.2) and Mizohata–Takeuchi inequalities
(1.4), it will be convenient to restrict further to compact graphs. The assumption that S is a graph is
a very mild assumption as the Stein and Mizohata–Takeuchi inequalities (and their variants) behave
well under partitioning a manifold S into boundedly many pieces. This allows us to extend our results a
posteriori to closed manifolds such as the sphere, for example. With this in mind we make the additional
(technical) assumption that

𝑁 (𝑢) · 𝑁 (𝑢′) ≥
1
2

for all 𝑢, 𝑢′ ∈ 𝑆, (1.12)

meaning that the normals to S lie in a cone of some fixed aperture.
As indicated in Remark 1.3, it is not anticipated that the discussed Stein and Mizohata–Takeuchi

inequalities have a quantitative dependence on any lower bound on the curvature of S, and our results in
this paper reflect this. Identifying this feature is one of the reasons why we have insisted on making our
analysis as geometric (or parametrisation-free) as possible. Curiously, while our bounds do not depend
on the curvature of S in absolute terms, as we shall see, certain dilation-invariant curvature functionals
naturally emerge. For example, for curves in the plane our Stein-type inequality may be controlled by
the quantity

Λ(𝑆) := sup
𝑢,𝑢′ ∈𝑆

(
|𝑢′ − 𝑢′′ |𝐾 (𝑢)

|𝑁 (𝑢′) ∧ 𝑁 (𝑢′′) |

)1/2
, (1.13)

where 𝐾 (𝑢) denotes the Gaussian curvature of S at the point u, and 𝑢′′ is a certain point on S constructed
geometrically from points 𝑢, 𝑢′ ∈ 𝑆 (we refer to Section 4 for details). However, in this paper we
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shall formulate our main results in terms of a relatively simple curvature functional related to the
quasi-conformality of the shape operator of S. This has the advantage of being effective in both the Stein
and Mizohata–Takeuchi settings, and in all dimensions. To describe this it is helpful to again begin with
the case 𝑛 = 2, where we shall say that a strictly convex planar curve S has bounded curvature quotient
if there exists a finite constant c such that

𝐾 (𝑢) ≤ 𝑐𝐾 (𝑢′) (1.14)

for all 𝑢, 𝑢′ ∈ 𝑆. Let us denote by 𝑄(𝑆) the least such c. We extend this to higher dimensions by defining
𝑄(𝑆) to be the maximum ratio of the principal curvatures of S, namely the smallest constant c such that

𝜆 𝑗 (𝑢) ≤ 𝑐𝜆𝑘 (𝑢
′) (1.15)

for all 𝑢, 𝑢′ ∈ 𝑆 and 1 ≤ 𝑗 , 𝑘 ≤ 𝑛 − 1, where 𝜆 𝑗 (𝑢) denotes the jth principal curvature of S at the point
u. Evidently 𝑄(𝑘𝑆) = 𝑄(𝑆) for all isotropic dilates 𝑘𝑆 of S – a natural property in this setting as we
have indicated in Remark 1.3.

Remark 1.6 (Relation to shape quasi-conformality). The finiteness of 𝑄(𝑆) may be interpreted as a
certain rather strong quasi-conformality condition on the shape operator d𝑁 of S. Indeed it quickly
implies that the shape operator is 𝑄(𝑆)-quasi-conformal, that is

‖d𝑁𝑢 ‖
𝑛−1 ≤ 𝑄(𝑆)𝑛−2𝐾 (𝑢) for all 𝑢 ∈ 𝑆;

see, for example, [2] for a treatment of quasi-conformal maps. This simply follows from the fact that the
principal curvatures of S are the eigenvalues of the shape operator. Arguing very similarly we see that
the finiteness of 𝑄(𝑆) also implies the ‘long-range’ quasi-conformality condition

‖d𝑁𝑢 ‖
𝑛−1 ≤ 𝑄(𝑆)𝑛−1𝐾 (𝑢′) for all 𝑢, 𝑢′ ∈ 𝑆, (1.16)

which has the advantage of having content also when 𝑛 = 2, where it reduces to (1.14). This latter
condition is actually equivalent to S having bounded curvature quotient even in higher dimensions,
since (1.16) =⇒ (1.15) with 𝑐 = 𝑄(𝑆)𝑛−1.

Our main theorems are the following Sobolev variants of the Stein and Mizohata–Takeuchi inequal-
ities (stated somewhat informally for the sake of exposition – see the forthcoming Theorems 4.11 and
4.13 for clarification):

Theorem 1.7 (Sobolev–Stein inequality). Suppose that S is a smooth strictly convex surface with
curvature quotient 𝑄(𝑆), and 𝑠 < 𝑛−1

2 . Then there is a dimensional constant c such that∫
R𝑛

|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝑐𝑄(𝑆)
5𝑛−8

4

∫
𝑆

𝐼𝑆,2𝑠 (|𝑔 |
2, |𝑔 |2) (𝑢)1/2‖𝑋𝑆𝑤(𝑢, ·)‖ �𝐻 𝑠 (𝑇𝑢𝑆)d𝜎(𝑢), (1.17)

where 𝐼𝑆,𝑠 is a certain bilinear fractional integral on S of order s, and �𝐻𝑠 (𝑇𝑢𝑆) denotes the usual
homogeneous 𝐿2 Sobolev space on the tangent space 𝑇𝑢𝑆.

Theorem 1.8 (Sobolev–Mizohata–Takeuchi inequality). Suppose that S is a smooth strictly convex
surface with curvature quotient 𝑄(𝑆), and 𝑠 < 𝑛−1

2 . Then there is a constant c, depending on at most n,
s, and the diameter of S, such that∫

R𝑛
|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝑐𝑄(𝑆)

9𝑛−12
4 ‖𝑔‖2

𝐿2 (𝑆)
sup
𝑢∈𝑆

‖𝑋𝑆𝑤(𝑢, ·)‖ �𝐻 𝑠 (𝑇𝑢𝑆) . (1.18)

Remark 1.9. While the constant in (1.17) does not depend on the Sobolev index s, the restriction
𝑠 < 𝑛−1

2 is imposed in order to ensure that the kernel of the fractional integral operator 𝐼𝑆,2𝑠 is a locally
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integrable function; see the statement of Theorem 4.11 for clarification. We refer to Remark 1.12 for the
optimality of the threshold 𝑛−1

2 .

Remark 1.10 (Improved constants). It is not expected that the particular powers of 𝑄(𝑆) featuring in
Theorems 1.7 and 1.8 are best-possible, at least in dimensions 𝑛 > 2. Moreover, and as we have already
indicated, the curvature quotient 𝑄(𝑆) does not capture all of the relevant geometry of the surface S. For
example, in the relatively simple two-dimensional setting our arguments reveal that the power of 𝑄(𝑆)
in Theorem 1.7 may be replaced by the smaller quantity Λ(𝑆) in (1.13). It is straightforward to see that
Λ(𝑆) may be finite when S has a point of vanishing curvature, such as in the case of the quartic curve
𝑆 = {(𝑡, 𝑡4) : |𝑡 | ≤ 1}. We refer to Section 4.4 for more on this.

Remark 1.11 (Permissibility of signed weights). Our proofs of Theorems 1.7 and 1.8 reveal that they
continue to hold for signed weights w. This marks an essential difference between these theorems and
the original Stein and Mizohata–Takeuchi problems.

Remark 1.12 (The strength of Theorem 1.7). As we clarify in Section 4, Theorems 1.7 and 1.8 (when
specialised to non-negative weights w) are easily seen to be formally weaker than the global Stein and
Mizohata–Takeuchi inequalities (1.2) and (1.4) respectively (as we have commented in Remark 1.2, the
latter were recently shown to fail as stated in [18]). This follows via a standard Sobolev embedding and,
as may be expected, the range 𝑠 < 𝑛−1

2 is best-possible in this respect. Despite its weakness relative to the
Stein inequality, the Sobolev–Stein inequality (1.17) continues to be effective in transferring estimates
for the X-ray transform to Fourier extension estimates, particularly in two dimensions. To see this, let
𝜃 ∈ R and write

‖(−Δ)
𝜃
2 |𝐸𝑔 |2‖2

2 =
∫
R𝑛

|𝐸𝑔 |2𝑤,

where 𝑤 = (−Δ) 𝜃 |𝐸𝑔 |2. By Theorem 1.7 (noting Remark 1.11) and the Cauchy–Schwarz inequality,

‖(−Δ)
𝜃
2 |𝐸𝑔 |2‖2

2 � ‖𝐼𝑆,2𝑠 (|𝑔 |
2, |𝑔 |2)‖

1
2
𝐿1 (𝑆)

‖ (−Δ)
𝑠
2 𝑋𝑆 ((−Δ)

𝜃 |𝐸𝑔 |2)‖𝐿2 (𝑇 𝑆)

whenever 𝑠 < 𝑛−1
2 . By our forthcoming bounds on 𝐼𝑆,𝑠 (see Section 7, and in particular (7.1)),

‖𝐼𝑆,2𝑠 (|𝑔 |
2, |𝑔 |2)‖

1
2
𝐿1 (𝑆)

� ‖𝑔‖2
4 . (1.19)

Next, since S is strictly convex its Gauss map is injective, and hence by a change of variables followed
by the isometric property of the X-ray transform,

‖𝐾 (𝑢)
1
2 (−Δ 𝑣 )

1
4 𝑋𝑆𝑤‖𝐿2 (𝑇 𝑆) ≤ ‖(−Δ 𝑣 )

1
4 𝑋𝑤‖2 = 𝑐𝑛‖𝑤‖𝐿2 (R𝑛) .

Therefore, provided S has everywhere nonvanishing Gaussian curvature it follows that

‖(−Δ)
𝑠
2 𝑋𝑆 ((−Δ)

𝜃 |𝐸𝑔 |2)‖𝐿2 (𝑇 𝑆) = ‖(−Δ)
1
4 𝑋𝑆 ((−Δ)

𝜃+ 𝑠
2 −

1
4 |𝐸𝑔 |2)‖𝐿2 (𝑇 𝑆)

� ‖𝐾 (𝑢)1/2(−Δ)1/4𝑋𝑆 ((−Δ)
𝜃+ 𝑠

2 −
1
4 |𝐸𝑔 |2)‖𝐿2 (𝑇 𝑆)

� ‖(−Δ) 𝜃+
𝑠
2 −

1
4 |𝐸𝑔 |2‖2.

Hence

‖(−Δ)
𝜃
2 |𝐸𝑔 |2‖2

2 � ‖𝑔‖2
4 ‖(−Δ)

𝜃+ 𝑠
2 −

1
4 |𝐸𝑔 |2‖2
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whenever 𝑠 < 𝑛−1
2 . Setting 𝜃

2 = 𝜃 + 𝑠2 − 1
4 , or equivalently 𝜃 = 1

2 − 𝑠, it follows that

‖(−Δ)
𝜃
2 |𝐸𝑔 |2‖2 � ‖𝑔‖2

4

whenever 𝜃 > 1 − 𝑛
2 . This Sobolev-extension estimate is reminiscent of the well-known Strichartz

inequalities of Ozawa and Tsutsumi [44]; see [10] for some further contextual discussion. In partic-
ular, when 𝑛 = 2 this implies the classical restriction theorem for smooth compact planar curves of
nonvanishing curvature, since the missing case 𝜃 = 0 is the missing (endpoint) 𝐿4 estimate in that
setting. We note that curvature only plays a role in the X-ray estimate, which is structurally consistent
with Stein’s inequality (1.2). This implication via (1.17) should be compared with the passage from the
Kakeya maximal conjecture to the restriction conjecture implied by Stein’s inequality (1.2) outlined in
Remark 1.1. Some related arguments in the setting of the paraboloid may be found in [46, 52, 8].

Remark 1.13 (The strength of Theorem 1.8). The proximity of (1.18) to (1.4) varies depending on the
nature of the weight w, and evidently this relates to the tightness of the Sobolev embedding referred to
in Remark 1.12. For example, in the case of the sphere (or suitable portions of it – see Theorem 3.4) and
for weights of the form 𝑤(𝑥) = 𝜑(𝑥/𝑅), where 𝜑 is a smooth bump function and 𝑅 
 1, Theorem 1.8
quickly leads to the inequality

1
𝑅

∫
𝐵 (0,𝑅)

|𝑔d𝜎(𝑥) |2d𝑥 ≤ 𝐶𝜀𝑅𝜀 ‖𝑔‖2
2

for all 𝜀 > 0 and 𝑅 
 1. Up to the 𝜀-loss this coincides with (1.4) and is the well-known Agmon–
Hörmander inequality [1]. For weights w that lack regularity one should expect the Sobolev embedding
referred to in Remark 1.12 to be weak, and thus (1.18) to be considerably weaker than (1.4). Examples
of such weights seem likely to include those that are known to be ‘critical’ for (1.4) in the sense that they
have large mass globally, but small mass on any line, such as the weights of Cairo [18], or the random
weights of Carbery [19] and Mulherkar [40]; see also [32].

Remark 1.14. While the curvature quotient 𝑄(𝑆) is invariant under isotropic dilations of S, our Sobolev–
Mizohata–Takeuchi theorem (Theorem 1.8) is not. This stems from the fact that necessarily s is strictly
less than 𝑛−1

2 for the implicit constant to be finite and manifests itself in the dependence on the diameter
of S in the statement of Theorem 1.8. That said, it does provide a bound that is independent of any lower
bound on the curvature of S.

Remark 1.15 (Relation to the wavepacket approach). The representation (1.7) may be viewed as a certain
‘scale-free’ (and ‘quadratic’) version of the wavepacket decomposition that has proved so effective in
Fourier restriction theory. There an extension operator is expressed as a superposition of wavepackets
adapted to tubes inR𝑛, with the tubes corresponding to a discrete set of points in the tangent bundle of S.
The distinction arises from a use of a conventional windowed Fourier transform (a linear operator) in
the wavepacket decomposition, rather than a Wigner distribution – the latter being a form of windowed
Fourier transform where the window is the input function g itself (a quadratic operator). We refer to [21]
and the references there for progress on the Stein and Mizohata–Takeuchi problems based on wavepacket
analysis.

Structure of the paper. In Section 2 we consider the case when S is the paraboloid, motivating our
perspective and results in classical quantum mechanical terms that date back to Wigner’s original work.
In Section 3 we prove Theorems 1.7 and 1.8 when S is the sphere, interpreting our perspective from the
point of view of optical field theory. In Section 4 we turn to the much more involved geometric analysis
in the setting of general submanifolds, proving Theorems 1.7 and 1.8, although deferring the necessary
analysis of Jacobians, distances and bilinear fractional integrals to Sections 6, 5 and 7 respectively. In
Section 8 we establish the characteristic marginal properties of the geometric Wigner transforms via
an analysis of the appropriate geometric maximal operators. In Section 9 we observe that the phase-
space perspective presented here coincides with a certain tomographic perspective introduced in [14]
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when 𝑛 = 2, highlighting a tomographic method for constructing geometric Wigner distributions. In
Section 10 we illustrate the effectiveness of our basic methods by establishing a form of Flandrin’s
conjecture in the plane with an 𝜀 loss. Finally, in Section 11 we pose some questions.

Notation. Throughout this paper, for nonnegative quantities 𝐴, 𝐵 we write 𝐴 � 𝐵 if there exists a
constant c that is independent of S such that 𝐴 ≤ 𝑐𝐵. The independence of the implicit constant c of
various other parameters will be clear from the context. In particular, such constants will never depend
on the input function g, nor the weight function w.

2. The paraboloid: a quantum mechanical viewpoint

In the particular case when S is the paraboloid, the phase-space representation (1.7) has a well-known
quantum mechanical derivation going back to the original work of Wigner [53]. As may be expected,
this involves the classical Wigner transform, and as we shall see in this section, leads to some addi-
tional insights and simplifications in our arguments. Moreover, parametrised formulations of the Stein
and Mizohata–Takeuchi inequalities (1.2) and (1.4) will emerge rather naturally from these classical
considerations, permitting them some physical (or probabilistic) interpretations.

The Wigner transform is defined (see, e.g., [28]) for 𝑔1, 𝑔2 ∈ 𝐿2 (R𝑑) by

𝑊 (𝑔1, 𝑔2) (𝑥, 𝑣) =
∫
R𝑑

𝑔1

(
𝑥 +

𝑦

2

)
𝑔2

(
𝑥 −

𝑦

2

)
𝑒−2𝜋𝑖𝑣 ·𝑦d𝑦. (2.1)

For a solution 𝑢 : R𝑑 × R→ C of the Schrödinger equation

2𝜋𝑖
𝜕𝑢

𝜕𝑡
= Δ 𝑥𝑢

with initial data 𝑢0 ∈ 𝐿2 (R𝑑), it is a classical observation dating back to Wigner [53] that

𝑓 (𝑥, 𝑣, 𝑡) := 𝑊 (𝑢(·, 𝑡), 𝑢(·, 𝑡)) (𝑥, 𝑣) (2.2)

satisfies the kinetic transport equation

𝜕 𝑓

𝜕𝑡
= 2𝑣 · ∇𝑥 𝑓

from classical mechanics. Consequently

𝑓 (𝑥, 𝑣, 𝑡) = 𝑓0(𝑥 + 2𝑡𝑣, 𝑣),

where 𝑓0 = 𝑊 (𝑢0, 𝑢0) : R𝑑 × R𝑑 → R is the Wigner distribution of the initial data 𝑢0. We note that the
function f may be reconciled with the corresponding f in the forthcoming Sections 3 and 4 using the
Fourier invariance property (see 1.94 of [28])

𝑊 (𝑔1, 𝑔2) (𝑥, 𝑣) = 𝑊 (𝑔̂1, 𝑔̂2) (−𝑣, 𝑥). (2.3)

By the classical marginal property ∫
R𝑑

𝑊 (𝑔, 𝑔) (𝑥, 𝑣)d𝑣 = |𝑔(𝑥) |2 (2.4)

of the Wigner distribution we obtain the phase-space representation

|𝑢(𝑥, 𝑡) |2 =
∫
R𝑑

𝑓 (𝑥, 𝑣, 𝑡)d𝑣 =
∫
R𝑑

𝑓0(𝑥 + 2𝑡𝑣, 𝑣)d𝑣 =: 𝜌( 𝑓0) (𝑥, 𝑡). (2.5)

https://doi.org/10.1017/fms.2025.10127 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10127


10 J. Bennett et al.

The operator 𝜌, which is referred to as a velocity averaging operator in kinetic theory, is easily seen to
be a certain (parametrised) adjoint space-time X-ray transform, indeed

𝜌∗(𝑔) (𝑥, 𝑣) =
∫
R

𝑔(𝑥 − 2𝑡𝑣, 𝑡)d𝑡,

which is of course an integral of the space-time function g along the line through the point (𝑥, 0) with
direction (−2𝑣, 1). We caution that the parameter v, being a velocity, describes the direction of this line.
This differs from elsewhere in this paper where v is used as a translation (or position) parameter.

As we have indicated in the introduction, the above phase-space representation is particularly natural
if one is interested in weighted 𝐿2 norms of u, since by duality∫

R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 =
∫
R𝑑×R𝑑

𝑊 (𝑢0, 𝑢0) (𝑥, 𝑣)𝜌∗𝑤(𝑥, 𝑣)d𝑥d𝑣. (2.6)

We refer to [24] where this identity was recently derived directly. If the initial data 𝑢0 is a Gaussian
then 𝑊 (𝑢0, 𝑢0) is also a (real) Gaussian, and being nonnegative it follows that∫

R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 ≤

∫
R𝑑

(∫
R𝑑

𝑊 (𝑢0, 𝑢0) (𝑥, 𝑣)d𝑥

)
sup
𝑥

𝜌∗𝑤(𝑥, 𝑣)d𝑣

=
∫
R𝑑

|𝑢̂0 (𝑣) |
2 sup
𝑥

𝜌∗𝑤(𝑥, 𝑣)d𝑣,

which in turn implies that∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 ≤ sup
𝑥∈R𝑑

𝑣 ∈supp (𝑢0)

𝜌∗𝑤(𝑥, 𝑣) ‖𝑢0‖
2
2 .

Here we have used the further marginal property∫
R𝑑

𝑊 (𝑔, 𝑔) (𝑥, 𝑣)d𝑥 = |𝑔̂(𝑣) |2 (2.7)

of the Wigner distribution, followed by Plancherel’s theorem. It is therefore reasonably natural to ask
whether ∫

R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 �
∫
R𝑑

|𝑢̂0 (𝑣) |
2 sup
𝑥

𝜌∗𝑤(𝑥, 𝑣)d𝑣, (2.8)

and thus ∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 � sup
𝑥∈R𝑑

𝑣 ∈supp (𝑢0)

𝜌∗𝑤(𝑥, 𝑣) ‖𝑢0‖
2
2 (2.9)

might hold for general 𝑢0. As we clarify shortly in Remark 2.3, the inequalities (2.8) and (2.9) are
parabolic forms of the Stein (1.2) and Mizohata–Takeuchi (1.4) inequalities and as such also fail (see
Remark 1.2).

Remark 2.1. As indicated in Remark 1.2, the recent counterexamples in [18] leave open the possibility
that for 𝑢̂0 supported in the unit ball (say),∫

| (𝑥,𝑡) |≤𝑅
|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 ≤ 𝐶𝜀𝑅𝜀

∫
R𝑑

|𝑢̂0 (𝑣) |
2 sup
𝑥

𝜌∗𝑤(𝑥, 𝑣)d𝑣 (2.10)
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and ∫
| (𝑥,𝑡) |≤𝑅

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 ≤ 𝐶𝜀𝑅𝜀 sup
𝑥∈R𝑑

𝑣 ∈supp (𝑢0)

𝜌∗𝑤(𝑥, 𝑣) ‖𝑢0‖
2
2 (2.11)

might hold for each 𝜀 > 0 and all 𝑅 
 1; in other words, (2.8) and (2.9) under the assumption that
w is supported in the space-time ball 𝐵(0, 𝑅), accepting a factor of 𝑅𝜀 in the implicit constant on the
right-hand sides for each 𝜀 > 0. The requirement that 𝑢̂0 is supported in some fixed compact set (the
unit ball here) prevents scale-invariance considerations reducing (2.10) and (2.11) to (2.8) and (2.9)
respectively. We remark that these inequalities are naturally referred to as Strichartz estimates, being
bounds on space-time norms.
Remark 2.2 (A quasi-probabilistic interpretation). In the phase-space formulation of quantum
mechanics the Wigner distribution 𝑊 (𝑢0, 𝑢0) is interpreted as a (quasi-) probability distribution on
position-momentum space for a quantum particle, and so the inequalities (2.8) and (2.9) for any given
weight w are the assertions that

E𝑥,𝑣 (𝜌
∗𝑤) � E𝑥,𝑣 (‖𝜌∗𝑤‖𝐿∞𝑥 ) (2.12)

and

E𝑥,𝑣 (𝜌
∗𝑤) � ‖𝜌∗𝑤‖∞ (2.13)

respectively; we recall that these inequalities are known to fail for general w unless we make some
additional localisations (see Remark 2.1). Here the expectation is taken with respect to the quasi-
probability density 𝑊 (𝑢0, 𝑢0), where of course ‖𝑢0‖2 = 1. Note that E𝑥,𝑣 (‖𝜌∗𝑤‖𝐿∞𝑥 ) = E𝑣 (‖𝜌∗𝑤‖𝐿∞𝑥 )

by the marginal property (2.7), where E𝑣 is taken with respect to the probability density |𝑢̂0 (𝑣) |
2. The

forthcoming Theorems 2.4–2.8 may be interpreted similarly. Evidently the subtleties in (2.12), (2.13)
and all of these inequalities arise from the fact that the Wigner distribution typically takes both positive
and negative values.
Remark 2.3. Although (2.8) is false in general (see Remark 2.1), for any given weight w it may be seen
as an instance of (1.2) where 𝑑 = 𝑛 − 1 and

𝑆 = P𝑑 := {𝑢 = (𝑢′, 𝑢𝑑+1) ∈ R
𝑑 × R : 𝑢𝑑+1 = |𝑢′ |2} (2.14)

is the paraboloid. This is a consequence of a certain change-of-measure invariance property enjoyed
by the general inequality (1.2): specifically, if d𝜎̃(𝑢) = 𝑎(𝑢)d𝜎(𝑢) for some density a on S, then (1.5)
quickly implies that∫

R𝑛
|𝑔d𝜎̃(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝐶

∫
𝑆
|𝑔(𝑢) |2 sup

𝑣 ∈𝑇𝑢𝑆
𝑎(𝑢)𝑋𝑤(𝑁 (𝑢), 𝑣)d𝜎̃(𝑢). (2.15)

Next we define the (affine surface) measure d𝜎̃ on P𝑑 by∫
𝑆
Φd𝜎̃ =

∫
R𝑑

Φ(𝑢′, |𝑢′ |2)d𝑢′, (2.16)

so that 𝑎(𝑢) = (1 + 4|𝑢 |2)−1/2. With these choices, a scalar change of variables reveals that

sup
𝑣 ∈𝑇𝑢𝑆

𝑎(𝑢)𝑋𝑤(𝑁 (𝑢), 𝑣) = sup
𝑥

𝜌∗𝑤(𝑥, 𝑢′).

Finally, defining 𝑔 : 𝑆 → C by 𝑔(·, | · |2) = 𝑢̂0, we have that 𝑢(𝑥, 𝑡) = 𝑔d𝜎̃(𝑥, 𝑡), from which (2.8) follows.
The change-of-measure invariance property (2.15) enjoyed by (1.2) is not inherited by the corresponding
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Mizohata–Takeuchi inequality (1.4), meaning that there is in principle a different Mizohata–Takeuchi
inequality for each density a – namely∫

R𝑛
|𝑔d𝜎̃(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝐶 sup

(𝑢,𝑣) ∈𝑇 𝑆
𝑎(𝑢)𝑋𝑤(𝑁 (𝑢), 𝑣)‖𝑔‖2

𝐿2 (d𝜎̃) , (2.17)

where again, the supremum is restricted to 𝑢 ∈ supp (𝑔). It is straightforward to verify that (2.9)
coincides with (2.17) with the above choice of density a on the paraboloid. Similar change-of-measure
arguments relate the paraboloid-carried Wigner distribution referred to in (1.7) to the classical Wigner
distribution (2.1), reconciling (2.5) with (1.7). We clarify this in Remark 4.7 in Section 4.

Perhaps the most obvious difficulty in going beyond Gaussian initial data is that 𝑊 (𝑢0, 𝑢0) is
everywhere nonnegative if and only if 𝑢0 is a Gaussian (this is known as Hudson’s theorem, see [28]
for a treatment of this and other fundamental properties of the Wigner transform), and the inequality
‖𝑊 (𝑢0, 𝑢0)‖1 � ‖𝑢0‖

2
2 fails for general 𝑢0 (see [37]). Of course the 𝐿 𝑝 estimates that do hold for the

Wigner distribution (see [38]) yield variants of (2.9) via Hölder’s inequality, such as∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 � ‖𝜌∗𝑤‖𝐿2 (R𝑑×[−1,1]𝑑) ‖𝑢0‖
2
2 , (2.18)

as was observed in [24] whenever 𝑢̂0 is supported in the cube [−1, 1]𝑑 . Here we observe that further
variants arise from certain Sobolev estimates on the Wigner transform. For example, we have the
following:

Theorem 2.4. For 𝑠 > 𝑑/2,∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 ≤

∫
R𝑑

𝐼̃2𝑠 (|𝑢̂0 |
2, |𝑢̂0 |

2) (𝑣)1/2‖𝜌∗𝑤(·, 𝑣)‖𝐻 𝑠
𝑥
d𝑣, (2.19)

where

𝐼̃𝑠 (𝑔1, 𝑔2) (𝑣) :=
∫
R𝑑

𝑔1

(
𝑣 +

𝜉
2

)
𝑔2

(
𝑣 −

𝜉
2

)
(1 + |𝜉 |2)𝑠/2 d𝜉

and 𝐻𝑠𝑥 denotes the usual inhomogeneous 𝐿2 Sobolev space in the variable x.

Theorem 2.5. For 𝑠 > 𝑑/2,∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 � sup
𝑣 ∈ 1

2 (supp (𝑢0)+supp (𝑢0))

‖𝜌∗𝑤(·, 𝑣)‖𝐻 𝑠
𝑥
‖𝑢0‖

2
2 , (2.20)

where the implicit constant depends on at most d and s.

Remark 2.6. As our arguments quickly reveal, Theorems 2.4 and 2.5 require no positivity hypothesis
on the weight w. This point aside, Theorems 2.4 and 2.5 may be viewed as substitutes for (2.8) and (2.9),
which are false for general weights; see Remark 2.1. This is a consequence of the elementary Sobolev
embedding 𝐻𝑠 (R𝑑) ⊂ 𝐿∞(R𝑑), which holds whenever 𝑠 > 𝑑/2. It is natural to ask whether the stronger∫

R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 � sup
𝑣 ∈supp (𝑢0)

‖𝜌∗𝑤(·, 𝑣)‖𝐻 𝑠
𝑥
‖𝑢0‖

2
2 (2.21)

holds, as suggested by (2.9) for arbitrary positive weights.
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Proof of Theorem 2.4. By (2.6) and an application of the duality of 𝐻𝑠 and 𝐻−𝑠 we have∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 ≤

∫
R𝑑

‖𝑊 (𝑢0, 𝑢0) (·, 𝑣)‖𝐻−𝑠
𝑥
‖𝜌∗𝑤(·, 𝑣)‖𝐻 𝑠

𝑥
d𝑣,

and so it remains to show that

‖𝑊 (𝑢0, 𝑢0) (·, 𝑣)‖2
𝐻−𝑠

𝑥
= 𝐼̃2𝑠 (|𝑢̂0 |

2, |𝑢̂0 |
2) (𝑣). (2.22)

This follows from the classical Fourier invariance property (2.3), which implies

F−1
𝑥 𝑊 (𝑔1, 𝑔2) (𝜉, 𝑣) = 𝑔̂1

(
−𝑣 +

𝜉

2

)
𝑔̂2

(
−𝑣 −

𝜉

2

)
, (2.23)

where F𝑥 denotes the Fourier transform in x. The identity (2.22) now follows by Plancherel’s theorem
and the definition of the inhomogeneous Sobolev norm. �

Proof of Theorem 2.5. Observe first that 𝐼̃2𝑠 (|𝑢̂0 |
2, |𝑢̂0 |

2) (𝑣) = 0 whenever

𝑣 ∉
1
2
(supp (𝑢̂0) + supp (𝑢̂0)).

Hence, by Theorem 2.4, it suffices to show that

‖ 𝐼̃𝑠 (𝑔1, 𝑔2)‖𝐿1/2 (R𝑑) � ‖𝑔1‖1‖𝑔2‖1 (2.24)

whenever 𝑠 > 𝑑. The operator 𝐼̃𝑠 is a variant (with singularity only at infinity) of the bilinear fractional
integral operator

𝐼𝑠 (𝑔1, 𝑔2) (𝑣) :=
∫
R𝑑

𝑔1

(
𝑣 +

𝜉
2

)
𝑔2

(
𝑣 −

𝜉
2

)
|𝜉 |𝑠

d𝜉 (2.25)

treated by Kenig and Stein in [33] and Grafakos and Kalton in [31] (see also [30] for estimates above
𝐿1), and the bound (2.24) follows a brief inspection of their arguments. For similar arguments, see also
Section 7. �

Theorems 2.4 and 2.5 cease to be natural if the initial datum 𝑢0 has compact Fourier support, as they
involve inhomogeneous Sobolev spaces, which respond to high frequencies of 𝑢0 only. The appropriate
substitutes are the following, which align with our main Theorems 1.7 and 1.8:

Theorem 2.7 (Parabolic Sobolev–Stein). For 𝑠 < 𝑑/2,∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 ≤

∫
R𝑑

𝐼2𝑠 (|𝑢̂0 |
2, |𝑢̂0 |

2) (𝑣)1/2‖𝜌∗𝑤(·, 𝑣)‖ �𝐻 𝑠
𝑥
d𝑣, (2.26)

where 𝐼𝑠 (𝑔1, 𝑔2) is given by (2.25) and �𝐻𝑠𝑥 denotes the usual homogeneous 𝐿2 Sobolev space in the
variable x.

Theorem 2.8 (Parabolic Sobolev–Mizohata–Takeuchi). For 𝑠 < 𝑑/2,∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 � sup
𝑣 ∈ 1

2 (supp (𝑢0)+supp (𝑢0))

‖𝜌∗𝑤(·, 𝑣)‖ �𝐻 𝑠
𝑥
‖𝑢0‖

2
2 (2.27)

whenever supp (𝑢̂0) ⊆ 𝐵(0; 1). The implicit constant depends on at most d and s.
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Remark 2.9. Theorems 2.7 and 2.8 also permit signed weights. Restricting to positive weights,
Theorems 2.7 and 2.8 are also easily seen to be respectively weaker than (2.8) and (2.9) via a Sobolev
embedding. Specifically, by the support hypothesis on 𝑢̂0 we may find a spatial bump function Φ such
that ∫

R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 ≤

∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2Φ ∗ 𝑤(𝑥, 𝑡)d𝑥d𝑡,

and so it suffices to observe that for any 𝑣 ∈ R𝑑 ,

‖𝜌∗(Φ ∗ 𝑤) (·, 𝑣)‖∞ � ‖𝜌∗𝑤(·, 𝑣)‖ �𝐻 𝑠
𝑥

whenever 𝑠 < 𝑑/2. This follows by Plancherel’s identity and the Cauchy–Schwarz inequality.

The proofs of Theorems 2.7 and 2.8 are very similar to those of Theorems 2.4 and 2.5 above, the
essential difference being the use of homogeneous rather than inhomogeneous Sobolev norms, and
matters are reduced to an 𝐿1 × 𝐿1 → 𝐿1/2 bound on the bilinear operator

𝑇 (𝑔1, 𝑔2) (𝑣) :=
∫
𝐵 (0;1)

𝑔1

(
𝑣 +

𝜉
2

)
𝑔2

(
𝑣 −

𝜉
2

)
|𝜉 |𝑠

d𝜉.

This is a local form of the bilinear fractional integral operator 𝐼𝑠 defined in (2.25), and again the required
bound follows a brief inspection of the arguments in [33].

3. The sphere: an optical viewpoint

The extension operator for the sphere

𝑔d𝜎(𝑥) :=
∫
S𝑛−1

𝑒−2𝜋𝑖𝑥 ·𝜔𝑔(𝜔)d𝜎(𝜔)

is of central importance in optics, providing a description of a unit-wavelength (or monochromatic)
optical wave field as a superposition of plane waves; note that 𝑔d𝜎 solves the Helmholtz equation
Δ𝑢 + 𝑢 = 0 on R𝑛. Of particular physical significance is |𝑔d𝜎 |2, sometimes referred to as the local
intensity of the field; see, for example, [3]. The Stein and Mizohata–Takeuchi inequalities (1.2) and
(1.4), when specialised to the sphere 𝑆 = S𝑛−1, become statements about this intensity, namely∫

R𝑛
|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝐶

∫
S𝑛−1

|𝑔(𝜔) |2 sup
𝑣 ∈〈𝜔〉⊥

𝑋𝑤(𝜔, 𝑣)d𝜎(𝜔), (3.1)

and ∫
R𝑛

|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝐶 sup
𝜔∈supp (𝑔)

‖𝑋𝑤(𝜔, ·)‖𝐿∞ ( 〈𝜔〉⊥) ‖𝑔‖
2
𝐿2 (S𝑛−1)

(3.2)

respectively. These conjectural inequalities are well-known for radial weights, as discussed in the
introduction, although we recall that for general weights they should carry a further localisation hypoth-
esis following the counterexamples of Cairo [18]; see Remark 1.2 for clarification. Both (3.1) and (3.2)
capture the expectation that the intensity |𝑔d𝜎 |2 concentrates on rays (lines), and as such connect physi-
cal optics to geometric optics. A good illustration of this is found in the high-frequency limiting identity

lim sup
𝑅→∞

𝑅𝑛−1
∫
R𝑛

|𝑔d𝜎(𝑅𝑥) |2𝑤(𝑥)d𝑥 =
1

(2𝜋)𝑛+1

∫
S𝑛−1

|𝑔(𝜉) |2
(∫
R

𝑤(𝑡𝜉)d𝑡

)
d𝜎(𝜉), (3.3)
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established (for compactly supported w) by Agmon and Hörmander in [1]; see [5]. Accordingly (3.1) and
(3.2) call for an optical (or spherical) analogue of the quantum-mechanical (or parabolic) phase-space
perspective from Section 2. Fortunately such a perspective is well-known in modern optics (see [3]) and
involves the spherical Wigner transform that we define next. For 𝑔1, 𝑔2 ∈ 𝐿2 (S𝑛−1) let

𝑊S𝑛−1 (𝑔1, 𝑔2) (𝜔, 𝑣) =
∫
S𝑛−1

𝑔1 (𝜔
′)𝑔2(𝑅𝜔𝜔′)𝑒−2𝜋𝑖𝑣 · (𝜔′−𝑅𝜔𝜔

′) 𝐽 (𝜔, 𝜔′)d𝜎(𝜔′). (3.4)

Here 𝜔 ∈ S𝑛−1, 𝑣 ∈ 〈𝜔〉⊥, and for a point 𝜔′ ∈ S𝑛−1, the point 𝑅𝜔𝜔′ is defined to be the unique
𝜔′′ ∈ S𝑛−1 for which 𝜔 is the geodesic midpoint of 𝜔′ and 𝜔′′; that is,

𝑅𝜔𝜔′ = 2(𝜔 · 𝜔′)𝜔 − 𝜔′. (3.5)

The function 𝐽 (𝜔, 𝜔′) := 2𝑛−2 |𝜔 · 𝜔′ |𝑛−2 (see the forthcoming Remark 4.7) is chosen so that∫
S𝑛−1

Φ(𝑅𝜔𝜔′)𝐽 (𝜔, 𝜔′)d𝜎(𝜔) =
∫
S𝑛−1

Φd𝜎

for each 𝜔′. This expression for J may be obtained by direct computation, noting that the map
𝜔 ↦→ 𝜔′′ := 𝑅𝜔𝜔′ is not a bijection; it maps each component of S𝑛−1\〈𝜔′〉⊥ bijectively to S𝑛−1\{−𝜔′}

with

d𝜎(𝜔′′) = 2𝑛−1 |𝜔 · 𝜔′ |𝑛−2d𝜎(𝜔). (3.6)

The essential features of this construction are those described in [3]; see also [34].
Motivated by the role of the transport equation in Section 2, for 𝑔 ∈ 𝐿2 (S𝑛−1) we define the auxiliary

function 𝑓 : S𝑛−1 × R𝑛 → R (not to be confused with (2.2)) by

𝑓 (𝜔, 𝑥) =
∫
S𝑛−1

𝑔(𝜔′)𝑔(𝑅𝜔𝜔′)𝑒−2𝜋𝑖𝑥 · (𝜔′−𝑅𝜔𝜔
′) 𝐽 (𝜔, 𝜔′)d𝜎(𝜔′),

so that 𝑊S𝑛−1 (𝑔, 𝑔) is the restriction of f to the tangent bundle 𝑇S𝑛−1 := {(𝜔, 𝑣) : 𝜔 ∈ S𝑛−1, 𝑣 ∈ 〈𝜔〉⊥}.
That f is real-valued follows from the fact that 𝑅𝜔 ◦𝑅𝜔 = 𝐼 for each 𝜔. Evidently f satisfies the transport
equation

𝜔 · ∇𝑥 𝑓 = 0, (3.7)

meaning that 𝑓 (𝜔, 𝑥) = 𝑓 (𝜔, 𝑥 〈𝜔〉⊥ ) = 𝑊S𝑛−1 (𝑔, 𝑔) (𝜔, 𝑥 〈𝜔〉⊥ ), where 𝑥 〈𝜔〉⊥ is the orthogonal projection
of x onto 〈𝜔〉⊥. The functions f and 𝑊S𝑛−1 have some nice features; for example, we have the marginal
identity ∫

S𝑛−1
𝑓 (𝜔, 𝑥)d𝜎(𝜔) = |𝑔d𝜎(𝑥) |2, (3.8)

by Fubini’s theorem and the definition of J. We note in passing that we have the additional marginal
property ∫

〈𝜔〉⊥
𝑊S𝑛−1 (𝑔, 𝑔) (𝜔, 𝑣)d𝑣 =

1
2

(
|𝑔(𝜔) |2 + |𝑔(−𝜔) |2

)
,

very much as in the setting of the classical Wigner distribution. This may be obtained by fixing
𝜔 and considering the contributions to 𝑊S𝑛−1 (𝑔, 𝑔) coming from the integrals over the hemispheres
S
𝑛−1
± := {𝜔′ : ±𝜔 · 𝜔′ > 0} and using the fact that the mapping 𝜔′ ↦→ 𝜔′ − 𝑅𝜔𝜔′ is a bijection from

each of S𝑛−1
± to the unit ball of 〈𝜔〉⊥; see the forthcoming proof of Theorem 3.2 for a similar argument.
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These observations lead to the desired spherical analogue of (2.5):

Proposition 3.1 (Spherical phase-space representation).

|𝑔d𝜎 |2 = 𝑋∗𝑊S𝑛−1 (𝑔, 𝑔).

Proof. By (3.8), (3.7) and Fubini’s theorem,∫
R𝑛

|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 =
∫
R𝑛

∫
S𝑛−1

𝑓 (𝜔, 𝑥)d𝜎(𝜔)𝑤(𝑥)d𝑥

=
∫
S𝑛−1

∫
〈𝜔〉⊥

𝑓 (𝜔, 𝑥 〈𝜔〉⊥ )

(∫
〈𝜔〉

𝑤(𝑥 〈𝜔〉 + 𝑥 〈𝜔〉⊥ )d𝑥 〈𝜔〉

)
d𝑥 〈𝜔〉⊥d𝜎(𝜔)

=
∫
S𝑛−1

∫
〈𝜔〉⊥

𝑊S𝑛−1 (𝑔, 𝑔) (𝜔, 𝑣)𝑋𝑤(𝜔, 𝑣)d𝑣d𝜎(𝜔)

=
∫
R𝑛

𝑋∗𝑊S𝑛−1 (𝑔, 𝑔) (𝑥)𝑤(𝑥)d𝑥

for all test functions w. �

As we have already indicated, Proposition 3.1 is well-known in some form in optics (at least in
low dimensions) where it provides a representation of the local intensity of an optical field as a linear
superposition of light rays – a useful and explicit connection between physical and geometric optics;
see Alonso [3]. Proposition 3.1 may be used to prove the following spherical versions of Theorems 1.7
and 1.8:

Theorem 3.2 (Spherical Sobolev–Stein). For 𝑠 < 𝑛−1
2 , there exists a dimensional constant c such that∫

R𝑛
|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝑐

∫
S𝑛−1

𝐼S𝑛−1 ,2𝑠 (|𝑔 |
2, |𝑔 |2) (𝜔)1/2‖𝑋𝑤(𝜔, ·)‖ �𝐻 𝑠 ( 〈𝜔〉⊥)d𝜎(𝜔), (3.9)

where

𝐼S𝑛−1 ,𝑠 (𝑔1, 𝑔2) (𝜔) :=
∫
S𝑛−1

𝑔1(𝜔
′)𝑔2(𝑅𝜔𝜔′)

|𝜔′ − 𝑅𝜔𝜔′ |𝑠
|𝜔 · 𝜔′ |𝑛−2d𝜎(𝜔′).

Remark 3.3. The hypothesis 𝑠 < 𝑛−1
2 in the statement of Theorem 3.2 serves only to ensure that the

kernel of the fractional integral operator 𝐼S𝑛−1 ,𝑠 is locally integrable, giving meaning to 𝐼S𝑛−1 ,𝑠 . The
corresponding Sobolev-Mizohata–Takeuchi theorem that follows rests on the availability of suitable
bounds on this fractional integral, and so involves a constant that also depends on s.

Theorem 3.4 (Spherical Sobolev–Mizohata–Takeuchi). For 𝑠 < 𝑛−1
2 ,∫

R𝑛
|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 � sup

𝜔∈supp ∗ (𝑔)
‖𝑋𝑤(𝜔, ·)‖ �𝐻 𝑠 ( 〈𝜔〉⊥) ‖𝑔‖

2
𝐿2 (S𝑛−1)

, (3.10)

where supp ∗(𝑔) is the set of all geodesic midpoints of pairs of points from supp (𝑔). The implicit constant
depends on at most n and s.

Remark 3.5. Theorems 3.2 and 3.4 may be seen to follow from Theorems 1.7 and 1.8 respectively.
This involves partitioning the sphere into suitable geodesically convex patches as alluded to in the
introduction, and indeed this is how our proof below begins. This elementary step appears to require
the weight w to be non-negative, despite non-negativity not being a requirement of either Theorem 1.7
or 1.8.
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Proof of Theorem 3.2. By partitioning S𝑛−1 into boundedly many (depending only on n) geodesically
convex subsets (caps), it suffices to show (3.9) under the assumption that g is supported in a cap S
satisfying 𝜔 · 𝜔′ ≥ 1

2 for all points 𝜔, 𝜔′ ∈ 𝑆 (in line with (1.12)). By Proposition 3.1 and the Cauchy–
Schwarz inequality it suffices to show that

‖𝑊S𝑛−1 (𝑔, 𝑔) (𝜔, ·)‖2
�𝐻−𝑠 ( 〈𝜔〉⊥)

� 𝐼S𝑛−1 ,2𝑠 (|𝑔 |
2, |𝑔 |2) (𝜔), (3.11)

for some implicit constant depending only on n. Next, for fixed 𝜔 ∈ 𝑆 we make the change of variables
𝜉 = 𝜔′ − 𝑅𝜔𝜔′, which maps S bijectively to a subset U of 〈𝜔〉⊥. Defining 𝜔′ : 𝑈 → 𝑆 by 𝜉 =
𝜔′(𝜉) − 𝑅𝜔𝜔′(𝜉) we have

𝑊S𝑛−1 (𝑔, 𝑔) (𝜔, 𝑣) =
∫
𝑆

𝑔(𝜔′)𝑔(𝑅𝜔𝜔′)𝑒𝑖𝑣 · (𝜔
′−𝑅𝜔𝜔

′) 𝐽 (𝜔, 𝜔′)d𝜎(𝜔′)

=
∫
𝑈

𝑔(𝜔′(𝜉))𝑔(𝑅𝜔𝜔′(𝜉))𝑒𝑖𝑣 ·𝜉
𝐽 (𝜔, 𝜔′(𝜉))

𝐽 (𝜔, 𝜔′(𝜉))
d𝜉,

where 𝐽 (𝜔, 𝜔′) = 2𝑛−1𝜔 · 𝜔′ ∼ 1 is the Jacobian of the change of variables. Hence

F𝑣𝑊S𝑛−1 (𝑔, 𝑔) (𝜔, 𝜉) = 𝑔(𝜔′(𝜉))𝑔(𝑅𝜔𝜔′(𝜉))
𝐽 (𝜔, 𝜔′(𝜉))

𝐽 (𝜔, 𝜔′(𝜉))
1𝑈 (𝜉), (3.12)

and so by Plancherel’s theorem on 〈𝜔〉⊥,

‖𝑊S𝑛−1 (𝑔, 𝑔) (𝜔, ·)‖2
�𝐻−𝑠 ( 〈𝜔〉⊥)

=
∫
𝑈

�����|𝜉 |−𝑠𝑔(𝜔′(𝜉))𝑔(𝑅𝜔𝜔′(𝜉))
𝐽 (𝜔, 𝜔′(𝜉))

𝐽 (𝜔, 𝜔′(𝜉))

�����2d𝜉

=
∫
𝑆
|𝜔′ − 𝑅𝜔𝜔′ |−2𝑠 |𝑔(𝜔′) |2 |𝑔(𝑅𝜔𝜔′) |2

𝐽 (𝜔, 𝜔′)2

𝐽 (𝜔, 𝜔′)
d𝜎(𝜔′)

�
∫
𝑆
|𝜔′ − 𝑅𝜔𝜔′ |−2𝑠 |𝑔(𝜔′) |2 |𝑔(𝑅𝜔𝜔′) |2 |𝜔 · 𝜔′ |𝑛−2d𝜎(𝜔′)

= 𝐼S𝑛−1 ,2𝑠 (|𝑔 |
2, |𝑔 |2) (𝜔),

(3.13)

The inequality (3.11) follows. �

Remark 3.6. The reader may be puzzled by the retention of the specific factor |𝜔 · 𝜔′ |𝑛−2 in the third
line of (3.13), and its inclusion in the definition of 𝐼S𝑛−1 ,𝑠 . This is significant as it is (up to a constant
factor) the Jacobian 𝐽 (𝜔, 𝜔′), which is natural as it ensures that 𝐼S𝑛−1 ,𝑠 is symmetric and enjoys the
appropriate Lebesgue space bounds. This feature will become clearer in Section 4 in the context of more
general submanifolds S.

Proof of Theorem 3.4. Arguing as in the proof of Theorem 3.2, it suffices to establish (3.10) for g
supported in a single cap S. Since 𝐼S𝑛−1 ,2𝑠 (|𝑔 |

2, |𝑔 |2) (𝜔) = 0 if 𝜔 ∉ supp ∗(𝑔),∫
R𝑛

|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 � sup
𝜔∈supp ∗ (𝑔)

‖𝑋𝑤(𝜔, ·)‖ �𝐻 𝑠 ( 〈𝜔〉⊥) ‖𝐼S𝑛−1 ,2𝑠 (|𝑔 |
2, |𝑔 |2)‖1/2

𝐿1/2 (𝑆)
,

by Theorem 3.2. It therefore suffices to show that

𝐼𝑆,𝑠 (𝑔1, 𝑔2) (𝜔) := 𝐼S𝑛−1 ,𝑠 (𝑔11𝑆 , 𝑔21𝑆) (𝜔) =
∫
𝑆

𝑔1 (𝜔
′)𝑔2(𝑅𝜔𝜔′)

|𝜔′ − 𝑅𝜔𝜔′ |𝑠
|𝜔 · 𝜔′ |𝑛−2d𝜎(𝜔′)

is bounded from 𝐿1 × 𝐿1 into 𝐿1/2 whenever 𝑠 < 𝑛 − 1. This will be established in Section 7, where
more general surface-carried bilinear fractional integral operators are estimated. �
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4. General submanifolds: a geometric viewpoint

As we shall see, identifying a phase-space representation of |𝑔d𝜎 |2 that is explicit enough to establish
Theorems 1.7 and 1.8 requires some careful geometric analysis, beginning with the identification of a
suitable generalised Wigner distribution (or transform). We present this for general smooth submanifolds
of R𝑛 that are strictly convex in the sense that their shape operators d𝑁𝑢 are positive definite at all points
𝑢 ∈ 𝑆.

4.1. Surface-carried Wigner transforms

The general procedure for constructing a suitable Wigner transform on a submanifold of Euclidean
space is again well-known in optics [3], [45]; see, for example, [29] for related intrinsic constructions
in quantum physics. As is pointed out in [3], for 𝑛 ≥ 3 matters are considerably more involved as there
is some choice to be exercised.

For compactly supported function 𝑔1, 𝑔2 ∈ 𝐿2 (𝑆) let

𝑊𝑆 (𝑔1, 𝑔2) (𝑢, 𝑣) =
∫
𝑆

𝑔1 (𝑢
′)𝑔2(𝑅𝑢𝑢′)𝑒−2𝜋𝑖𝑣 · (𝑢′−𝑅𝑢𝑢′) 𝐽 (𝑢, 𝑢′)d𝜎(𝑢′). (4.1)

Here 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇𝑢𝑆, and we define, for 𝑢′ ≠ 𝑢, 𝑅𝑢𝑢
′ to be the unique point 𝑢′′ ∈ 𝑆 with 𝑢′′ ≠ 𝑢′ such

that

(𝑢′ − 𝑢′′) · 𝑁 (𝑢) = 0 (4.2)

and

𝑁 (𝑢) ∧ 𝑁 (𝑢′) ∧ 𝑁 (𝑢′′) = 0. (4.3)

Define 𝑅𝑢𝑢 := 𝑢 for all 𝑢 ∈ 𝑆. Condition (4.2) stipulates that 𝑢′ − 𝑢′′ ∈ 𝑇𝑢𝑆, which as we shall see, is
necessary for the phase-space representation (1.7); see Figure 1. Condition (4.3), which stipulates that
𝑁 (𝑢), 𝑁 (𝑢′), 𝑁 (𝑢′′) lie on a great circle, is where we have exercised some choice. This appears to be
physically significant and is at least implicitly referred to in the optics literature; see, for example, [3]
(p. 346) in the context of the sphere. Moreover, the appropriateness of (4.3) is particularly apparent
when S is the paraboloid, as we clarify in the forthcoming Remark 4.7. In (4.1) the function 𝐽 (𝑢, 𝑢′) is
the reciprocal of the Jacobian of the mapping 𝑢 ↦→ 𝑅𝑢𝑢

′, so that∫
𝑆
Φ(𝑅𝑢𝑢

′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢) =
∫
𝑆
Φd𝜎 (4.4)

for each 𝑢′ ∈ 𝑆. The required bijectivity here follows from the assumed geodesic convexity of 𝑁 (𝑆)
referred to in Section 1. We refer to 𝑊𝑆 (𝑔1, 𝑔2) as the Wigner transform on S, and 𝑊𝑆 (𝑔, 𝑔) as the
Wigner distribution on S. As we shall see shortly, the Jacobian J is a bounded function on compact
subsets of 𝑆 × 𝑆, allowing 𝑊𝑆 (𝑔1, 𝑔2) to be defined as a Lebesgue integral.

The point 𝑢′′ may seem rather difficult to identify at first sight, although it has a simple alternative
description that is constructive. This is shown in Figure 2, and will play an important role in our analysis.
Remark 4.1 (Existence of 𝑢′′). There is a technical point that we have glossed over in the above
definition of 𝑊𝑆 and Figures 1 and 2. For given 𝑢, 𝑢′ ∈ 𝑆 our hypotheses do not guarantee the existence
of such a point 𝑢′′ := 𝑅𝑢𝑢

′, unless S is closed (the boundary of a convex body in R𝑛). One way to
remedy this might be to continue S to a closed submanifold, upon which 𝑅𝑢𝑢

′ may always be defined,
and observe that the resulting function 𝑊𝑆 (𝑔1, 𝑔2) is independent of the choice of extension since 𝑔2 is
supported on S. In any event, the integral in (4.1) should be interpreted as taken over

{𝑢′ ∈ 𝑆 : (𝑢′ − 𝑢′′) · 𝑁 (𝑢) = 0 and 𝑁 (𝑢) ∧ 𝑁 (𝑢′) ∧ 𝑁 (𝑢′′) = 0 for some 𝑢′′ ≠ 𝑢′}.

Naturally such domain restrictions will be apparent in our analysis of the Jacobian J in Section 6.
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Figure 1. A depiction of the choice of 𝑢′′ via the conditions (4.2) and (4.3).

Figure 2. The construction of 𝑢′′ via parallel supporting hyperplanes in 𝑇𝑢𝑆 + {𝑢′}.

Remark 4.2 (Differentiability of 𝑢′′). We expect that the maps 𝑢 ↦→ 𝑅𝑢𝑢
′ and 𝑢′ ↦→ 𝑅𝑢𝑢

′ are differen-
tiable away from 𝑢 = 𝑢′ and that this should follow from (4.2) and (4.3) by a suitable application of the
implicit function theorem; see Figure 2. This smoothness is of course clear when S is the sphere thanks
to the explicit formula (3.5) and is assumed to be true of the submanifolds S considered here.

Remark 4.3 (Rationale for the choice of third point 𝑢′′). As is pointed out in [3] and [45], for 𝑛 ≥ 3
there are many possible ways of defining the third point 𝑢′′ in terms of 𝑢′ and u, although for the
purposes of proving Theorems 1.7 and 1.8 there are a number of natural requirements that significantly
constrain this choice. First of all, the choice should be ‘nondegenerate’ in the sense that the distances
|𝑢′ − 𝑢 | and |𝑢′ − 𝑢′′ | should be comparable (suitably uniformly in terms of the geometry of S); it
should be symmetric so that the resulting Wigner distribution is real-valued (and the Wigner transform
is conjugate symmetric), and it should be geometrically/physically natural, so that the Jacobian J may
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be expressed in terms of the Gauss map N and its derivative d𝑁 (the shape operator). The forthcoming
Propositions 4.4 and 4.5 show that our choice of 𝑢′′ has these features. As we shall see, the coplanarity
condition (4.3) is natural as it allows the mapping 𝑢 ↦→ 𝑅𝑢𝑢

′ to be transformed to a relatively simple
‘outward vector field’ on the tangent space 𝑇𝑢′𝑆. This involves parametrising S using the Gauss map
followed by stereographic projection (a composition that may also be found in the theory of minimal
surfaces).

It will be important for us to understand how the distances between the three points 𝑢, 𝑢′, 𝑢′′ relate
to each other. This is provided by the following proposition, whose proof is deferred to Section 5. In
particular it tells us that the function 𝜌(𝑢, 𝑢′) := |𝑢′ − 𝑅𝑢𝑢

′ | on 𝑆 × 𝑆 is a quasi-distance, as we clarify
in Section 8.

Proposition 4.4 (Distance estimates). For all 𝑢, 𝑢′, 𝑢′′ ∈ 𝑆 with 𝑢′′ = 𝑅𝑢𝑢
′,

|𝑢′ − 𝑢′′ | � 𝑄(𝑆)1/2 |𝑢 − 𝑢′ | (4.5)

and

|𝑢′ − 𝑢′′ | �
1

𝑄(𝑆)
|𝑢 − 𝑢′|. (4.6)

We now turn from the metric properties to the measure-theoretic properties of the map 𝑅𝑢 , and a
host of explicit identities satisfied by the Wigner transform 𝑊𝑆 .

To see that 𝑊𝑆 is conjugate-symmetric, which in particular implies that the Wigner distribution
𝑊𝑆 (𝑔, 𝑔) is real-valued, already appears to require some work. For fixed 𝑢 ∈ 𝑆 observe first that if
𝑢′′ = 𝑅𝑢𝑢

′ then 𝑢′ = 𝑅𝑢𝑢
′′, and so by a change of variables,

𝑊𝑆 (𝑔1, 𝑔2) (𝑢, 𝑣) =
∫
𝑆

𝑔1 (𝑅𝑢𝑢
′′)𝑔2(𝑢′′)𝑒−2𝜋𝑖𝑣 · (𝑅𝑢𝑢′′−𝑢′′) 𝐽 (𝑢, 𝑅𝑢𝑢

′′)Δ (𝑢, 𝑢′′)d𝜎(𝑢′′),

where Δ (𝑢, 𝑢′′) is the Jacobian of the change of variables 𝑢′ = 𝑅𝑢𝑢
′′. It therefore remains to show that

𝐽 (𝑢, 𝑢′)Δ (𝑢, 𝑢′′) = 𝐽 (𝑢, 𝑢′′),

recalling that J was defined in (4.4). Fortunately we have explicit formulae for the Jacobians J and Δ
from which this quickly follows. In the following proposition we denote by 𝐾 (𝑢) the Gaussian curvature
of S at the point u, recalling that 𝐾 (𝑢) is the determinant of the shape operator d𝑁𝑢 . Further, we denote
by 𝑃𝑊 𝑣 the orthogonal projection of a vector 𝑣 ∈ R𝑛 onto a subspace W of R𝑛.

Proposition 4.5 (Jacobian identities). For all 𝑢, 𝑢′, 𝑢′′ ∈ 𝑆 with 𝑢′′ = 𝑅𝑢𝑢
′,

𝐽 (𝑢, 𝑢′) =

(
|𝑁 (𝑢′) ∧ 𝑁 (𝑢′′) |

|𝑁 (𝑢) ∧ 𝑁 (𝑢′) |

)𝑛−2���� 〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′)〉

〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉

���� 𝐾 (𝑢)

𝐾 (𝑢′′)
, (4.7)

Δ (𝑢, 𝑢′) =

(
|𝑁 (𝑢) ∧ 𝑁 (𝑢′′) |

|𝑁 (𝑢) ∧ 𝑁 (𝑢′) |

)𝑛−1 |〈𝑃𝑇𝑢′𝑆𝑁 (𝑢), (d𝑁𝑢′ )
−1(𝑃𝑇𝑢′𝑆𝑁 (𝑢))〉|

|〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉|

𝐾 (𝑢′)

𝐾 (𝑢′′)
(4.8)

and

𝐽 (𝑢, 𝑢′)Δ (𝑢, 𝑢′′) = 𝐽 (𝑢, 𝑢′′). (4.9)

We defer the proof of Proposition 4.5 to Section 6.
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Remark 4.6 (Interpreting J). The expression for J in Proposition (4.5), while seemingly rather
complicated, may be understood in somewhat simple geometric terms. In particular:

(i) Matters are much simpler when 𝑛 = 2, where we may write

𝐽 (𝑢, 𝑢′) =

���� 〈𝑢′′ − 𝑢′, 𝑃𝑇𝑢𝑆𝑁 (𝑢′′)〉

〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉

���� 𝐾 (𝑢)

𝐾 (𝑢′′)

=
|𝑢′′ − 𝑢′| · |𝑁 (𝑢) ∧ 𝑁 (𝑢′′) |

|𝑃𝑇𝑢′′𝑆𝑁 (𝑢) |2
𝐾 (𝑢)

=
|𝑢′′ − 𝑢′|

|𝑁 (𝑢) ∧ 𝑁 (𝑢′′) |
𝐾 (𝑢).

Here we have used the (two-dimensional) formula

〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )
−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉 =

1
𝐾 (𝑢′′)

|𝑃𝑇𝑢′′𝑆𝑁 (𝑢) |2,

along with the elementary identities |𝑃𝑇𝑢′′𝑆𝑁 (𝑢) | = |𝑃𝑇𝑢𝑆𝑁 (𝑢′′) | = |𝑁 (𝑢) ∧ 𝑁 (𝑢′′) |.
(ii) The factor

〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )
−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉−1 (4.10)

is bounded above by 〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), d𝑁𝑢′′ (𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉 by the harmonic-arithmetic mean inequality.
This bound is (up to a suitable normalisation factor) the directional curvature of S at the point 𝑢′′

in the direction 𝑃𝑇𝑢′′𝑆𝑁 (𝑢). One might therefore interpret the factor (4.10) as a certain ‘harmonic
directional curvature’.

(iii) The factor

|𝑁 (𝑢′) ∧ 𝑁 (𝑢′′) |

|𝑁 (𝑢) ∧ 𝑁 (𝑢′) |

quantifies (in relative terms) the transversality of the tangent spaces to S at the points 𝑢, 𝑢′, 𝑢′′, and
is therefore also a manifestation of the curvature profile of S; see Figure 1.

(iv) The factor 〈𝑢′′ −𝑢′, 𝑁 (𝑢′′)〉 is different in nature as it explicitly relates to the positions of the points
𝑢′, 𝑢′′. It is instructive to use the fact that 𝑢′ − 𝑢′′ ∈ 𝑇𝑢𝑆 to write this as

〈𝑢′′ − 𝑢′, 𝑃𝑇𝑢𝑆𝑁 (𝑢′′)〉 = |𝑁 (𝑢) ∧ 𝑁 (𝑢′′) | |𝑢′′ − 𝑢′ |

〈
𝑢′′ − 𝑢′

|𝑢′′ − 𝑢′|
,

𝑃𝑇𝑢𝑆𝑁 (𝑢′′)

|𝑃𝑇𝑢𝑆𝑁 (𝑢′′) |

〉
.

We observe that the inner product in the final expression above quantifies the extent to which 𝑢′′ is
displaced from the line through 𝑢′ in the direction 𝑃𝑇𝑢𝑆𝑁 (𝑢′′); see Figure 2.

(v) The Jacobian J is scale-invariant in the sense that an isotropic scaling of S leaves J unchanged.
This is apparent from the definition of J but is also manifest in the formula (4.7).

Remark 4.7 (Examples). Proposition 4.5 is easily applied to examples.

(i) If 𝑆 = P𝑛−1, the paraboloid (2.14), then a careful calculation using Proposition 4.5 reveals that

𝐽 (𝑢, 𝑢′) = 2𝑛−1
(

1 + 4|𝑥 ′′ |2

1 + 4|𝑥 |2

)1/2

,

where we are writing 𝑢 = (𝑥, |𝑥 |2), 𝑢′ = (𝑥 ′, |𝑥 ′ |2), 𝑢′′ := 𝑅𝑢𝑢
′ = (𝑥 ′′, |𝑥 ′′ |2). As should be

expected from our analysis in Section 2, the parabolic Wigner distribution 𝑊P𝑛−1 may be pulled
back to the classical Wigner distribution via a suitable map Φ : R𝑑 × R𝑑 → 𝑇P𝑑; in this case
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Φ(𝑥, 𝑣) = ((𝑥, |𝑥 |2), 𝑃𝑇
(𝑥, |𝑥 |2 )P

𝑑 (𝑣, 0)). This uses the simple geometric fact that the coplanarity
condition (4.3) transforms to a colinearity condition in parameter space. More specifically, if for a
function 𝑔 : R𝑑 → C we let 𝐿𝑔(𝑥, |𝑥 |2) = (1 + 4|𝑥 |2)− 1

2 𝑔(𝑥), and for a function ℎ : 𝑇P𝑑 → C we
let 𝑈ℎ(𝑥, 𝑣) = (1 + 4|𝑥 |2)1/2ℎ(Φ(𝑥, 𝑣)), then

𝑈𝑊P𝑑 (𝐿𝑔, 𝐿𝑔) = 𝑊 (𝑔, 𝑔).

Moreover, 𝑋∗
P𝑑

ℎ = 𝜌(𝑈ℎ), allowing one to deduce the quantum-mechanical phase-space represen-
tation (2.5) from the forthcoming Proposition 4.8. We refer to [3] (p. 353) for a similar remark.

(ii) If 𝑆 = S𝑛−1, evidently 𝐾 ≡ 1 and 𝑁 (𝜔) = 𝜔, and to be consistent with Section 3 we use 𝜔 rather
than u to represent a point. We may use the explicit formula (3.5) to write

|𝑁 (𝜔′) ∧ 𝑁 (𝜔′′) |

|𝑁 (𝜔) ∧ 𝑁 (𝜔′) |
=

(1 − (𝜔′ · 𝜔′′)2)
1
2

(1 − (𝜔 · 𝜔′)2)
1
2

=
|𝑃 〈𝜔′ 〉⊥𝜔′′ |

|𝑃 〈𝜔〉⊥𝜔′|
= 2|𝜔 · 𝜔′ |.

On the other hand, since 〈𝜔′′ − 𝜔′, 𝑁 (𝜔′′)〉 = 〈𝜔′′ − 𝜔′, 𝑃 〈𝜔〉⊥𝜔′′〉, projecting both sides of (3.5)
to 〈𝜔〉⊥ yields���� 〈𝜔′′ − 𝜔′, 𝑁 (𝜔′′)〉

〈𝑃𝑇𝜔′′𝑆𝑁 (𝜔), (d𝑁𝜔′′ )−1(𝑃𝑇𝜔′′𝑆𝑁 (𝜔))〉

���� = |〈𝜔′′ − 𝜔′, 𝜔′〉 |

|1 − (𝜔 · 𝜔′′)2 |
=

|1 − (𝜔′ · 𝜔′′) |

|1 − (𝜔 · 𝜔′)2 |
= 2,

since 𝜔 · 𝜔′′ = 𝜔 · 𝜔′ and 𝜔′ · 𝜔′′ = 2(𝜔 · 𝜔′)2 − 1. Altogether we conclude that

𝐽 (𝜔, 𝜔′) = 2𝑛−1 |𝜔 · 𝜔′ |𝑛−2,

as appears in (3.6).

We now come to the phase-space representation of |𝑔d𝜎 |2, and we begin by defining an auxiliary
function 𝑓 : 𝑆 × R𝑛 → R by

𝑓 (𝑢, 𝑥) =
∫
𝑆

𝑔(𝑢′)𝑔(𝑅𝑢𝑢′)𝑒−2𝜋𝑖𝑥 · (𝑢′−𝑅𝑢𝑢′) 𝐽 (𝑢, 𝑢′)d𝜎(𝑢′),

so that 𝑊𝑆 (𝑔, 𝑔) is the restriction of f to the tangent bundle 𝑇𝑆 := {(𝑢, 𝑣) : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇𝑢𝑆}. As in the
spherical case, we continue to have the marginal identity∫

𝑆
𝑓 (𝑢, 𝑥)d𝜎(𝑢) = |𝑔d𝜎(𝑥) |2 (4.11)

by Fubini’s theorem and the definition of J. While we shall not need to use it, it is pertinent to also note
the second marginal property ∫

𝑇𝑢𝑆
𝑊𝑆 (𝑔, 𝑔) (𝑢, 𝑣)d𝑣 = |𝑔(𝑢) |2 (4.12)

here (possibly subject to an additional regularity assumption on S) referred to in the introduction; we
refer to Section 8 for clarification of this, along with the sense in which it holds as a pointwise identity.
Another key property is that f satisfies the transport equation

𝑁 (𝑢) · ∇𝑥 𝑓 = 0, (4.13)

meaning that 𝑓 (𝑢, 𝑥) = 𝑊𝑆 (𝑔, 𝑔) (𝑢, 𝑃𝑇𝑢𝑆𝑥), where 𝑃𝑇𝑢𝑆 : R𝑛 → 𝑇𝑢𝑆 is the orthogonal projection onto
𝑇𝑢𝑆.
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Proposition 4.8 (General phase-space representation).

|𝑔d𝜎 |2 = 𝑋∗
𝑆𝑊𝑆 (𝑔, 𝑔) (4.14)

where 𝑋𝑆𝑤(𝑢, 𝑣) := 𝑋𝑤(𝑁 (𝑢), 𝑣), the pullback of 𝑋𝑤 under the Gauss map

𝑇𝑆 � (𝑢, 𝑣) ↦→ (𝑁 (𝑢), 𝑣) ∈ 𝑇S𝑑−1.

We note that for a phase-space function ℎ : 𝑇𝑆 → C we have the explicit expression

𝑋∗
𝑆ℎ(𝑥) =

∫
𝑆

ℎ(𝑢, 𝑃𝑇𝑢𝑆𝑥)d𝜎(𝑢).

Proof of Proposition 4.8. By (4.11), (4.13) and Fubini’s theorem,∫
R𝑛

|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 =
∫
R𝑛

∫
𝑆

𝑓 (𝑢, 𝑥)d𝜎(𝑢)𝑤(𝑥)d𝑥

=
∫
𝑆

∫
𝑇𝑢𝑆

𝑓 (𝑢, 𝑣)

(∫
(𝑇𝑢𝑆)⊥

𝑤(𝑣 + 𝑧)d𝑧

)
d𝑣d𝜎(𝑢)

=
∫
𝑆

∫
𝑇𝑢𝑆

𝑊𝑆 (𝑔, 𝑔) (𝑢, 𝑣)𝑋𝑤(𝑁 (𝑢), 𝑣)d𝑣d𝜎(𝑢)

=
∫
R𝑛

𝑋∗
𝑆𝑊 (𝑔, 𝑔) (𝑥)𝑤(𝑥)d𝑥

for all test functions w. �

Remark 4.9 (A polarised form). The polarised form

�𝑔1d𝜎 �𝑔2d𝜎 = 𝑋∗
𝑆𝑊𝑆 (𝑔1, 𝑔2)

of (4.14) may be established similarly, and indeed may be deduced directly from (4.14).

Remark 4.10. There is a point of contact here with [15], where among other things it is shown that the
classical Radon transform fails to distinguish |𝑔d𝜎 |2 from 𝑋∗

𝑆𝜈 for a large class of distributions 𝜈 on
𝑇𝑆, provided a suitable transversality condition is satisfied. Perhaps unsurprisingly, 𝑊𝑆 (𝑔, 𝑔) is easily
seen to be an example of such a distribution.

We are now ready to state or main theorems (Theorems 1.7 and 1.8) in full.

Theorem 4.11 (L2 Sobolev–Stein inequality). Suppose that S is a smooth strictly convex surface with
curvature quotient 𝑄(𝑆), and 𝑠 < 𝑛−1

2 . Then there is a dimensional constant c such that∫
R𝑛

|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝑐𝑄(𝑆)
5𝑛−8

4

∫
𝑆

𝐼𝑆,2𝑠 (|𝑔 |
2, |𝑔 |2) (𝑢)1/2‖𝑋𝑆𝑤(𝑢, ·)‖ �𝐻 𝑠 (𝑇𝑢𝑆)d𝜎(𝑢), (4.15)

where

𝐼𝑆,𝑠 (𝑔1, 𝑔2) (𝑢) :=
∫
𝑆

𝑔1 (𝑢
′)𝑔2(𝑅𝑢𝑢

′)

|𝑢′ − 𝑅𝑢𝑢′|𝑠
𝐽 (𝑢, 𝑢′)d𝜎(𝑢′). (4.16)

Remark 4.12. The S-carried fractional integral 𝐼𝑆,𝑠 is natural for a number of reasons relating to the
presence of the Jacobian factor J. In particular, it is symmetric thanks to (4.9) (a property that is
analogous to the conjugate symmetry of the Wigner transform 𝑊𝑆), and as we shall see in Section 7,
its Lebesgue space bounds do not depend on any lower bound on the curvature of S. The restriction
𝑠 < 𝑛−1

2 ensures that the kernel of 𝐼𝑆,𝑠 is locally integrable.

https://doi.org/10.1017/fms.2025.10127 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10127


24 J. Bennett et al.

Theorem 4.13 (L2 Sobolev–Mizohata–Takeuchi inequality). Suppose that S is a smooth strictly convex
surface with curvature quotient 𝑄(𝑆), and 𝑠 < 𝑛−1

2 . Then there exists a constant c, depending on at
most n, s and the diameter of S, such that∫

R𝑛
|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝑐𝑄(𝑆)

9𝑛−12
4 sup
𝑢∈supp ∗ (𝑔)

‖𝑋𝑆𝑤(𝑢, ·)‖ �𝐻 𝑠 (𝑇𝑢𝑆) ‖𝑔‖
2
𝐿2 (𝑆)

, (4.17)

where supp ∗(𝑔) := {𝑢 ∈ 𝑆 : 𝑅𝑢𝑢
′ ∈ supp (𝑔) for some 𝑢′ ∈ supp (𝑔)}.

Remark 4.14. We remark that supp (𝑔) ⊆ supp ∗(𝑔), and often this containment is strict. When S is the
sphere, supp ∗(𝑔) is the ‘support midpoint set’, consisting of all geodesic midpoints of pairs of points
from the support of g. Hence supp ∗(𝑔) ⊆ cvx supp (𝑔) in this case, where cvx forms the geodesic
convex hull. More generally, supp ∗(𝑔) ⊆ 𝑁−1cvx (𝑁 (supp (𝑔))), so that∫

R𝑛
|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝑐𝑄(𝑆)

9𝑛−12
4 sup
𝜔∈cvx (𝑁 (supp (𝑔)))

‖𝑋𝑤(𝜔, ·)‖ �𝐻 𝑠 (𝑇𝑢𝑆) ‖𝑔‖
2
𝐿2 (𝑆)

.

Remark 4.15. While we expect that the power of 𝑄(𝑆) in the statement of Theorem 4.11 is sharp
when 𝑛 = 2, it seems unlikely that it is in higher dimensions. The power of 𝑄(𝑆) in the statement of
Theorem 4.13 is of course larger still, incurring extra factors from the bounds on the bilinear fractional
integrals 𝐼𝑆,𝑠 in Section 7.

4.2. Proof of the Sobolev–Stein inequality (Theorem 1.7)

In this section we prove Theorem 1.7, or more specifically, Theorem 4.11. We begin with an application
of Proposition 4.8 and the Cauchy–Schwarz inequality to write∫

R𝑛
|𝑔d𝜎 |2𝑤 ≤

∫
𝑆
‖𝑊𝑆 (𝑔, 𝑔) (𝑢, ·)‖ �𝐻−𝑠 (𝑇𝑢𝑆) ‖𝑋𝑆𝑤(𝑢, ·)‖ �𝐻 𝑠 (𝑇𝑢𝑆)d𝜎(𝑢) (4.18)

for any 𝑠 ∈ R. In order to estimate the Sobolev norm of the Wigner distribution above we fix 𝑢 ∈ 𝑆 and
make the change of variables

𝜉 = 𝑢′ − 𝑅𝑢𝑢
′. (4.19)

Since S is the graph of a strictly convex function, the map 𝑢′ ↦→ 𝜉 is a bijection from S to a subset U of
𝑇𝑢𝑆. To see this it suffices to establish injectivity, and hence we look to show that 𝑢′ − 𝑅𝑢𝑢

′ ≠ 𝑢̃′ − 𝑅𝑢 𝑢̃
′

for 𝑢′ ≠ 𝑢̃′. We may assume that 𝑢′−𝑅𝑢𝑢
′ and 𝑢̃′−𝑅𝑢 𝑢̃

′ are parallel, as otherwise the desired conclusion
is immediate. Observe that 𝑢′ − 𝑢̃′ ∉ 𝑇𝑢𝑆, as otherwise strict convexity of the level sets of S (sections of
S by translates of 𝑇𝑢𝑆) would force 𝑢′ = 𝑢̃′ or 𝑅𝑢𝑢

′ = 𝑢̃′; see Figure 2. Since 𝑢′ − 𝑢̃′ ∉ 𝑇𝑢𝑆 and S is the
graph of a function, the level sets of S through 𝑢′ and 𝑢̃′ respectively, when projected onto 𝑇𝑢𝑆, are both
enclosed by the supporting hyperplanes depicted in Figure 2; this may require interchanging the roles of
𝑢′ and 𝑢̃′, as we may. Since 𝑢′ −𝑅𝑢𝑢

′ and 𝑢̃′ −𝑅𝑢 𝑢̃
′ are parallel, it follows that |𝑢̃′ −𝑅𝑢 𝑢̃

′ | < |𝑢′ −𝑅𝑢𝑢
′ |,

and thus 𝑢′ − 𝑅𝑢𝑢
′ ≠ 𝑢̃′ − 𝑅𝑢 𝑢̃

′. As a result of this bijectivity,

‖𝑊𝑆 (𝑔, 𝑔) (𝑢, ·)‖2
𝐻−𝑠 (𝑇𝑢𝑆)

=
∫
𝑇𝑢𝑆

�����∫𝑈 𝑔(𝑢′(𝜉))𝑔(𝑅𝑢𝑢′(𝜉)) |𝜉 |−𝑠𝑒−2𝜋𝑖𝑣 ·𝜉 𝐽 (𝑢, 𝑢′(𝜉))
d𝜉

𝐽 (𝑢, 𝑢′(𝜉))

�����2d𝑣,

where 𝐽 (𝑢, 𝑢′) is the Jacobian of the map 𝑢′ ↦→ 𝜉. Hence by Plancherel’s theorem on 𝑇𝑢𝑆,

‖𝑊𝑆 (𝑔, 𝑔) (𝑢, ·)‖2
𝐻−𝑠 (𝑇𝑢𝑆)

=
∫
𝑈

�����𝑔(𝑢′(𝜉))𝑔(𝑅𝑢𝑢′(𝜉)) |𝜉 |−𝑠
𝐽 (𝑢, 𝑢′(𝜉))

𝐽 (𝑢, 𝑢′(𝜉))

�����2d𝜉

=
∫
𝑆

|𝑔(𝑢′) |2 |𝑔(𝑅𝑢𝑢
′) |2

|𝑢′ − 𝑅𝑢𝑢′|2𝑠
𝐽 (𝑢, 𝑢′)2

𝐽 (𝑢, 𝑢′)
d𝜎(𝑢′).
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In order to complete the proof of Theorem 4.11 it therefore suffices to prove that

𝐽 (𝑢, 𝑢′)

𝐽 (𝑢, 𝑢′)
� 𝑄(𝑆)

5𝑛−8
2 (4.20)

with implicit constant depending only on the dimension. We do this in two steps.

Step 1: Bounding 𝐽 (𝑢, 𝑢′)

The goal here is to obtain a suitable lower bound for 𝐽 (𝑢, 𝑢′).

Proposition 4.16. We have that

𝐽 (𝑢, 𝑢′) ≥ (1 + Δ (𝑢, 𝑢′)2)
1
2 (4.21)

for all 𝑢, 𝑢′ ∈ 𝑆.

Proof. Let 𝑢 ∈ 𝑆 be fixed. The Jacobian 𝐽 of the change of variables

𝜉 (𝑢′) = 𝑢′ − 𝑅𝑢𝑢
′,

may be expressed as

𝐽 (𝑢, 𝑢′) =
| (d𝜉)𝑢′ (𝑣1) ∧ · · · ∧ (d𝜉)𝑢′ (𝑣𝑛−1) |

|𝑣1 ∧ · · · ∧ 𝑣𝑛−1 |
, (4.22)

where 𝑣1, . . . , 𝑣𝑛−1 is a basis for 𝑇𝑢′𝑆. We remark that

(d𝜉)𝑢′ (𝑣1) ∧ · · · ∧ (d𝜉)𝑢′ (𝑣𝑛−1) ∈ Λ𝑛−1 (𝑇𝑢𝑆) and 𝑣1 ∧ · · · ∧ 𝑣𝑛−1 ∈ Λ𝑛−1 (𝑇𝑢′𝑆),

and we identify the exterior algebras Λ𝑛−1 (𝑇𝑢′𝑆) and Λ𝑛−1 (𝑇𝑢𝑆) with subspaces of Λ𝑛−1 (R𝑛) via the
natural embedding induced by the inclusions 𝑇𝑢′𝑆 ⊂ R𝑛 and 𝑇𝑢𝑆 ⊂ R𝑛, respectively.

It will be convenient to fix 𝑢′ and express (4.22) in terms of unit velocities of trajectories along smooth
curves in S emanating from 𝑢′. In what follows 𝑐 : 𝐼 → 𝑆 will denote the arc-length parametrisation of
such a curve, where I is an open interval containing 0 such that 𝑐(0) = 𝑢′. If C denotes the set of all
such mappings c, then evidently

𝑇𝑢′𝑆 = 〈{ �𝑐(0) : 𝑐 ∈ C}〉.

By the strict convexity of S, the (𝑛 − 1)-dimensional spaces 𝑇𝑢′𝑆 and 𝑇𝑢𝑆 intersect in an (𝑛 − 2)-
dimensional subspace H. We then pick curves 𝑐1, . . . , 𝑐𝑛−2 ∈ C such that

H = 〈 �𝑐1 (0), . . . , �𝑐𝑛−2 (0)〉,

and the set { �𝑐𝑖 (0)}1≤𝑖≤𝑛−2 is orthonormal. To obtain an orthonormal basis for 𝑇𝑢′𝑆, we simply take any
other curve 𝑐𝑛−1 ∈ C such that �𝑐𝑛−1 (0) ∈ H⊥ ∩ 𝑇𝑢′𝑆. There is one more degree of freedom in choosing
𝑐𝑛−1, and we assume without loss of generality that �𝑐𝑛−1 (0) · 𝑁 (𝑢) ≥ 0. This gives

𝑇𝑢′𝑆 = 〈 �𝑐1 (0), . . . , �𝑐𝑛−2 (0), �𝑐𝑛−1 (0)〉.

Since

(d𝜉)𝑢′ ( �𝑐𝑖 (0)) = (𝜉 ◦ 𝑐𝑖)
′(0) = �𝑐𝑖 (0) − (d𝑅𝑢)𝑢′ ( �𝑐𝑖 (0)), 1 ≤ 𝑖 ≤ 𝑛 − 1,
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then, since | �𝑐1 (0) ∧ · · · ∧ �𝑐𝑛−1 (0) | = 1 by orthonormality of the chosen basis of 𝑇𝑢′𝑆,

𝐽 (𝑢, 𝑢′) = | (d𝜉)𝑢′ ( �𝑐1 (0)) ∧ · · · ∧ (d𝜉)𝑢′ ( �𝑐𝑛−1 (0)) |
= | ( �𝑐1 (0) − (d𝑅𝑢)𝑢′ ( �𝑐1 (0))) ∧ · · · ∧ ( �𝑐𝑛−1 (0) − (d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0))) |
= |𝑊1 − 𝑊2 |,

(4.23)

where

𝑊1 := ( �𝑐1 (0) − (d𝑅𝑢)𝑢′ ( �𝑐1 (0))) ∧ · · · ∧ ( �𝑐𝑛−2 (0) − (d𝑅𝑢)𝑢′ ( �𝑐𝑛−2 (0))) ∧ �𝑐𝑛−1 (0),
𝑊2 := ( �𝑐1 (0) − (d𝑅𝑢)𝑢′ ( �𝑐1 (0))) ∧ · · · ∧ ( �𝑐𝑛−2 (0) − (d𝑅𝑢)𝑢′ ( �𝑐𝑛−2 (0))) ∧ (d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)).

The next claim collects a few useful facts about the action of (d𝑅𝑢)𝑢′ on H.

Claim 4.17. The following hold:

1. The subspace H = 𝑇𝑢′𝑆∩𝑇𝑢𝑆 generated by the set of vectors { �𝑐1 (0), . . . , �𝑐𝑛−2 (0)} is invariant under
the map (d𝑅𝑢)𝑢′ . Moreover, (d𝑅𝑢)𝑢′ |H : H −→ H is an isomorphism. Equivalently,

H = 〈 �𝑐1 (0), . . . , �𝑐𝑛−2 (0)〉 = 〈(d𝑅𝑢)𝑢′ ( �𝑐1 (0)), . . . , (d𝑅𝑢)𝑢′ ( �𝑐𝑛−2 (0))〉. (4.24)

2. Let 𝑀𝑢,𝑢′ := (d𝑅𝑢)𝑢′ |H : H −→ H denote the restriction of (d𝑅𝑢)𝑢′ to the invariant subspace H.
Then 𝐼 − 𝑀𝑢,𝑢′ : H → H satisfies

det (𝐼 − 𝑀𝑢,𝑢′ ) ≥ 1. (4.25)

Proof. Let 𝜔 := 𝑁 (𝑢). Notice that the coplanarity condition (4.3) implies that

𝑣1 :=
𝑃 〈𝜔〉⊥ 𝑁 (𝑢′)

|𝑃 〈𝜔〉⊥ 𝑁 (𝑢′) |
= −

𝑃 〈𝜔〉⊥ 𝑁 (𝑢′′)

|𝑃 〈𝜔〉⊥ 𝑁 (𝑢′′) |
=: −𝑣2. (4.26)

On the other hand, 𝑣1 and 𝑣2 are the outward normal vectors (in 𝑇𝑢𝑆) of the convex submanifold

S𝑢,𝑢′ := 𝑆 ∩ (𝑇𝑢𝑆 + 𝑢′) (4.27)

at 𝑢′ and 𝑢′′ respectively, hence

𝑇𝑢′S𝑢,𝑢′ = 𝑇𝑢′′S𝑢,𝑢′ ,

from which (4.24) follows; see Figure 2. Observe also that on S𝑢,𝑢′ we have

𝑅𝑢𝑢
′ = 𝑁−1 (−𝑁 (𝑢′)), (4.28)

where 𝑁 : S𝑢,𝑢′ → S
𝑛−2 is the Gauss map of S𝑢,𝑢′ ⊂ 𝑢′ + 𝑇𝑢𝑆. Computing derivatives, (d𝑅𝑢)𝑢′ |H :

H −→ H satisfies

(d𝑅𝑢)𝑢′ = −d𝑁−1
−𝑁 (𝑢′)

◦ d𝑁𝑢′ .

Finally, since d𝑁−1
−𝑁 (𝑢′)

and d𝑁𝑢′ are positive definite (recall that our assumptions on S imply positive

definiteness of d𝑁𝑢 for all 𝑢 ∈ 𝑆, hence the same holds for d𝑁𝑢) the product d𝑁−1
−𝑁 (𝑢′)

◦ d𝑁𝑢′ has
positive eigenvalues, therefore

det (𝐼 − 𝑀𝑢,𝑢′ ) = det (𝐼 + d𝑁−1
−𝑁 (𝑢′)

◦ d𝑁𝑢′ ) ≥ 1. �

The next claim contains three key identities involving 𝑊1 and 𝑊2.
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Claim 4.18. The following identities hold:

〈𝑊1, 𝑊1〉 = det (𝐼 − 𝑀𝑢,𝑢′ )
2,

〈𝑊1, 𝑊2〉 = det (𝐼 − 𝑀𝑢,𝑢′ )
2〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), �𝑐𝑛−1 (0)〉

〈𝑊2, 𝑊2〉 = Δ (𝑢, 𝑢′)2 det (𝑀−1
𝑢,𝑢′ − 𝐼)

2
.

Proof. Let 01×(𝑛−2) be the 1× (𝑛− 2) zero row and let X𝑢,𝑢′ be the (𝑛− 2) × (𝑛− 2) matrix whose (𝑖, 𝑗)
entry is given by

(X𝑢,𝑢′ )𝑖, 𝑗 := 〈 �𝑐𝑖 (0) − (d𝑅𝑢)𝑢′ ( �𝑐𝑖 (0)), �𝑐 𝑗 (0) − (d𝑅𝑢)𝑢′ ( �𝑐 𝑗 (0))〉.

Observe that

〈𝑊1, 𝑊1〉 = det
(

X𝑢,𝑢′ 0�1×(𝑛−2)
01×(𝑛−2) 1

)
= det (X𝑢,𝑢′ ) = det (𝐼 − 𝑀𝑢,𝑢′ )

2,

where we used the facts that H is invariant under (d𝑅𝑢)𝑢′ (as verified in Claim 4.17) and that �𝑐𝑛−1 (0)
is orthogonal to H. Now let Y𝑢,𝑢′ be the (𝑛 − 2) × (𝑛 − 2) matrix whose (𝑖, 𝑗) entry is given by

(Y𝑢,𝑢′ )𝑖, 𝑗 := 〈(d𝑅𝑢)
−1
𝑢′ ( �𝑐𝑖 (0)) − �𝑐𝑖 (0), (d𝑅𝑢)

−1
𝑢′ ( �𝑐 𝑗 (0)) − �𝑐 𝑗 (0)〉.

Analogously,

〈𝑊2, 𝑊2〉 = | ( �𝑐1 (0) − (d𝑅𝑢)𝑢′ ( �𝑐1 (0))) ∧ · · · ∧ ( �𝑐𝑛−2 (0) − (d𝑅𝑢)𝑢′ ( �𝑐𝑛−2 (0))) ∧ (d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)) |2

= Δ (𝑢, 𝑢′)2

���������
𝑛−2∧
𝑗=1

(d𝑅𝑢)
−1
𝑢′ [ �𝑐 𝑗 (0) − (d𝑅𝑢)𝑢′ ( �𝑐 𝑗 (0))]

��� ∧ �𝑐𝑛−1 (0)

������
2

= Δ (𝑢, 𝑢′)2

���������
𝑛−2∧
𝑗=1

[(d𝑅𝑢)
−1
𝑢′ − 𝐼] ( �𝑐 𝑗 (0))

��� ∧ �𝑐𝑛−1 (0)

������
2

= Δ (𝑢, 𝑢′)2 det(Y𝑢,𝑢′ )

= Δ (𝑢, 𝑢′)2 det (𝑀−1
𝑢,𝑢′ − 𝐼)

2
.

Finally,

〈𝑊1, 𝑊2〉 = det
(

X𝑢,𝑢′ 𝐴(𝑛−2)×1
01×(𝑛−2) 〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), �𝑐𝑛−1 (0)〉

)
= det (𝐼 − 𝑀𝑢,𝑢′ )

2〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), �𝑐𝑛−1 (0)〉,

where 𝐴(𝑛−2)×1 is a (𝑛 − 2) × 1 column that does not feature in the final expression. �

Expanding |𝑊1 − 𝑊2 |
2 using the standard scalar product on the exterior algebra Λ𝑛−1 (R𝑛),

|𝑊1 − 𝑊2 |
2 = 〈𝑊1, 𝑊1〉 − 2〈𝑊1, 𝑊2〉 + 〈𝑊2, 𝑊2〉

= det (𝐼 − 𝑀𝑢,𝑢′ )
2 − 2 det (𝐼 − 𝑀𝑢,𝑢′ )

2〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), �𝑐𝑛−1 (0)〉

+ Δ (𝑢, 𝑢′)2 det (𝑀−1
𝑢,𝑢′ − 𝐼)

2
,

(4.29)

thanks to Claim 4.18. We continue with the following key observation:
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Figure 3. A graphical representation of the proof of Claim 4.19.

Claim 4.19. Under (1.12), it holds that

〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), �𝑐𝑛−1 (0)〉 < 0.

Proof. Recall that �𝑐𝑛−1 (0) · 𝑁 (𝑢) > 0 by assumption, therefore differentiating at 𝑡 = 0 the identity

〈𝑅𝑢 (𝑐𝑛−1 (𝑡)) − 𝑐𝑛−1 (𝑡), 𝑁 (𝑢)〉 = 0

gives 〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), 𝑁 (𝑢)〉 > 0. Next, observe that 𝑁 (𝑢′), 𝑁 (𝑢), 𝑁 (𝑢′′) and �𝑐𝑛−1 (0) are in H⊥,
the (two-dimensional) orthogonal complement of H in R𝑛. Since 𝑁 (𝑝) · 𝑁 (𝑞) ≥ 1

2 for all 𝑝, 𝑞 ∈ 𝑆 by
assumption, the angles 𝛼1 (between 𝑁 (𝑢′) and 𝑁 (𝑢)) and 𝛼2 (between 𝑁 (𝑢) and 𝑁 (𝑢′′)) are such that
0 < 𝛼1 + 𝛼2 < 𝜋

2 . Since 𝑁 (𝑢) ∈ H⊥, we have by the self-adjointness of the projection operator 𝑃H⊥ ,

0 < 〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), 𝑁 (𝑢)〉 = 〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), 𝑃H⊥ 𝑁 (𝑢)〉 = 〈𝑃H⊥ [(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0))], 𝑁 (𝑢)〉,

which implies that 𝑃H⊥ [(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0))] is in the upper-half space of H⊥ (here we are assuming
without loss of generality that 𝑁 (𝑢) = 𝑒2, the second canonical vector of H⊥ � R2). On the other
hand, (d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)) ∈ 𝑇𝑢′′𝑆, hence 〈𝑃H⊥ [(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0))], 𝑁 (𝑢′′)〉 = 0, that is, the angle between
𝑁 (𝑢′′) and 𝑃H⊥ [(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0))] is 𝜋2 . Since 𝜃 := 𝜋

2 −(𝛼1+𝛼2) is strictly positive, the angle 𝛾 := 𝜋
2 +𝜃

between 𝑃H⊥ [(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0))] and �𝑐𝑛−1 (0) is strictly larger than 𝜋2 (see Figure 3), which implies that

〈𝑃H⊥ [(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0))], �𝑐𝑛−1 (0)〉 < 0.

Finally, again by the self-adjointness of 𝑃H⊥ ,

〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), �𝑐𝑛−1 (0)〉 = 〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), 𝑃H⊥ [ �𝑐𝑛−1 (0)]〉
= 〈𝑃H⊥ [(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0))], �𝑐𝑛−1 (0)〉
< 0,

which concludes the proof of the claim. �

Returning to (4.29),

|𝑊1 − 𝑊2 |
2 = det (𝐼 − 𝑀𝑢,𝑢′ )

2 − 2 det (𝐼 − 𝑀𝑢,𝑢′ )
2〈(d𝑅𝑢)𝑢′ ( �𝑐𝑛−1 (0)), �𝑐𝑛−1 (0)〉

+ Δ (𝑢, 𝑢′)2 det (𝑀−1
𝑢,𝑢′ − 𝐼)

2

≥ 1 + Δ (𝑢, 𝑢′)2,

(4.30)

by (4.25) and Claim 4.19, which concludes the proof of Proposition 4.16. �
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Step 2: Bounding 𝐽/𝐽

Let 𝜆1(𝑝) ≤ 𝜆2(𝑝) ≤ · · · ≤ 𝜆𝑛−1 (𝑝) be the eigenvalues of the shape operator d𝑁 at p. Since 𝑢′′ − 𝑢′ ∈

〈𝑁 (𝑢)〉⊥, ���� 〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′)〉

〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉

���� = ���� 〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′) − 𝑁 (𝑢)〉

〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉

����
≤ 𝜆𝑛−1(𝑢

′′)
|〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′) − 𝑁 (𝑢)〉|

|𝑃𝑇𝑢′′𝑆𝑁 (𝑢) |2
.

Using the fact that |𝑃𝑇𝑢′′𝑆𝑁 (𝑢) | = |𝑁 (𝑢′′) ∧ 𝑁 (𝑢) | ≈ |𝑁 (𝑢′′) − 𝑁 (𝑢) |, which follows from (1.12), we
have

𝐽 (𝑢, 𝑢′) =

(
|𝑁 (𝑢′) ∧ 𝑁 (𝑢′′) |

|𝑁 (𝑢) ∧ 𝑁 (𝑢′) |

)𝑛−2���� 〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′)〉

〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉

���� 𝐾 (𝑢)

𝐾 (𝑢′′)

�
(
|𝑁 (𝑢′) − 𝑁 (𝑢′′) |

|𝑁 (𝑢) − 𝑁 (𝑢′) |

)𝑛−2
|〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′) − 𝑁 (𝑢)〉|

|𝑃𝑇𝑢′′𝑆𝑁 (𝑢) |2

∏𝑛−1
𝑗=1 𝜆 𝑗 (𝑢)∏𝑛−1
𝑗=1 𝜆 𝑗 (𝑢′′)

𝜆𝑛−1(𝑢
′′)

�
(
|𝑢′ − 𝑢′′ |

|𝑢 − 𝑢′|

)𝑛−2 ( sup𝑝 𝜆𝑛−1(𝑝)

inf 𝑝 𝜆1(𝑝)

)𝑛−2
|𝑢′′ − 𝑢′ | · |𝑁 (𝑢′′) − 𝑁 (𝑢) |

|𝑁 (𝑢′′) − 𝑁 (𝑢) |2

∏𝑛−2
𝑗=1 𝜆 𝑗 (𝑢)∏𝑛−2
𝑗=1 𝜆 𝑗 (𝑢′′)

𝜆𝑛−1(𝑢)

�
(
|𝑢′ − 𝑢′′ |

|𝑢 − 𝑢′|

)𝑛−2
|𝑢′′ − 𝑢′ |

|𝑁 (𝑢′′) − 𝑁 (𝑢) |
𝑄(𝑆)2(𝑛−2) sup

𝑝
𝜆𝑛−1(𝑝).

Hence by (4.5) and the fact that 𝐽 (𝑢, 𝑢′) ≥ 1 (see Proposition 4.16),

𝐽 (𝑢, 𝑢′)

𝐽 (𝑢, 𝑢′)
� 𝑄(𝑆)

5(𝑛−2)
2

|𝑢′′ − 𝑢′ |

|𝑁 (𝑢′′) − 𝑁 (𝑢) |
sup
𝑝

𝜆𝑛−1(𝑝). (4.31)

On the other hand, using the fact that 𝐽 (𝑢, 𝑢′) ≥ Δ (𝑢, 𝑢′), which also follows from Proposition 4.16,

𝐽 (𝑢, 𝑢′)

𝐽 (𝑢, 𝑢′)
≤

𝐽 (𝑢, 𝑢′)

Δ (𝑢, 𝑢′)
= 𝐽 (𝑢, 𝑢′′) �

(
|𝑢′ − 𝑢′′ |

|𝑢 − 𝑢′′ |

)𝑛−2
|𝑢′′ − 𝑢′|

|𝑁 (𝑢′) − 𝑁 (𝑢) |
𝑄(𝑆)2(𝑛−2) sup

𝑝
𝜆𝑛−1(𝑝)

� 𝑄(𝑆)
5(𝑛−2)

2
|𝑢′′ − 𝑢′ |

|𝑁 (𝑢′) − 𝑁 (𝑢) |
sup
𝑝

𝜆𝑛−1 (𝑝),

by the distance estimate (4.5) and by (4.9). Consequently,

𝐽 (𝑢, 𝑢′)

𝐽 (𝑢, 𝑢′)
� |𝑢′′ − 𝑢′|𝑄(𝑆)

5(𝑛−2)
2

1
max{|𝑁 (𝑢′′) − 𝑁 (𝑢) |, |𝑁 (𝑢′) − 𝑁 (𝑢) |}

sup
𝑝

𝜆𝑛−1(𝑝)

� |𝑢′′ − 𝑢′|𝑄(𝑆)
5(𝑛−2)

2
1

|𝑁 (𝑢′′) − 𝑁 (𝑢) | + |𝑁 (𝑢′) − 𝑁 (𝑢) |
sup
𝑝

𝜆𝑛−1(𝑝)

�
|𝑢′′ − 𝑢′ |

|𝑁 (𝑢′′) − 𝑁 (𝑢′) |
𝑄(𝑆)

5(𝑛−2)
2 sup

𝑝
𝜆𝑛−1(𝑝)

�
1

inf 𝑝 𝜆1(𝑝)
𝑄(𝑆)

5(𝑛−2)
2 sup

𝑝
𝜆𝑛−1(𝑝)

� 𝑄(𝑆)
5𝑛−8

2 ,

(4.32)

by the mean-value inequality applied to the Gauss map N. This implies (4.20), completing the proof of
Theorem 1.7 (Theorem 4.11).
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4.3. Proof of the Sobolev–Mizohata–Takeuchi inequality (Theorem 1.8)

In this section we prove Theorem 1.8, or more specifically, Theorem 4.13. We begin by observing
that if 𝑢 ∉ supp ∗(𝑔) and 𝑢′ ∈ 𝑆, then either 𝑢′ ∉ supp (𝑔) or 𝑅𝑢𝑢

′ ∉ supp (𝑔), meaning that
𝐼𝑆,𝑠 (|𝑔 |

2, |𝑔 |2) (𝑢) = 0. Consequently, by Theorem 4.11,∫
R𝑛

|𝑔d𝜎 |2𝑤 ≤ 𝑐𝑄(𝑆)
5𝑛−8

4 sup
𝑢∈supp ∗ (𝑔)

‖𝑋𝑆𝑤(𝑢, ·)‖ �𝐻 𝑠 (𝑇𝑢𝑆)

∫
𝑆

𝐼𝑆,𝑠 (|𝑔 |
2, |𝑔 |2) (𝑢)1/2d𝜎(𝑢),

and so we are reduced to proving a suitable 𝐿1 (𝑆) × 𝐿1 (𝑆) → 𝐿1/2 (𝑆) estimate on the bilinear operator

𝐼𝑆,𝑠 (𝑔1, 𝑔2) (𝑢) :=
∫
𝑆

𝑔1(𝑢
′)𝑔2(𝑅𝑢𝑢

′)

|𝑢′ − 𝑅𝑢𝑢′ |𝑠
𝐽 (𝑢, 𝑢′)d𝜎(𝑢′) (4.33)

whenever 𝑠 < 𝑛 − 1. This follows by a direct application of the forthcoming Theorem 7.2.

4.4. Improved Sobolev–Stein constants in the plane

Our proof of Theorem 1.7 identifies ‖𝐽/𝐽‖1/2
∞ as the naturally occurring dilation-invariant functional

on the surface S, rather than the power of the curvature quotient 𝑄(𝑆) that we use to bound it. In two
dimensions our expression for J, being relatively simple, permits the bound ‖𝐽/𝐽‖1/2

∞ � Λ(𝑆), where
Λ(𝑆) is defined in (1.13). To see this we argue as in (4.32), using Propositions 4.5 and 4.16 to write

𝐽 (𝑢, 𝑢′)

𝐽 (𝑢, 𝑢′)
≤ min{𝐽 (𝑢, 𝑢′), 𝐽 (𝑢, 𝑢′′)} = |𝑢′ − 𝑢′′ |𝐾 (𝑢) min

{
1

|𝑁 (𝑢) ∧ 𝑁 (𝑢′′) |
,

1
|𝑁 (𝑢) ∧ 𝑁 (𝑢′) |

}
� Λ(𝑆).

The two-dimensional case of Theorem 1.7 may then be strengthened to the following:

Theorem 4.20 (Improved Sobolev–Stein in the plane). Suppose that 𝑠 < 1
2 . There is an absolute constant

c such that∫
R2

|𝑔d𝜎(𝑥) |2𝑤(𝑥)d𝑥 ≤ 𝑐Λ(𝑆)

∫
𝑆

𝐼𝑆,2𝑠 (|𝑔 |
2, |𝑔 |2) (𝑢)1/2‖𝑋𝑆𝑤(𝑢, ·)‖ �𝐻 𝑠 (𝑇𝑢𝑆)d𝜎(𝑢).

A similar, although potentially rather more complicated statement is possible in higher dimensions,
and is left to the interested reader.

5. Estimating distances: the proof of Proposition 4.4

We begin with (4.5), and the elementary observation that if 𝜋 is 2-plane that is normal to S at a point u,
then by (1.12), it must be close to normal at all points of intersection with S. More specifically, for 𝑢̃ ∈ 𝑆
we have

|𝑃𝜋𝑁 (𝑢̃) | ≥ |𝑃(𝑇𝑢𝑆)⊥𝑁 (𝑢̃) | = 𝑁 (𝑢) · 𝑁 (𝑢̃) ≥ 1/2.

It follows by Meusnier’s theorem that for such a 𝜋, the curvature of the curve 𝑆∩𝜋 at a point is comparable
to a normal curvature of S at that same point. This allows us to transfer the curvature quotient of S to
such curves, and we shall appeal to this momentarily.

Now let 𝜋′ and 𝜋′′ be the normal 2-planes at the point u that pass through the points 𝑢′ and 𝑢′′

respectively. Let x be the orthogonal projection of u onto the plane 𝑇𝑢𝑆 + {𝑢′}, and note that {𝑢, 𝑢′, 𝑥}
and {𝑢, 𝑢′′, 𝑥} are the vertices of right-angled triangles in the 2-planes 𝜋′ and 𝜋′′ respectively. Next
observe that by the triangle inequality and Pythagoras’ theorem, it is enough to show that

|𝑥 − 𝑢′′ | � 𝑄(𝑆)1/2 |𝑥 − 𝑢′ |. (5.1)
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To see this we write S as a graph over 𝑇𝑢𝑆 + {𝑢′} as follows: let 𝜙𝑢 : 𝑇𝑢𝑆 + {𝑢′} → R be such that
𝑥 ′ ↦→ 𝑥 ′ + 𝜙𝑢 (𝑥

′)𝑁 (𝑢) is a bijective map from a subset 𝑈 ⊂ 𝑇𝑢𝑆 into S; see Figure 1. That this is
possible, and indeed that 𝜙𝑢 is uniquely defined, follows from (1.12) (a point that is elaborated in [15]).
Notice that

𝜙𝑢 (𝑢
′) = 0, 𝜙𝑢 (𝑥) = |𝑥 − 𝑢 | and ∇𝜙𝑢 (𝑥) = 0, (5.2)

by construction. Assuming that 𝑁 (𝑢) = 𝑒𝑛, as we may, the graph condition (1.12) implies that the
normal vector (∇𝜙𝑢 ,−1) lies in some fixed (proper) vertical cone, and so in particular we also have

|∇𝜙𝑢 | � 1. (5.3)

We now apply Taylor’s theorem on the line segment [𝑥, 𝑢′], along with (5.2), to obtain

|𝑥 − 𝑢 | = 𝜙𝑢 (𝑥) − 𝜙𝑢 (𝑢
′) =

1
2

𝑘 ′(𝑢, 𝑢′) |𝑥 − 𝑢′ |2,

where 𝑘 ′(𝑢, 𝑢′) is a quantity comparable to some normal curvature of S at some point. Here we have
used (5.3) along with our initial observation via Meusnier’s theorem. By symmetry a similar statement
may be made with 𝑢′′ in place of 𝑢′, from which we deduce that

𝑘 ′(𝑢, 𝑢′) |𝑥 − 𝑢′ |2 = 𝑘 ′′(𝑢, 𝑢′′) |𝑥 − 𝑢′′ |2.

The inequality (5.1) now follows from the definition of 𝑄(𝑆) and taking square roots.
Turning to (4.6), we fix u and exploit the properties of the map 𝐻 := 𝐻𝜔 = 𝑁−1 ◦Φ𝜔 from Section 6.

By the mean value theorem and Claim 6.4,

|𝑢 − 𝑢′ | = |𝐻 (0) − 𝐻 (𝑥 ′) | ≤ sup
𝜃

‖d𝐻𝜃 ‖ · |𝑥
′ | ≤ sup

𝜃
‖d𝐻𝜃 ‖ ·

| (1 − 𝜂(𝑥 ′))𝑥 ′|

|1 − 𝜂(𝑥 ′) |
= sup
𝜃

‖d𝐻𝜃 ‖ ·
|𝑥 ′ − 𝑥 ′′|

|1 − 𝜂(𝑥 ′) |
,

where 𝑥 ′′ is such that 𝐻 (𝑥 ′′) = 𝑢′′. Consequently,

|𝑢 − 𝑢′| ≤ sup
𝜃

‖d𝐻𝜃 ‖ ·
|𝐻−1 (𝐻 (𝑥 ′)) − 𝐻−1(𝐻 (𝑥 ′′)) |

|1 − 𝜂(𝑥 ′) |

≤ sup
𝜃

‖d𝐻𝜃 ‖ · sup
𝜃

‖d𝐻−1
𝜃
‖ ·

|𝐻 (𝑥 ′) − 𝐻 (𝑥 ′′) |

|1 − 𝜂(𝑥 ′) |

= sup
𝜃

‖d𝐻𝜃 ‖ · sup
𝜃

‖d𝐻−1
𝜃
‖ ·

|𝑢′ − 𝑢′′ |

|1 − 𝜂(𝑥 ′) |
,

and therefore

|𝑢′ − 𝑢′′ | ≥
|1 − 𝜂(𝑥 ′) |

sup𝜃 ‖d𝐻𝜃 ‖ · sup𝜃 ‖d𝐻−1
𝜃
‖
· |𝑢 − 𝑢′|.

We also have, for a fixed 𝜃,

‖d𝐻𝜃 ‖ ≤ ‖d𝑁−1
Φ(𝜃) ‖ · ‖dΦ𝜃 ‖ ≤

1
inf 𝑝∈𝑆 𝜆1(𝑝)

· ‖dΦ𝜃 ‖𝐿∞𝜃 ,

where inf 𝑝∈𝑆 𝜆1(𝑝) is the infimum over 𝑝 ∈ 𝑆 of the smallest eigenvalue 𝜆1(𝑝) of the shape operator
d𝑁𝑝 . Similarly,

‖d𝐻−1
𝜃
‖ ≤ ‖dΦ−1

𝜃
‖ · ‖d𝑁Φ(𝜃) ‖ ≤ ‖dΦ−1

𝜃
‖𝐿∞

𝜃
· sup
𝑝

𝜆𝑛−1(𝑝),
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where sup𝑝∈𝑆 𝜆𝑛−1(𝑝) is the supremum over 𝑝 ∈ 𝑆 of the largest eigenvalue 𝜆𝑛−1 (𝑝). Consequently,

|𝑢′ − 𝑢′′ | � |1 − 𝜂(𝑥 ′) | ·
inf 𝑝∈𝑆 𝜆1(𝑝)

sup𝑝∈𝑆 𝜆𝑛−1 (𝑝)
· |𝑢 − 𝑢′| �

1
𝑄(𝑆)

· |𝑢 − 𝑢′|, (5.4)

since 𝜂 < 0 by the strict convexity of S.

6. Computing Jacobians: the proof of Proposition 4.5

In this section we provide detailed proofs of (4.7), (4.8) and (4.9). The key idea is that the maps 𝑢 ↦→ 𝑅𝑢𝑢
′

and 𝑢′ ↦→ 𝑅𝑢𝑢
′ may be transformed into outward vector fields on Euclidean spaces (specifically 𝑇𝑢′𝑆 and

𝑇𝑢𝑆 respectively) by conjugating them with a composition of the Gauss map and a suitable stereographic
projection. The derivatives of such vector fields have only two eigenspaces, allowing the computation of
their Jacobians to be reduced to the identification of just two eigenvalues, one of which has multiplicity
𝑛 − 2 (see the forthcoming Lemma 6.2). This is manifested in the factor raised to the power 𝑛 − 2 in the
formula (4.7) for J. We begin by recalling and introducing the notation and geometric objects that will
feature in our computations of J and Δ .

◦ 𝑁 : 𝑆 → S
𝑛−1 is the Gauss map, d𝑁𝑢 : 𝑇𝑢𝑆 → 𝑇𝑁 (𝑢)S

𝑛−1 is the shape operator (recall that
𝑇𝑢𝑆 = 𝑇𝑁 (𝑢)S

𝑛−1), and 𝐾 (𝑢) = det(d𝑁𝑢) is the Gaussian curvature at 𝑢 ∈ 𝑆.
◦ The formulas of this section will be written in terms of the parameters u, 𝑢′ and 𝑢′′ = 𝑅𝑢𝑢

′, which
are points on S. We will denote their images via the Gauss map by 𝜔, 𝜔′ and 𝜔′′, respectively.

◦ For a fixed 𝜔′ ∈ S𝑛−1, Φ𝜔′ : 〈𝜔′〉⊥ → S𝑛−1 denotes the inverse of the stereographic projection map
with respect to −𝜔′. Explicitly

Φ𝜔′ (𝑥) =

(
2𝑥

1 + |𝑥 |2
,

1 − |𝑥 |2

1 + |𝑥 |2

)
(6.1)

via the identification R𝑛 = 〈𝜔′〉⊥ × 〈𝜔′〉. If 𝜔 = Φ𝜔′ (𝑥), it follows that

𝑥 =
𝜔 − 〈𝜔, 𝜔′〉𝜔′

1 + 〈𝜔, 𝜔′〉
. (6.2)

The differential (dΦ𝜔′ )𝑥 : 〈𝜔′〉⊥ → 〈𝜔〉⊥ satisfies

(dΦ𝜔′ )𝑥 (𝑥) = 〈𝜔, 𝜔′〉𝜔 − 𝜔′. (6.3)

The determinants of (dΦ𝜔′ )𝑥 and its inverse are, respectively,

det((dΦ𝜔′ )𝑥) =

(
2

1 + |𝑥 |2

)𝑛−1
= (1 + 〈𝜔, 𝜔′〉)𝑛−1 (6.4)

and

det((dΦ−1
𝜔′ )𝜔) =

(
1

1 + 〈𝜔, 𝜔′〉

)𝑛−1
. (6.5)

We refer the reader to Chapter 4 of [39] for further discussion on the properties of these maps.
◦ For 𝜔 fixed, set

𝐻𝜔 = 𝑁−1 ◦Φ𝜔 .
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𝐻𝜔 will play a crucial role in this section. As we shall see, it allows us to reduce the computations
of J and Δ to certain Euclidean analogues with simple spectral structure (outward vector fields, as
discussed above and alluded to in Remark 4.3).
We are now ready to prove (4.7), (4.8) and (4.9).

6.1. Computing J

For fixed 𝜔′ we define the map Ψ𝜔′ : 𝑁 (𝑆) → S𝑛−1 by

Ψ𝜔′ (𝜔) = 𝑁 (𝑅𝑁 −1 (𝜔)𝑁
−1 (𝜔′)). (6.6)

Strictly speaking the domain of Ψ𝜔′ depends on 𝜔′, as we allude to in Remark 4.1. The parameter
𝜔 ∈ S𝑛−1 will be a variable and we will use 𝑥 ∈ 〈𝜔′〉⊥ to represent its preimage by the map Φ𝜔′ .
Explicitly,

𝑥
Φ𝜔′

↦−−−→ 𝜔
𝑁 −1

↦−−−→ 𝑢.

By (6.6) and the definition of 𝐽 (𝑢, 𝑢′), along with the fact that the Gaussian curvature 𝐾 (𝑢) is the
determinant of the shape operator d𝑁𝑢 , we have

𝐽 (𝑢, 𝑢′) =
��det

(
dΨ𝑁 (𝑢′) (𝑁 (𝑢))

) �� 𝐾 (𝑢)

𝐾 (𝑢′′)
. (6.7)

The next step is to reduce the computation of the Jacobian determinant det
(
dΨ𝑁 (𝑢′) (𝑁 (𝑢))

)
to one of

a much simpler outward vector field 𝜑 on the tangent space at 𝑢′ (see Lemma 6.2 below). This will be
achieved by combining properties of the inverse stereographic projection map Φ𝜔′ with the geometric
condition (4.3). To this end we define the map 𝜑 : 〈𝜔′〉⊥ → 〈𝜔′〉⊥ by

𝜑(𝑥) := Φ−1
𝜔′ ◦ Ψ𝜔′ ◦Φ𝜔′ (𝑥).

Claim 6.1. The vector field 𝜑 : 〈𝜔′〉⊥ → 〈𝜔′〉⊥ is given by

𝜑(𝑥) = 𝜂(𝑥)𝑥, (6.8)

where

𝜂(𝑥) =
〈𝑥, 𝐻−1

𝜔′ (𝑅𝐻𝜔′ (𝑥)𝐻𝜔′ (0))〉
|𝑥 |2

=
〈𝑥,Φ−1

𝜔′ (𝜔′′)〉

|𝑥 |2
. (6.9)

Proof of Claim 6.1. By definition of the map 𝑅( ·)𝑢
′, the normals 𝜔, 𝜔′ and 𝜔′′ are coplanar; therefore,

they lie on a great circle. This implies that

𝜑(𝑥) = 𝜇(𝑥)𝑥

for some 𝜇(𝑥), which we conclude to be equal to 𝜂(𝑥) by taking scalar products with x on both sides of
the equation above. �

By the chain rule,

det(d𝜑(𝑥)) = det((dΦ−1
𝜔′ ) (𝜔′′)) det((dΨ𝜔′ ) (𝜔)) det((dΦ𝜔′ ) (𝑥)),

hence

det((dΨ𝜔′ ) (𝜔)) =
det(d𝜑(𝑥))

det((dΦ−1
𝜔′ ) (𝜔′′)) det((dΦ𝜔′ ) (𝑥))

.
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This implies, by (6.7),

𝐽 (𝑢, 𝑢′) =
| det(d𝜑(𝑥)) |

| det((dΦ−1
𝜔′ ) (𝜔′′)) | | det((dΦ𝜔′ ) (𝑥)) |

𝐾 (𝑢)

𝐾 (𝑢′′)
. (6.10)

We are now in a position to invoke the following elementary lemma, whose proof is left to the reader:

Lemma 6.2 (Differential structure of an outward vector field). Let 𝜂 : R𝑑 → R be a 𝐶1 function and let
𝜑 : R𝑑 → R𝑑 be given by

𝜑(𝑥) = 𝜂(𝑥)𝑥. (6.11)

The linear map

d𝜑(𝑥) = 𝑥(∇𝜂(𝑥))� + 𝜂(𝑥)𝐼𝑑

has eigenvalues 𝜆1(𝑥) = 𝜂(𝑥) and 𝜆2(𝑥) = 〈∇𝜂(𝑥), 𝑥〉 + 𝜂(𝑥) of multiplicity (𝑑 − 1) and 1, respectively.
The eigenspaces associated to these eigenvalues are

𝐸𝜆1 (𝑥) := 〈∇𝜂(𝑥)〉⊥,

𝐸𝜆2 (𝑥) := 〈𝑥〉.

In particular,

det(d𝜑(𝑥)) = [𝜂(𝑥)]𝑑−1 (〈∇𝜂(𝑥), 𝑥〉 + 𝜂(𝑥)). (6.12)

The parameter 𝑢′ ∈ 𝑆 is fixed in this subsection; therefore, 𝜔′ will also be fixed, and we write 𝐻𝜔′ = 𝐻
to simplify notation. Let us use (6.12) to compute det(d𝜑(𝑥)). The eigenvalue 𝜆1(𝑥) of d𝜑(𝑥) is

𝜆1(𝑥) = 𝜂(𝑥) =
〈𝑥, 𝐻−1(𝑅𝐻 (𝑥)𝐻 (0))〉

|𝑥 |2
,

hence, by (6.12), all there is left to do is to compute the eigenvalue 𝜆2(𝑥) of d𝜑(𝑥). By definition of the
map 𝑅( ·)𝑢

′, the vector 𝑅𝑢𝑢
′ − 𝑢′ is in the tangent space of S at u. In short,

〈𝑅𝑢𝑢
′ − 𝑢′, 𝑁 (𝑢)〉 = 0.

Equivalently,

〈𝐻 (𝜂(𝑥)𝑥) − 𝐻 (0), 𝑁 (𝐻 (𝑥))〉 = 0. (6.13)

Differentiating both sides of (6.13) with respect to x,

0 = d(𝑁 ◦ 𝐻)�𝑥 (𝐻 (𝜂(𝑥)𝑥) − 𝐻 (0)) +
(
𝑥 · ∇𝜂(𝑥)� + 𝜂(𝑥)𝐼𝑛−1

)�d𝐻�
𝜂 (𝑥)𝑥 (𝑁 ◦ 𝐻 (𝑥)).

Taking scalar products on both sides with x and using that 𝑁 ◦ 𝐻 = Φ𝜔′ , we have

0 = 〈𝐻 (𝜂(𝑥)𝑥) − 𝐻 (0), (dΦ𝜔′ )𝑥 (𝑥)〉 + 〈d𝐻�
𝜂 (𝑥)𝑥 (Φ𝜔′ (𝑥)),

(
𝑥 · ∇𝜂(𝑥)� + 𝜂(𝑥)𝐼𝑛−1

)
(𝑥)〉.

By Lemma 6.2, (
𝑥 · ∇𝜂(𝑥)� + 𝜂(𝑥)𝐼𝑛−1

)
(𝑥) = (〈∇𝜂(𝑥), 𝑥〉 + 𝜂(𝑥))𝑥,

https://doi.org/10.1017/fms.2025.10127 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10127


Forum of Mathematics, Sigma 35

and hence

𝜆2(𝑥) = 〈∇𝜂(𝑥), 𝑥〉 + 𝜂(𝑥) = −
〈𝐻 (𝜂(𝑥)𝑥) − 𝐻 (0), (dΦ𝜔′ )𝑥 (𝑥)〉

〈d𝐻�
𝜂 (𝑥)𝑥

(Φ𝜔′ (𝑥)), 𝑥〉
.

By Lemma 6.2 again,

det(d𝜑(𝑥)) = −[𝜂(𝑥)]𝑛−2 〈𝐻 (𝜂(𝑥)𝑥) − 𝐻 (0), (dΦ𝜔′ )𝑥 (𝑥)〉

〈d𝐻�
𝜂 (𝑥)𝑥

(Φ𝜔′ (𝑥)), 𝑥〉
.

By (6.10),

𝐽 (𝑢, 𝑢′) = |𝜂(𝑥) |𝑛−2 1
|〈d𝐻�

𝜂 (𝑥)𝑥
(Φ𝜔′ (𝑥)), 𝑥〉|

|〈𝐻 (𝜂(𝑥)𝑥) − 𝐻 (0), (dΦ𝜔′ )𝑥 (𝑥)〉|

| det((dΦ−1
𝜔′ ) (𝜔′′)) | | det((dΦ𝜔′ ) (𝑥)) |

𝐾 (𝑢)

𝐾 (𝑢′′)
. (6.14)

To proceed, we need to understand each factor in the formula above, which is the content of the next
claim.

Claim 6.3. The following identities hold:

|𝜂(𝑥) | =

���� 〈𝜔, 𝜔′′〉 − 〈𝜔, 𝜔′〉〈𝜔′, 𝜔′′〉

(1 + 〈𝜔′′, 𝜔′〉) (1 − 〈𝜔, 𝜔′〉)

����; (6.15)

〈𝐻 (𝜂(𝑥)𝑥) − 𝐻 (0), (dΦ𝜔′ )𝑥 (𝑥)〉 = −〈𝑢′′ − 𝑢′, 𝜔′〉; (6.16)

〈d𝐻�
𝜂 (𝑥)𝑥 (Φ𝜔′ (𝑥)), 𝑥〉 =

1
𝜂(𝑥)

〈𝜔, d𝑁−1
𝜔′′ (〈𝜔′′, 𝜔′〉𝜔′′ − 𝜔′)〉. (6.17)

Let us assume Claim 6.3 for the moment and complete the proof of the proposition. By the claim,
(6.4) and (6.5),

𝐽 (𝑢, 𝑢′) =

���� 〈𝜔, 𝜔′′〉 − 〈𝜔, 𝜔′〉〈𝜔′, 𝜔′′〉

(1 + 〈𝜔′′, 𝜔′〉) (1 − 〈𝜔, 𝜔′〉)

����𝑛−1 |〈𝑢′′ − 𝑢′, 𝜔′〉 |

|〈𝜔, d𝑁−1
𝜔′′ (〈𝜔′′, 𝜔′〉𝜔′′ − 𝜔′)〉 |

|1 + 〈𝜔′′, 𝜔′〉 |𝑛−1

|1 + 〈𝜔, 𝜔′〉 |𝑛−1
𝐾 (𝑢)

𝐾 (𝑢′′)

=

���� 〈𝜔, 𝜔′′〉 − 〈𝜔, 𝜔′〉〈𝜔′, 𝜔′′〉

1 − 〈𝜔, 𝜔′〉2

����𝑛−1 |〈𝑢′′ − 𝑢′, 𝜔′〉 |

|〈𝜔, d𝑁−1
𝜔′′ (〈𝜔′′, 𝜔′〉𝜔′′ − 𝜔′)〉 |

𝐾 (𝑢)

𝐾 (𝑢′′)
.

=

(
(1 − 〈𝜔′, 𝜔′′〉2)

1
2

(1 − 〈𝜔, 𝜔′〉2)
1
2

)𝑛−1
|〈𝑢′′ − 𝑢′, 𝜔′〉 |

|〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1(〈𝜔′′, 𝜔′〉𝜔′′ − 𝜔′)〉 |

𝐾 (𝑢)

𝐾 (𝑢′′)
, (6.18)

where we used the facts that 〈𝜔, 𝑣〉 = 〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), 𝑣〉 for every 𝑣 ∈ 𝑇𝑢′′𝑆, and that three coplanar vectors
𝜔, 𝜔′ and 𝜔′′ on the sphere satisfy

〈𝜔, 𝜔′′〉 − 〈𝜔, 𝜔′〉〈𝜔′, 𝜔′′〉 = (1 − 〈𝜔′, 𝜔′′〉2)
1
2 (1 − 〈𝜔, 𝜔′〉2)

1
2 .

We exploit the coplanarity of 𝜔, 𝜔′ and 𝜔′′ twice more. First, it implies the existence of 𝑎, 𝑏 ∈ R such
that

𝜔′′ = 𝑎𝜔 + 𝑏𝜔′. (6.19)

Consequently,

|〈𝑢′′ − 𝑢′, 𝜔′′〉 |

|〈𝑢′′ − 𝑢′, 𝜔′〉 |
=

|〈𝑢′′ − 𝑢′, 𝑎𝜔 + 𝑏𝜔′〉 |

|〈𝑢′′ − 𝑢′, 𝜔′〉 |
= |𝑏 |,
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since 𝑢′′ − 𝑢′ is perpendicular to 𝑁 (𝑢) = 𝜔. On the other hand, projecting both sides of (6.19) to 〈𝜔〉⊥

gives

𝑃 〈𝜔〉⊥𝜔′′ = 𝑏𝑃 〈𝜔〉⊥𝜔′ =⇒ |𝑏 | =
|𝑃 〈𝜔〉⊥𝜔′′ |

|𝑃 〈𝜔〉⊥𝜔′ |
,

which in turn implies

|〈𝑢′′ − 𝑢′, 𝜔′′〉 |

|〈𝑢′′ − 𝑢′, 𝜔′〉 |
=

|𝑃 〈𝜔〉⊥𝜔′′ |

|𝑃 〈𝜔〉⊥𝜔′ |
=⇒ |〈𝑢′′ − 𝑢′, 𝜔′〉 | =

(1 − 〈𝜔, 𝜔′〉2)
1
2

(1 − 〈𝜔, 𝜔′′〉2)
1
2
|〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′)〉 |. (6.20)

Second, the fact that 𝜔, 𝜔′ and 𝜔′′ are coplanar also gives us that 𝑃 〈𝜔′′ 〉⊥𝜔′ and 𝑃 〈𝜔′′ 〉⊥𝜔 are parallel,
therefore

〈𝜔′′, 𝜔′〉𝜔′′ − 𝜔′ = 𝑃 〈𝜔′′ 〉⊥𝜔′ =
|𝑃 〈𝜔′′ 〉⊥𝜔′ |

|𝑃 〈𝜔′′ 〉⊥𝜔|
𝑃 〈𝜔′′ 〉⊥𝜔 =

(1 − 〈𝜔′, 𝜔′′〉2)
1
2

(1 − 〈𝜔, 𝜔′′〉2)
1
2

𝑃𝑇𝑢′′𝑆𝑁 (𝑢). (6.21)

Likewise, or by symmetry,

〈𝜔′′, 𝜔′〉𝜔′ − 𝜔′′ = 𝑃 〈𝜔′ 〉⊥𝜔′′ =
|𝑃 〈𝜔′ 〉⊥𝜔′′ |

|𝑃 〈𝜔′ 〉⊥𝜔|
𝑃 〈𝜔′ 〉⊥𝜔 =

(1 − 〈𝜔′, 𝜔′′〉2)
1
2

(1 − 〈𝜔, 𝜔′〉2)
1
2

𝑃𝑇𝑢′𝑆𝑁 (𝑢). (6.22)

Using (6.20) and (6.21) in (6.18) gives (4.7). We now move to the final part of the argument.

Proof of Claim 6.3. By (6.9) and (6.2),

|𝜂(𝑥) | =

����〈𝜔 − 〈𝜔, 𝜔′〉𝜔′

1 + 〈𝜔, 𝜔′〉
,
𝜔′′ − 〈𝜔′′, 𝜔′〉𝜔′

1 + 〈𝜔′′, 𝜔′〉

〉���� |1 + 〈𝜔, 𝜔′〉 |2

|𝜔 − 〈𝜔, 𝜔′〉𝜔′ |2

=

���� 〈𝜔, 𝜔′′〉 − 〈𝜔, 𝜔′〉〈𝜔′, 𝜔′′〉

(1 + 〈𝜔′′, 𝜔′〉) (1 − 〈𝜔, 𝜔′〉)

����,
which verifies (6.15). To establish (6.16), we simply observe that 𝐻 (𝜂(𝑥)𝑥) − 𝐻 (0) = 𝑢′′ − 𝑢′, and this
together with (6.3) implies that

〈𝐻 (𝜂(𝑥)𝑥) − 𝐻 (0), (dΦ𝜔′ )𝑥 (𝑥)〉 = 〈𝑢′′ − 𝑢′, 〈𝜔, 𝜔′〉𝜔 − 𝜔′〉 = −〈𝑢′′ − 𝑢′, 𝜔′〉,

since 𝑢′′ − 𝑢′ is perpendicular to 𝜔 by definition of 𝑢′′. Finally, notice that Φ𝜔′ (𝜂(𝑥)𝑥) = 𝜔′′ and that a
direct computation gives

(dΦ𝜔′ )𝜂 (𝑥)𝑥 (𝑥) =
1

𝜂(𝑥)
(〈𝜔′′, 𝜔′〉𝜔′′ − 𝜔′). (6.23)

Therefore by definition of H, the chain rule and (6.23), we have

〈d𝐻�
𝜂 (𝑥)𝑥 (Φ𝜔′ (𝑥)), 𝑥〉 = 〈𝜔, d𝐻𝜂 (𝑥)𝑥 (𝑥)〉

= 〈𝜔, d𝑁−1
Φ𝜔′ (𝜂 (𝑥)𝑥) ◦ (dΦ𝜔′ )𝜂 (𝑥)𝑥 (𝑥)〉

=
1

𝜂(𝑥)
〈𝜔, d𝑁−1

𝜔′′ (〈𝜔′′, 𝜔′〉𝜔′′ − 𝜔′)〉,

which concludes the proof of Claim 6.3. �
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6.2. Computing Δ

Arguing as in Section 6.1, for fixed 𝜔 we define the map Ψ̃𝜔 : 𝑁 (𝑆) → S𝑛−1 by

Ψ̃𝜔 (𝜔
′) = 𝑁 (𝑅𝑁 −1 (𝜔)𝑁

−1 (𝜔′)). (6.24)

Recalling from Section 4 that Δ (𝑢, 𝑢′′) is the Jacobian of the change of variables 𝑢′ = 𝑅𝑢𝑢
′′, it follows

that

Δ (𝑢, 𝑢′) =
���det

(
dΨ̃𝑁 (𝑢) (𝑁 (𝑢′))

)��� 𝐾 (𝑢′)

𝐾 (𝑢′′)
. (6.25)

Recall that 𝜔′ ∈ S𝑛−1 is a variable now. We will use 𝑥 ′ ∈ 〈𝜔〉⊥ to represent its preimage by the map Φ𝜔:

𝑥 ′
Φ𝜔
↦−−→ 𝜔′ 𝑁

−1

↦−−−→ 𝑢′.

Once more we reduce the computation of det
(
dΨ̃𝑁 (𝑢) (𝑁 (𝑢′))

)
to an application of Lemma 6.2. Define

𝜑 : 〈𝜔〉⊥ → 〈𝜔〉⊥ by

𝜑(𝑥 ′) := Φ−1
𝜔 ◦ Ψ̃𝜔 ◦Φ𝜔 (𝑥

′).

Claim 6.4. 𝜑 is given by

𝜑(𝑥 ′) = 𝜂(𝑥 ′)𝑥 ′, (6.26)

where

𝜂(𝑥 ′) =
〈𝑥 ′, 𝐻−1

𝜔 (𝑅𝐻𝜔 (0)𝐻𝜔 (𝑥
′))〉

|𝑥 ′ |2
=

〈𝑥 ′,Φ−1
𝜔 (𝜔′′)〉

|𝑥 ′ |2
. (6.27)

The proof of Claim 6.4 is similar to the one of Claim 6.1. By the chain rule,

det(d𝜑(𝑥 ′)) = det((dΦ−1
𝜔 ) (𝜔′′)) det((dΨ𝜔) (𝜔′)) det((dΦ𝜔) (𝑥 ′)),

hence

det((dΨ̃𝜔) (𝜔′)) =
det(d𝜑(𝑥 ′))

det((dΦ−1
𝜔 ) (𝜔′′)) det((dΦ𝜔) (𝑥 ′))

.

This implies, by (6.25), that

Δ (𝑢, 𝑢′) =
| det(d𝜑(𝑥 ′)) |

| det((dΦ−1
𝜔 ) (𝜔′′)) | | det((dΦ𝜔) (𝑥 ′)) |

𝐾 (𝑢′)

𝐾 (𝑢′′)
. (6.28)

The parameter 𝑢 ∈ 𝑆 is fixed in this subsection (and therefore so is 𝜔 ∈ S𝑛−1), so we lighten notation
by writing 𝐻𝜔 = 𝐻. We may again compute det(d𝜑(𝑥 ′)) using Lemma 6.2. The eigenvalue 𝜆1(𝑥

′) of
d𝜑(𝑥 ′) is

𝜆1(𝑥
′) = 𝜂(𝑥 ′) =

〈𝑥 ′, 𝐻−1(𝑅𝐻 (0)𝐻 (𝑥 ′))〉

|𝑥 ′ |2
,

hence we just have to compute the eigenvalue 𝜆2(𝑥
′) of d𝜑(𝑥 ′) and use (6.12). Recall that

〈𝑅𝑢𝑢
′ − 𝑢′, 𝑁 (𝑢)〉 = 0.
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Equivalently,

〈𝐻 (𝜂(𝑥 ′)𝑥 ′) − 𝐻 (𝑥 ′), 𝑁 (𝐻 (0))〉 = 0. (6.29)

Differentiating both sides of (6.29) with respect to 𝑥 ′ and taking scalar products with 𝑥 ′ as well gives

〈(d𝐻𝜑 (𝑥′) ◦ d𝜑𝑥′ )
�(Φ𝜔 (0)), 𝑥 ′〉 = 〈𝜔, d𝐻𝑥′ (𝑥

′)〉,

which in turn implies that

〈(d𝐻𝜑 (𝑥′) )
�(𝜔), (d𝜑𝑥′ ) (𝑥

′)〉 = 〈(d𝐻𝑥′ )
�𝜔, (𝑥 ′)〉 = 〈𝜔, d𝐻𝑥′ (𝑥

′)〉.

Using the fact that 𝑥 ′ is an eigenvector of d𝜑(𝑥 ′) with eigenvalue 𝜆2(𝑥
′) and that 𝐻 = 𝑁−1 ◦Φ𝜔 yields

𝜆2(𝑥
′) =

〈𝜔, d𝑁−1
𝜔′ ◦ (dΦ𝜔)𝑥′ (𝑥 ′)〉

〈𝜔, d𝑁−1
𝜔′′ ◦ (dΦ𝜔)𝜂 (𝑥′)𝑥′ (𝑥 ′)〉

= 𝜂(𝑥 ′)
〈𝜔, d𝑁−1

𝜔′ (〈𝜔, 𝜔′〉𝜔′ − 𝜔)〉

〈𝜔, d𝑁−1
𝜔′′ (〈𝜔′′, 𝜔〉𝜔′′ − 𝜔)〉

.

By Lemma 6.2 once more,

det(d𝜑(𝑥 ′)) = [𝜂(𝑥 ′)]𝑛−1 〈𝜔, d𝑁−1
𝜔′ (〈𝜔, 𝜔′〉𝜔′ − 𝜔)〉

〈𝜔, d𝑁−1
𝜔′′ (〈𝜔′′, 𝜔〉𝜔′′ − 𝜔)〉

.

By (6.28),

Δ (𝑢, 𝑢′) =
1

| det((dΦ−1
𝜔 ) (𝜔′′)) | | det((dΦ𝜔) (𝑥 ′)) |

|𝜂(𝑥 ′) |𝑛−1 |〈𝜔, d𝑁−1
𝜔′ (〈𝜔, 𝜔′〉𝜔′ − 𝜔)〉|

|〈𝜔, d𝑁−1
𝜔′′ (〈𝜔′′, 𝜔〉𝜔′′ − 𝜔)〉|

𝐾 (𝑢′)

𝐾 (𝑢′′)
.

By (6.27),

|𝜂(𝑥 ′) | =

����〈𝜔′ − 〈𝜔, 𝜔′〉𝜔

1 + 〈𝜔, 𝜔′〉
,
𝜔′′ − 〈𝜔′′, 𝜔〉𝜔

1 + 〈𝜔′′, 𝜔〉

〉���� |1 + 〈𝜔, 𝜔′〉 |2

|𝜔′ − 〈𝜔, 𝜔′〉𝜔|2

=

���� 〈𝜔′, 𝜔′′〉 − 〈𝜔, 𝜔′〉〈𝜔, 𝜔′′〉

(1 + 〈𝜔′′, 𝜔〉)(1 − 〈𝜔, 𝜔′〉)

����. (6.30)

By (6.4), (6.5), and (6.30),

Δ (𝑢, 𝑢′) =

���� 〈𝜔′, 𝜔′′〉 − 〈𝜔, 𝜔′〉〈𝜔, 𝜔′′〉

(1 + 〈𝜔′′, 𝜔〉) · (1 − 〈𝜔, 𝜔′〉)

����𝑛−1
����1 + 〈𝜔′′, 𝜔〉

1 + 〈𝜔′, 𝜔〉

����𝑛−1 |〈𝜔, d𝑁−1
𝜔′ (〈𝜔, 𝜔′〉𝜔′ − 𝜔)〉|

|〈𝜔, d𝑁−1
𝜔′′ (〈𝜔′′, 𝜔〉𝜔′′ − 𝜔)〉|

𝐾 (𝑢′)

𝐾 (𝑢′′)

=

(
|𝑁 (𝑢) ∧ 𝑁 (𝑢′′) |

|𝑁 (𝑢) ∧ 𝑁 (𝑢′) |

)𝑛−1 |〈𝑃𝑇𝑢′𝑆𝑁 (𝑢), (d𝑁𝑢′ )
−1(𝑃𝑇𝑢′𝑆𝑁 (𝑢))〉|

|〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉|

𝐾 (𝑢′)

𝐾 (𝑢′′)
,

by (6.21), (6.22) and by similar geometric considerations to those in Section 6.1. This establishes (4.8).

6.3. Relating J and Δ

Here we establish (4.9), the ‘switching property’ of Δ . By (4.7) we have

𝐽 (𝑢, 𝑢′′)

𝐽 (𝑢, 𝑢′)
=

(
|𝑁 (𝑢) ∧ 𝑁 (𝑢′) |

|𝑁 (𝑢) ∧ 𝑁 (𝑢′′) |

)𝑛−2
����� 〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )

−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉

〈𝑃𝑇𝑢′𝑆𝑁 (𝑢), (d𝑁𝑢′ )−1(𝑃𝑇𝑢′𝑆𝑁 (𝑢))〉

����� |〈𝑢′′ − 𝑢′, 𝑁 (𝑢′)〉 |

|〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′)〉 |

𝐾 (𝑢′′)

𝐾 (𝑢′)
.
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Using the coplanarity condition (4.3), an elementary argument similar to that leading to (6.20) reveals
that

|〈𝑢′′ − 𝑢′, 𝑁 (𝑢′)〉 |

|〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′)〉 |
=

|𝑃 〈𝜔〉⊥ 𝑁 (𝑢′) |

|𝑃 〈𝜔〉⊥ 𝑁 (𝑢′′) |
=

(1 − 〈𝜔, 𝜔′〉2)
1
2

(1 − 〈𝜔, 𝜔′′〉2)
1
2
=

|𝑁 (𝑢) ∧ 𝑁 (𝑢′) |

|𝑁 (𝑢) ∧ 𝑁 (𝑢′′) |
,

from which (4.9) follows.

7. Surface-carried fractional integrals

In this section we establish Lebesgue space bounds on the bilinear fractional integrals

𝐼𝑆,𝑠 (𝑔1, 𝑔2) (𝑢) :=
∫
𝑆

𝑔1(𝑢
′)𝑔2(𝑅𝑢𝑢

′)

|𝑢′ − 𝑅𝑢𝑢′ |𝑠
𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)

arising in Section 4.

Remark 7.1 (Relation to classical fractional integral operators). This is a surface-carried variant of the
bilinear fractional integral operator

𝐼𝑠 ( 𝑓1, 𝑓2) (𝑥) :=
∫
R𝑑

𝑓1
(
𝑥 +

𝑦
2
)
𝑓2
(
𝑥 −

𝑦
2
)

|𝑦 |𝑠
𝑑𝑦

that naturally arises when S is the paraboloid (see Section 2), and has been studied by several authors;
we refer to [30] and [33].

As indicated in Section 4, the presence of the factor J in the kernel implies that this operator is
symmetric – that is, 𝐼𝑆,𝑠 (𝑔1, 𝑔2) = 𝐼𝑆,𝑠 (𝑔2, 𝑔1). It is also natural for geometric reasons, allowing for
bounds that are independent of any lower bounds on the curvature of S. For example, we have

‖𝐼𝑆,𝑠 ( 𝑓1, 𝑓2)‖1 =
∫
𝑆

∫
𝑆

𝑓1(𝑢
′) 𝑓2(𝑅𝑢𝑢

′)

|𝑢′ − 𝑅𝑢𝑢′ |𝑠
𝐽 (𝑢, 𝑢′)d𝜎(𝑢)d𝜎(𝑢′)

=
∫
𝑆

∫
𝑆

𝑓1(𝑢
′) 𝑓2(𝑢

′′)

|𝑢′ − 𝑢′′ |𝑠
d𝜎(𝑢′)d𝜎(𝑢′′)

≤ 𝐶𝑠 ‖ 𝑓1‖2‖ 𝑓2‖2,

(7.1)

where

𝐶𝑠 := sup
𝑢∈𝑆

∫
𝑆

d𝜎(𝑢′)

|𝑢 − 𝑢′|𝑠
.

Evidently 𝐶𝑠 does not depend on any lower bound on the curvature of S. More generally we have the
following:

Theorem 7.2. Let 0 < 𝑠 < 𝑛 − 1, 𝑞 ∈ [ 1
2 , 1], and S be as above. Then

‖𝐼𝑆,𝑠 (𝑔1, 𝑔2)‖𝐿𝑞 (𝑆) � 𝑄(𝑆)2(𝑛−1) ‖𝑔1‖𝐿2𝑞 (𝑆) ‖𝑔2‖𝐿2𝑞 (𝑆) ,

where the implicit constant depends on 𝑛, 𝑠, 𝑞 and the diameter of S.

In order to prove Theorem 7.2 we adapt the argument of Kenig and Stein [33] from the Euclidean
setting.

Proof of Theorem 7.2. For each dyadic scale 𝜆 � diam (𝑆) we decompose S into a collection Θ𝜆 of
𝜆-caps 𝜃, noting that |𝜃 | ∼ 𝜆𝑛−1 for such a cap. Performing a dyadic decomposition and using the
embedding ℓ𝑞 ⊂ ℓ1, for 𝑞 ≤ 1, we have that (recall that 𝑢′′ = 𝑅𝑢𝑢

′)

https://doi.org/10.1017/fms.2025.10127 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10127


40 J. Bennett et al.

∫
𝑆

𝐼𝑆,𝑠 (𝑔1, 𝑔2)
𝑞d𝜎(𝑢) �

∑
0<𝜆�diam (𝑆)

𝜆−𝑞𝑠

∫
𝑆

( ∫
𝑢′ ∈𝑆: |𝑢′−𝑢′′ |∼𝜆

𝑔1 (𝑢
′)𝑔2(𝑢

′′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)

)𝑞
d𝜎(𝑢).

Next, we fix an arbitrary dyadic scale 𝜆 and decompose∫
𝑆

( ∫
𝑢′ ∈𝑆: |𝑢′−𝑢′′ |∼𝜆

𝑔1(𝑢
′)𝑔2(𝑢

′′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)

)𝑞
d𝜎(𝑢)

=
∑
𝜃 ∈Θ𝜆

∫
𝜃

( ∫
𝑢′ ∈𝑆: |𝑢′−𝑢′′ |∼𝜆

𝑔1(𝑢
′)𝑔2(𝑢

′′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)

)𝑞
d𝜎(𝑢)

� 𝜆 (𝑛−1) (1−𝑞)
∑
𝜃 ∈Θ𝜆

( ∫
𝜃

∫
𝑢′ ∈𝑆: |𝑢′−𝑢′′ |∼𝜆

𝑔1(𝑢
′)𝑔2(𝑢

′′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)d𝜎(𝑢)

)𝑞
.

Here we used that 0 < 𝑞 ≤ 1 once more. Recall that |𝑢 − 𝑢′ | � 𝑄(𝑆) |𝑢′ − 𝑢′′ | for all 𝑢, 𝑢′ ∈ 𝑆 by
Proposition 4.4. Thus if 𝑢 ∈ 𝜃 ∈ Θ𝜆 and |𝑢′ − 𝑢′′ | ∼ 𝜆, then |𝑢 − 𝑢′ | � 𝑄(𝑆)𝜆 which means that 𝑢′ ∈ 𝜃∗,
where 𝜃∗ is an 𝑂 (𝑄(𝑆)) dilate of 𝜃. Similarly, 𝑢′′ ∈ 𝜃∗. Consequently,∫

𝑆

( ∫
𝑢′ ∈𝑆: |𝑢′−𝑢′′ |∼𝜆

𝑔1(𝑢
′)𝑔2(𝑢

′′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)

)𝑞
d𝜎(𝑢)

� 𝜆 (𝑛−1) (1−𝑞)
∑
𝜃 ∈Θ𝜆

( ∫
𝑆

∫
𝑆

𝑔11𝜃∗ (𝑢
′)𝑔21𝜃∗ (𝑢

′′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)d𝜎(𝑢)

)𝑞
= 𝜆 (𝑛−1) (1−𝑞)

∑
𝜃 ∈Θ𝜆

‖𝑔11𝜃∗ ‖
𝑞

𝐿1 (𝑆)
‖𝑔21𝜃∗ ‖

𝑞

𝐿1 (𝑆)

� 𝜆 (𝑛−1) (1−𝑞)

( ∑
𝜃 ∈Θ𝜆

‖𝑔11𝜃∗ ‖
2𝑞
𝐿1 (𝑆)

) 1
2
( ∑
𝜃 ∈Θ𝜆

‖𝑔21𝜃∗ ‖
2𝑞
𝐿1 (𝑆)

) 1
2

� 𝜆 (𝑛−1) (1−𝑞) (𝑄(𝑆)𝜆)
(𝑛−1) 2𝑞

𝑝′

( ∑
𝜃 ∈Θ𝜆

‖𝑔11𝜃∗ ‖
2𝑞
𝐿𝑝 (𝑆)

) 1
2
( ∑
𝜃 ∈Θ𝜆

‖𝑔21𝜃∗ ‖
2𝑞
𝐿𝑝 (𝑆)

) 1
2

,

for 𝑝 ≥ 1, where we have used that∫
𝑆

∫
𝑆

𝑓 (𝑢)𝑔(𝑢′′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢)d𝜎(𝑢′) = ‖ 𝑓 ‖𝐿1 (𝑆) ‖𝑔‖𝐿1 (𝑆) .

Since 𝑞 ≥ 1
2 and 𝑝 = 2𝑞, we obtain that∫
𝑆

( ∫
𝑢′ ∈𝑆: |𝑢′−𝑢′′ |∼𝜆

𝑔1 (𝑢
′)𝑔2(𝑢

′′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)

)𝑞
d𝜎(𝑢)

� 𝜆 (𝑛−1) (1−𝑞) (𝑄(𝑆)𝜆)
(𝑛−1) 2𝑞

𝑝′ 𝑄(𝑆)𝑛−1‖𝑔1‖
𝑞
𝐿𝑝 (𝑆)

‖𝑔2‖
𝑞
𝐿𝑝 (𝑆)

= 𝜆
(𝑛−1) (1−𝑞)+(𝑛−1) 2𝑞

𝑝′ 𝑄(𝑆)2𝑞 (𝑛−1) ‖𝑔1‖
𝑞
𝐿𝑝 (𝑆)

‖𝑔2‖
𝑞
𝐿𝑝 (𝑆)

,

since the set of dilated caps {𝜃∗ : 𝜃 ∈ Θ𝜆} covers S with a 𝑄(𝑆)𝑛−1 overlap factor. The geometric series
converges as long as −𝑞𝑠 + (𝑛 − 1) (1 − 𝑞 +

2𝑞
𝑝′ ) > 0. Since 𝑝 = 2𝑞, this is equivalent to 𝑠 < 𝑛 − 1. �
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8. Surface-carried maximal operators

Recall from Section 4 that the geometric Wigner distribution 𝑊𝑆 (𝑔, 𝑔) possesses the marginal properties
(4.11) and (4.12). In the (superficially) more general polarised form these are the identities∫

𝑆
𝑊𝑆 (𝑔1, 𝑔2) (𝑢, 𝑃𝑇𝑢𝑆𝑥)d𝜎(𝑢) = �𝑔1d𝜎(𝑥)�𝑔2d𝜎(𝑥) (8.1)

and ∫
𝑇𝑢𝑆

𝑊𝑆 (𝑔1, 𝑔2) (𝑢, 𝑣)d𝑣 = 𝑔1 (𝑢)𝑔2(𝑢) (8.2)

respectively. While (8.1) is an elementary consequence of Fubini’s theorem and the definition of the
Jacobian J, the property (8.2) appears to be a little more delicate in general. In particular, for 𝑔1, 𝑔2
merely in 𝐿2, the integral in identity (8.2) should be interpreted as a suitable pointwise limit – see
the forthcoming Proposition 8.4. As may be expected, a maximal analogue of the bilinear fractional
integral operator 𝐼𝑆,𝑠 of Section 7 naturally arises in our analysis. For locally integrable functions
𝑓1, 𝑓2 : 𝑆 → R+ and 0 < 𝛿 < 1 we define the ‘averaging’ operator

𝐴𝑆, 𝛿 ( 𝑓1, 𝑓2) (𝑢) = 𝛿−(𝑛−1)
∫
|𝑢′−𝑅𝑢𝑢′ |<𝛿

𝑓1(𝑢
′) 𝑓2(𝑅𝑢𝑢

′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′),

and maximal operator

𝑀𝑆 ( 𝑓1, 𝑓2) (𝑢) = sup
0<𝛿<1

𝐴𝑆, 𝛿 ( 𝑓1, 𝑓2) (𝑢).

Remark 8.1 (Relation to classical maximal operators). The operator 𝑀𝑆 is a surface-carried variant of
the classical bi(sub)-linear Hardy–Littlewood maximal operator

𝑀 ( 𝑓1, 𝑓2) (𝑥) = sup
𝛿>0

1
|𝐵(0, 𝛿) |

∫
𝐵 (0, 𝛿)

𝑓1

(
𝑥 +

𝑦

2

)
𝑓2

(
𝑥 −

𝑦

2

)
d𝑦

on a Euclidean space.
We shall need the following estimate:

Theorem 8.2. If S is smooth, strictly convex and has finite curvature quotient 𝑄(𝑆), then

𝑀𝑆 : 𝐿2 (𝑆) × 𝐿2 (𝑆) → 𝐿1,∞(𝑆). (8.3)

Proof. We begin by using the Cauchy–Schwarz inequality to write

𝐴𝑆, 𝛿 ( 𝑓1, 𝑓2) (𝑢) ≤

(
𝛿−(𝑛−1)

∫
|𝑢′−𝑅𝑢𝑢′ |<𝛿

𝑓1 (𝑢
′)2𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)

)1/2

×

(
𝛿−(𝑛−1)

∫
|𝑢′−𝑅𝑢𝑢′ |<𝛿

𝑓2(𝑅𝑢𝑢
′)2𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)

)1/2
.

Making the change of variables 𝑅𝑢𝑢
′ = 𝑢′′ in the second factor above, using Proposition 4.5, and the

fact that 𝑅𝑢𝑢
′′ = 𝑢′, we see that∫

|𝑢′−𝑅𝑢𝑢′ |<𝛿
𝑓2(𝑅𝑢𝑢

′)2𝐽 (𝑢, 𝑢′)d𝜎(𝑢′) =
∫
|𝑢′′−𝑅𝑢𝑢′′ |<𝛿

𝑓2(𝑢
′′)2𝐽 (𝑢, 𝑢′)Δ (𝑢, 𝑢′′)d𝜎(𝑢′′)

=
∫
|𝑢′′−𝑅𝑢𝑢′′ |<𝛿

𝑓2(𝑢
′′)2𝐽 (𝑢, 𝑢′′)d𝜎(𝑢′′)

=
∫
|𝑢′−𝑅𝑢𝑢′ |<𝛿

𝑓2(𝑢
′)2𝐽 (𝑢, 𝑢′)d𝜎(𝑢′).
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Thus,

𝑀𝑆 ( 𝑓1, 𝑓2) (𝑢) ≤ 𝑀1
𝑆 ( 𝑓 2

1 ) (𝑢)
1/2𝑀1

𝑆 ( 𝑓 2
2 ) (𝑢)

1/2,

where

𝑀1
𝑆 ( 𝑓 ) (𝑢) := sup

0<𝛿<1
𝛿−(𝑛−1)

∫
|𝑢′−𝑅𝑢𝑢′ |<𝛿

𝑓 (𝑢′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′).

Hence

𝜆 |{𝑢 ∈ 𝑆 : 𝑀𝑆 ( 𝑓1, 𝑓2) (𝑢) > 𝜆}| ≤ 𝜆
��{𝑢 ∈ 𝑆 : 𝑀1

𝑆 ( 𝑓 2
1 ) (𝑢)𝑀

1
𝑆 ( 𝑓 2

2 ) (𝑢) > 𝜆2}��
≤ 𝜆

��{𝑢 ∈ 𝑆 : 𝑀1
𝑆 ( 𝑓 2

1 ) (𝑢) > 𝜀𝜆
}��

+ 𝜆
��{𝑢 ∈ 𝑆 : 𝑀1

𝑆 ( 𝑓 2
2 ) (𝑢) > 𝜀−1𝜆

}��
for all 𝜀 > 0. We claim that the sublinear operator 𝑀1

𝑆 is of weak-type (1,1), and assuming this
momentarily we have

𝜆 |{𝑢 ∈ 𝑆 : 𝑀𝑆 ( 𝑓1, 𝑓2) (𝑢) > 𝜆}| � 𝜀−1‖ 𝑓1‖
2
2 + 𝜀‖ 𝑓2‖

2
2

uniformly in 𝜀. Optimising in 𝜀 now yields the claimed weak-type bound on the bi-sublinear operator
𝑀𝑆 . A similar argument in a Euclidean context may be found in [30].

It remains to establish that 𝑀1
𝑆 : 𝐿1 (𝑆) → 𝐿1,∞, and we do this by applying the well-known abstract

form of the classical Hardy–Littlewood maximal theorem presented in [48]. To this end we let 𝐵𝛿 (𝑢) =
{𝑢′ ∈ 𝑆 : 𝜌(𝑢, 𝑢′) < 𝛿}, the ball in S centred at u with respect to the function 𝜌(𝑢, 𝑢′) := |𝑢′ − 𝑅𝑢𝑢

′|. By
Proposition 4.4 it follows that 𝜌 is a quasi-distance, as defined in [48] (p. 10). Specifically, we may quickly
verify that (i) 𝜌(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦, (ii) 𝜌(𝑥, 𝑦) ≤ 𝑐𝜌(𝑦, 𝑥), and (iii) 𝜌(𝑥, 𝑦) ≤ 𝑐(𝜌(𝑥, 𝑧) + 𝜌(𝑦, 𝑧)),
for some positive constant c depending on 𝑄(𝑆). By the change of variables (4.19) and an application
of Proposition 4.16,

|𝐵𝛿 (𝑢) | =
∫
|𝜉 | ≤𝛿

𝐽 (𝑢, 𝑢′(𝜉))−1d𝜉 ≤ 𝛿𝑛−1, (8.4)

so that

𝑀1
𝑆 𝑓 (𝑢) ≤ sup

0<𝛿<1

1
|𝐵𝛿 (𝑢) |

∫
𝐵𝛿 (𝑢)

𝑓 (𝑢′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′).

Arguing as in the proof of (4.31), we have

𝐽 (𝑢, 𝑢′) � 𝑄(𝑆)
5(𝑛−2)

2
|𝑢′′ − 𝑢′ |

|𝑁 (𝑢′′) − 𝑁 (𝑢) |
sup
𝑝

𝜆𝑛−1(𝑝),

which by a further use of Proposition 4.4 and the mean value theorem applied to the Gauss map shows
that 𝐽 (𝑢, 𝑢′) is, up to a dimensional constant, bounded from above by a power of 𝑄(𝑆). Consequently,

𝑀1
𝑆 𝑓 (𝑢) � sup

0<𝛿<1

1
|𝐵𝛿 (𝑢) |

∫
𝐵𝛿 (𝑢)

𝑓 (𝑢′)d𝜎(𝑢′),

where the implicit constant is permitted to depend on 𝑄(𝑆). It remains to show that the surface
measure on S is doubling with respect to the family of balls 𝐵𝛿 (𝑢), as we may then apply the abstract

https://doi.org/10.1017/fms.2025.10127 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10127


Forum of Mathematics, Sigma 43

Hardy–Littlewood maximal theorem of [48] (see p. 37). By (8.4) it suffices to show that |𝐵𝛿 (𝑢) | ≥
𝑐𝑄(𝑆)𝑛−1𝛿𝑛−1, for some dimensional constant c. However, this follows from Proposition 4.4 since

𝐵𝛿 (𝑢) ⊇ {𝑢′ ∈ 𝑆 : |𝑢′ − 𝑢 | � 𝑄(𝑆)𝛿}. �

Remark 8.3 (𝐿𝑝 estimates for 𝑀𝑆). A minor modification of the arguments in the proof of Theorem 8.2
(a use of Hölder’s inequality in place of the Cauchy–Schwarz inequality) shows that 𝑀𝑆 : 𝐿 𝑝1 (𝑆) ×
𝐿𝑝2 (𝑆) → 𝐿𝑞 (𝑆) whenever 𝑝1, 𝑝2, 𝑞 > 1 and 1

𝑝1
+ 1
𝑝2

= 1
𝑞 . Implicitly, and as in the statement of

Theorem 8.2, the bounds here depend on the dimension and 𝑄(𝑆).

Equipped with the above maximal theorem, we may now clarify the marginal property (8.2). While
we expect that (8.2) (suitably interpreted) holds for all of the submanifolds S that we consider in this
paper, our approach seems to require the additional assumption that

lim
𝑢′→𝑢

(d𝑅𝑢)𝑢′ exists. (8.5)

We note that (8.5) requires some interpretation since for each 𝑢′ ≠ 𝑢, the map (d𝑅𝑢)𝑢′ : 𝑇𝑢′𝑆 → 𝑇𝑢′′𝑆,
and the limit should be interpreted as a linear transformation of 𝑇𝑢𝑆. One way to do this is to parametrise
S by 𝑇𝑢𝑆, upon which the map 𝑅𝑢 may be parametrised by a map 𝑦𝑢 on the fixed domain 𝑇𝑢𝑆. We clarify
this technical point in the arguments that follow. The local statement (8.5) appears to be an extremely
mild assumption. It is straightforward to verify for parabolic S, and since a smooth strictly convex surface
is locally parabolic (by Taylor’s theorem), one might reasonably expect it to be verifiable in general.

Proposition 8.4. Let S be smooth and strictly convex. Suppose 𝜒 is a Schwartz function on 𝑇𝑢𝑆 with
𝜒(0) = 1, and 𝜒𝑟 (𝑣) = 𝜒(𝑣/𝑟) for each 𝑟 > 0. Then for compactly supported 𝑔1, 𝑔2 ∈ 𝐿2 (𝑆),∫

𝑇𝑢𝑆
𝑊𝑆 (𝑔1, 𝑔2) (𝑢, 𝑣)𝜒𝑟 (𝑣)d𝑣 → 𝑔1 (𝑢)𝑔2(𝑢)

as 𝑟 → ∞ for almost every 𝑢 ∈ 𝑆. Moreover, if 𝑔1, 𝑔2 are continuous, then this convergence holds at all
points u.

Before we turn to the proof of Proposition 8.4, we state a lemma whose (somewhat technical) proof
we leave to the end of the section.

Lemma 8.5. If the limit (8.5) exists then for each 𝑢 ∈ 𝑆,

lim
𝑢′→𝑢

𝐽 (𝑢, 𝑢′) = 2𝑛−1

and

lim
𝑢′→𝑢

𝑢′−𝑢′′ ∈ 〈𝜔〉

𝐽 (𝑢, 𝑢′) = 2𝑛−1

for each 𝜔 ∈ 𝑇𝑢𝑆\{0}.

Proof of Proposition 8.4. We begin by writing∫
𝑇𝑢𝑆

𝑊𝑆 (𝑔1, 𝑔2) (𝑢, 𝑣)𝜒𝑟 (𝑣)d𝑣 =
∫
𝑇𝑢𝑆

∫
𝑆

𝑔1 (𝑢
′)𝑔2(𝑅𝑢𝑢′)𝑒−2𝜋𝑖𝑣 · (𝑢′−𝑅𝑢𝑢′) 𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)𝜒𝑟 (𝑣)d𝑣

=
∫
𝑆

𝑔1 (𝑢
′)𝑔2(𝑅𝑢𝑢′) 𝜒̂𝑟 (𝑢

′ − 𝑅𝑢𝑢
′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′)

=: A𝑆,𝑟 (𝑔1, 𝑔2) (𝑢). (8.6)

https://doi.org/10.1017/fms.2025.10127 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10127


44 J. Bennett et al.

Since 𝜒̂ is a bump function, it follows that M𝑆 (𝑔1, 𝑔2) (𝑢) � 𝑀𝑆 (|𝑔1 |, |𝑔2 |) (𝑢) where

M𝑆 (𝑔1, 𝑔2) (𝑢) := sup
𝑟>1

|A𝑆,𝑟 (𝑔1, 𝑔2) (𝑢) |.

Consequently

M𝑆 : 𝐿2 (𝑆) × 𝐿2 (𝑆) → 𝐿1,∞(𝑆), (8.7)

by Theorem 8.2. Proposition 8.4 requires us to show that

A𝑆,𝑟 (𝑔1, 𝑔2) (𝑢) → 𝑔1 (𝑢)𝑔2(𝑢) for almost every 𝑢 ∈ 𝑆. (8.8)

The first step, which uses a minor variant of a standard argument in the setting of sublinear maximal
operators (see, e.g., [49]), is to use the maximal estimate (8.7) to reduce to the case of continuous
𝑔1, 𝑔2. We leave this classical exercise to the reader. Suppose now that 𝑔1, 𝑔2 are continuous functions.
It suffices to show that

A𝑆,𝑟 (1, 1) (𝑢) :=
∫
𝑆

𝜒̂𝑟 (𝑢
′ − 𝑅𝑢𝑢

′)𝐽 (𝑢, 𝑢′)d𝜎(𝑢′) → 1. (8.9)

Invoking the change of variables (4.19) and using polar coordinates in 𝑇𝑢𝑆 we have

A𝑆,𝑟 (1, 1) (𝑢) =
∫
𝑇𝑢𝑆

𝜒̂𝑟 (𝜉)
𝐽 (𝑢, 𝑢′(𝜉))

𝐽 (𝑢, 𝑢′(𝜉))
d𝜉

=
∫ ∞

0

∫
S𝑛−2 (𝑇𝑢𝑆)

𝑟𝑛−1 𝜒̂(𝑟𝑡𝜔)
𝐽 (𝑢, 𝑢′(𝑡𝜔))

𝐽 (𝑢, 𝑢′(𝑡𝜔))
d𝜎(𝜔)𝑡𝑛−2d𝑡

=
∫ ∞

0

∫
S𝑛−2 (𝑇𝑢𝑆)

𝜒̂(𝑠𝜔)
𝐽 (𝑢, 𝑢′(𝑟−1𝑠𝜔))

𝐽 (𝑢, 𝑢′(𝑟−1𝑠𝜔))
d𝜎(𝜔)d𝑠,

where S𝑛−2 (𝑇𝑢𝑆) denotes the unit sphere in 𝑇𝑢𝑆. The limit (8.9) now follows by Lemma 8.5 since
𝑢′(𝑟−1𝑠𝜔) → 𝑢 as 𝑟 → ∞, while 𝑢′(𝑟−1𝑠𝜔) − 𝑅𝑢𝑢

′(𝑟−1𝑠𝜔) = 𝑟−1𝑠𝜔 ∈ 〈𝜔〉. �

It remains to prove Lemma 8.5.

Proof of Lemma 8.5. We begin by clarifying the hypothesis (8.5), and showing that this limit must
actually equal −𝐼, where I denotes the identity on 𝑇𝑢𝑆. This reflects a crucial ‘limiting symmetry’ of
the configuration of points 𝑢, 𝑢′, 𝑢′′ as 𝑢′ → 𝑢. By translation and rotation invariance we may suppose
that 𝑢 = 0 and 𝑆 = {(𝑥 ′, 𝜙(𝑥 ′)) : 𝑥 ′ ∈ 𝑋}, for some smooth real-valued function 𝜙 on a subset X of
𝑇𝑢𝑆 satisfying ∇𝜙(0) = 0 and Hess (𝜙) (𝑥 ′) >𝑝𝑑 0 for all 𝑥 ′. The map 𝑅 := 𝑅𝑢 then takes the form
𝑅(𝑥 ′, 𝜙(𝑥 ′)) = (𝑥 ′′, 𝜙(𝑥 ′′)), for some unique 𝑥 ′′ ∈ 𝑇𝑢𝑆 satisfying

𝜙(𝑥 ′′) = 𝜙(𝑥 ′) (8.10)

and
∇𝜙(𝑥 ′′)

|∇𝜙(𝑥 ′′) |
= −

∇𝜙(𝑥 ′)

|∇𝜙(𝑥 ′) |
. (8.11)

Observe that (8.10) follows by (4.2) and (8.11) is a consequence of (4.28). Writing 𝑥 ′′ = 𝑦(𝑥 ′) allows
us to interpret (8.5) as the existence of the limit d𝑦0 := lim𝑥′→0 d𝑦𝑥′ : 𝑇𝑢𝑆 → 𝑇𝑢𝑆. In order to show that
d𝑦0 = −𝐼, we fix 𝑣 ∈ 𝑇𝑢𝑆 and let 𝑥 ′𝑘 → 0 be a sequence in 𝑇𝑢𝑆 satisfying

∇𝜙(𝑦(𝑥 ′𝑘 ))

|∇𝜙(𝑦(𝑥 ′𝑘 )) |
= 𝑣
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for all k. This sequence exists as the Gauss maps 𝑁 of the sections S𝑢,𝑢′ (see (4.27)) are bijections.
Differentiating (8.10) at the points of this sequence, we have

d𝑦(𝑥 ′𝑘 )
�(∇𝜙(𝑦(𝑥 ′𝑘 ))) = ∇𝜙(𝑥 ′).

Using (8.11),

d𝑦(𝑥 ′𝑘 )
�

(
∇𝜙(𝑥 ′𝑘 )

|∇𝜙(𝑥 ′𝑘 ) |

)
= −

|∇𝜙(𝑥 ′𝑘 ) |

|∇𝜙(𝑦(𝑥 ′𝑘 )) |

∇𝜙(𝑥 ′𝑘 )

|∇𝜙(𝑥 ′𝑘 ) |
,

which implies

d𝑦(𝑥 ′𝑘 )
�(𝑣) = −

|∇𝜙(𝑥 ′𝑘 ) |

|∇𝜙(𝑦(𝑥 ′𝑘 )) |
𝑣 (8.12)

for all 𝑘 ∈ N. By the mean-value inequality,

|∇𝜙(𝑥 ′𝑘 ) |

|∇𝜙(𝑦(𝑥 ′𝑘 )) |
≤

sup ‖Hess 𝜙‖∞
inf ‖Hess 𝜙‖∞

|𝑥 ′𝑘 |

|𝑦(𝑥 ′𝑘 ) |
≤

sup ‖Hess 𝜙‖∞
inf ‖Hess 𝜙‖∞

1
‖d𝑦(𝑐𝑘 )‖∞

for some 𝑐𝑘 with 𝑐𝑘 → 0. On the other hand, 𝑦(𝑦(𝑥 ′𝑘 )) = 𝑥 ′𝑘 (recall that 𝑅𝑢 (𝑅𝑢𝑢
′) = 𝑢′), hence

d𝑦(𝑦(𝑥 ′𝑘 ))◦d𝑦(𝑥 ′𝑘 ) = 𝐼, which gives d𝑦2
0 = 𝐼, therefore ‖d𝑦(𝑐𝑘 )‖∞ does not approach 0 and the sequence

|∇𝜙(𝑥 ′𝑘 ) |

|∇𝜙(𝑦(𝑥 ′𝑘 )) |

is bounded. By passing to a subsequence and by taking limits, we conclude from (8.12) that

d𝑦�0 (𝑣) = −𝐿𝑣

for some positive real number L and for all 𝑣 ∈ 𝑇𝑢𝑆. On the other hand, since d𝑦2
0 = 𝐼, the only possible

eigenvalues of d𝑦0 are ±1, hence d𝑦0 = −𝐼. Finally, taking the limit as 𝑢′ → 𝑢 in the first identity of
(4.30) gives

lim
𝑢′→𝑢

𝐽 (𝑢, 𝑢′) = 2𝑛−1. (8.13)

Turning to the limiting identity for J, we first establish some bounds relating to the limiting arrange-
ments of the points 𝑢, 𝑢′, 𝑢′′ and their normals 𝑁 (𝑢), 𝑁 (𝑢′), 𝑁 (𝑢′′), beginning with

𝑢′ + 𝑢′′ − 2𝑢 = 𝑜(|𝑢 − 𝑢′ |). (8.14)

To see this (recalling that we are supposing 𝑢 = 0) observe that 𝑢′ + 𝑢′′ = (𝑥 ′ + 𝑦(𝑥 ′), 2𝜙(𝑥 ′)), and since
𝜙(𝑥 ′) = 𝑂 (|𝑥 ′ |2), it remains to show that ℎ(𝑥 ′) := 𝑥 ′ + 𝑦(𝑥 ′) = 𝑜(|𝑥 ′ |). By the mean value theorem, it
suffices to observe that dℎ𝑥′ = 𝐼 + d𝑦𝑥′ = 𝑜(1) as 𝑥 ′ → 0, since d𝑦𝑥′ → −𝐼. A similar, albeit lengthier
argument reveals that

𝑁 (𝑢′) + 𝑁 (𝑢′′) − 2𝑁 (𝑢) = 𝑜(|𝑢 − 𝑢′ |). (8.15)

Recalling the formula for 𝐽 (𝑢, 𝑢′), we observe first that the factor

|𝑁 (𝑢′) ∧ 𝑁 (𝑢′′) |

|𝑁 (𝑢′) ∧ 𝑁 (𝑢) |
=

2|𝑁 (𝑢′) ∧ 𝑁 (𝑢) | + 𝑜(|𝑢′ − 𝑢 |)

|𝑁 (𝑢′) ∧ 𝑁 (𝑢) |
→ 2
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as 𝑢′ → 𝑢. Here we are also using (1.12), which tells us that |𝑁 (𝑢′) ∧ 𝑁 (𝑢) | ∼ |𝑢′ − 𝑢 |. It remains to
show that for each unit vector 𝜔 ∈ 𝑇𝑢𝑆,���� 〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′)〉

〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1(𝑃𝑇𝑢′′𝑆𝑁 (𝑢))〉

���� → 2 (8.16)

as 𝑢′ → 𝑢 with 𝑢′ − 𝑢′′ ∈ 〈𝜔〉. Noting that 〈𝑢′′ − 𝑢′, 𝑁 (𝑢′′)〉 = 〈𝑢′′ − 𝑢′, 𝑃𝑇𝑢𝑆𝑁 (𝑢′′)〉, by (8.14) we are
reduced to showing that

lim
𝑢′→𝑢

𝑢′−𝑢′′ ∈ 〈𝜔〉

〈𝑢′′ − 𝑢, 𝑃𝑇𝑢𝑆𝑁 (𝑢′′)〉

〈𝑃𝑇𝑢′′𝑆𝑁 (𝑢), (d𝑁𝑢′′ )−1𝑃𝑇𝑢′′𝑆𝑁 (𝑢)〉
= 1.

By symmetry, we may replace 𝑢′′ by 𝑢′ here, so that the objective is to show that

lim
𝑢′→𝑢

𝑢′−𝑢′′ ∈ 〈𝜔〉

〈𝑢′ − 𝑢, 𝑃𝑇𝑢𝑆𝑁 (𝑢′)〉

〈𝑃𝑇𝑢′𝑆𝑁 (𝑢), (d𝑁𝑢′ )−1𝑃𝑇𝑢′𝑆𝑁 (𝑢)〉
= 1. (8.17)

To this end we Taylor expand 𝑁 (𝑢′) about 0 via the parametrisation 𝑢′ = (𝑥 ′, 𝜙(𝑥 ′)) =: Φ(𝑥 ′) to obtain

𝑁 (𝑢′) = 𝑁 ◦Φ(𝑥 ′) = 𝑁 ◦Φ(0) + d(𝑁 ◦Φ)0𝑥 ′ + 𝑂 (|𝑥 ′ |2)

= 𝑁 (𝑢) + (d𝑁)𝑢 ◦ (dΦ)0𝑥 ′ + 𝑂 (|𝑥 ′ |2)

= 𝑁 (𝑢) + (d𝑁)𝑢𝑥
′ + 𝑂 (|𝑥 ′ |2),

where we have used that (dΦ)𝑥′ =

(
idR𝑛−1 0

∇𝑛−1𝜙(𝑥 ′) 0

)
and ∇𝜙(0) = 0. Thus, in view of the fact that

|𝑥 ′ | = 𝑂 (|𝑢′ − 𝑢 |) we have

𝑥 ′ = (d𝑁)−1
𝑢

(
𝑁 (𝑢′) − 𝑁 (𝑢) + 𝑂 (|𝑢′ − 𝑢 |2)

)
.

The numerator of (8.17) now becomes

〈𝑢′ − 𝑢, 𝑃𝑇𝑢𝑆𝑁 (𝑢′)〉 = 〈𝑃𝑇𝑢𝑆 (𝑢
′ − 𝑢), 𝑃𝑇𝑢𝑆𝑁 (𝑢′)〉

= 〈𝑥 ′, 𝑃𝑇𝑢𝑆𝑁 (𝑢′)〉

=
〈
(d𝑁)−1

𝑢

(
𝑁 (𝑢′) − 𝑁 (𝑢) + 𝑂 (|𝑢′ − 𝑢 |2)

)
, 𝑃𝑇𝑢𝑆𝑁 (𝑢′)

〉
.

Note that

𝑃𝑇𝑢𝑆𝑁 (𝑢′) = 𝑁 (𝑢′) − 𝑁 (𝑢) + 𝑂 (|𝑢′ − 𝑢 |2),

and so

〈𝑢′ − 𝑢, 𝑃𝑇𝑢𝑆𝑁 (𝑢′)〉 =
〈
(d𝑁)−1

𝑢

(
𝑁 (𝑢′) − 𝑁 (𝑢) + 𝑂 (|𝑢′ − 𝑢 |2)

)
,
(
𝑁 (𝑢′) − 𝑁 (𝑢) + 𝑂 (|𝑢′ − 𝑢 |2)

)〉
.

This is now similar to the denominator of (8.17). In fact,

𝑃𝑇𝑢′𝑆𝑁 (𝑢) = −(𝑁 (𝑢′) − 𝑁 (𝑢)) + 𝑂 (|𝑢′ − 𝑢 |2),

and so

〈𝑢′ − 𝑢, 𝑃𝑇𝑢𝑆𝑁 (𝑢′)〉

〈𝑃𝑇𝑢′𝑆𝑁 (𝑢), (d𝑁𝑢′ )−1𝑃𝑇𝑢′𝑆𝑁 (𝑢)〉

=

〈
(d𝑁)−1

𝑢

(
𝑁 (𝑢′) − 𝑁 (𝑢) + 𝑂 (|𝑢′ − 𝑢 |2)

)
,
(
𝑁 (𝑢′) − 𝑁 (𝑢) + 𝑂 (|𝑢′ − 𝑢 |2)

)〉〈
(d𝑁)−1

𝑢′
(
𝑁 (𝑢′) − 𝑁 (𝑢) + 𝑂 (|𝑢′ − 𝑢 |2)

)
,
(
𝑁 (𝑢′) − 𝑁 (𝑢) + 𝑂 (|𝑢′ − 𝑢 |2)

)〉 .
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Further, from (8.15) we have

𝑁 (𝑢′) − 𝑁 (𝑢) =
1
2
(𝑁 (𝑢′) − 𝑁 (𝑢′′)) + 𝑜(|𝑢 − 𝑢′|),

and hence,

〈𝑢′ − 𝑢, 𝑃𝑇𝑢𝑆𝑁 (𝑢′)〉

〈𝑃𝑇𝑢′𝑆𝑁 (𝑢), (d𝑁𝑢′ )−1𝑃𝑇𝑢′𝑆𝑁 (𝑢)〉

=

〈
(d𝑁)−1

𝑢

(
𝑁 (𝑢′) − 𝑁 (𝑢′′) + 𝑜(|𝑢′ − 𝑢 |)

)
,
(
𝑁 (𝑢′) − 𝑁 (𝑢′′) + 𝑜(|𝑢′ − 𝑢 |)

)〉〈
(d𝑁)−1

𝑢′
(
𝑁 (𝑢′) − 𝑁 (𝑢′′) + 𝑜(|𝑢′ − 𝑢 |)

)
,
(
𝑁 (𝑢′) − 𝑁 (𝑢′′) + 𝑜(|𝑢′ − 𝑢 |)

)〉 .

Consequently, if

lim
𝑢′→𝑢

𝑢′−𝑢′′ ∈ 〈𝜔〉

𝑁 (𝑢′) − 𝑁 (𝑢′′)

|𝑁 (𝑢′) − 𝑁 (𝑢′′) |

exists, then (8.17) follows. Here we have also appealed to the fact that

|𝑁 (𝑢′) − 𝑁 (𝑢′′) | = | (d𝑁)𝑢 (𝑢
′ − 𝑢′′) + 𝑂 (|𝑢 − 𝑢′|2) | � |𝑢 − 𝑢′|.

Arguing similarly using Taylor’s theorem, we also have

𝑁 (𝑢′′) − 𝑁 (𝑢) = (d𝑁)𝑢𝑥
′′ + 𝑂 (|𝑥 ′′ |2),

from which it follows that

𝑁 (𝑢′) − 𝑁 (𝑢′′) = (d𝑁)𝑢𝑥
′ − (d𝑁)𝑢𝑥

′′ + 𝑂 (|𝑥 ′ |2) + 𝑂 (|𝑥 ′′ |2) = (d𝑁)𝑢 (𝑢
′ − 𝑢′′) + 𝑂 (|𝑢 − 𝑢′|2),

and so

𝑁 (𝑢′) − 𝑁 (𝑢′′)

|𝑁 (𝑢′) − 𝑁 (𝑢′′) |
=

(d𝑁)𝑢 (𝑢
′ − 𝑢′′) + 𝑂 (|𝑢 − 𝑢′ |2)

|(d𝑁)𝑢 (𝑢′ − 𝑢′′) | + 𝑂 (|𝑢 − 𝑢′ |2)
=

(d𝑁)𝑢 (𝜔) + 𝑂 (|𝑢 − 𝑢′ |)

| (d𝑁)𝑢 (𝜔) | + 𝑂 (|𝑢 − 𝑢′|)
,

which converges (to (d𝑁)𝑢𝜔/|(d𝑁)𝑢𝜔|) as 𝑢′ → 𝑢 with 𝑢′ − 𝑢′′ ∈ 〈𝜔〉, as required. �

9. Tomographic constructions

In this section we show that the explicit geometric Wigner distributions from Section 4 may be con-
structed tomographically from the corresponding extension operators, at least when 𝑛 = 2. This is
motivated by the tomographic approach to weighted extension inequalities developed in [14, 15]. For
the submanifolds S considered in Section 4, we saw that the natural tomographic transform is the S-
parametrised X-ray transform 𝑋𝑆𝑤(𝑢, 𝑣) := 𝑋𝑤(𝑁 (𝑢), 𝑣). Here X denotes the standard X-ray transform
and N the Gauss map of S. We remark that if the Gauss map is bijective, such as when S is strictly
convex and closed, the operator 𝑋𝑆 is easily seen to inherit the inversion formula

𝑐𝑛𝑋∗
𝑆𝐾 (−Δ 𝑣 )

1/2𝑋𝑆𝜓 = 𝜓

from the classical inversion formula for X; here 𝜓 is a suitably well-behaved function and 𝐾 (𝑢) is the
Gaussian curvature of S at a point u (acting multiplicatively). This suggests the following:
Proposition 9.1. Let Φ be a smooth bump function on R2 such that Φ(0) = 1, and let Φ𝜆 (𝑥) = Φ(𝑥/𝜆)
for each 𝜆 > 0. If S is a strictly convex smooth curve in the plane then

lim
𝜆→∞

𝐾 (𝑢) (−Δ 𝑣 )
1/2𝑋𝑆 (Φ𝜆 |𝑔d𝜎 |2) (𝑢, 𝑣) = 𝑊𝑆 (𝑔, 𝑔) (𝑢, 𝑣)

for all compactly supported smooth functions g on S.
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Remark 9.2 (Phase-space tomographic methods in optics). This spatial tomographic construction,
which in the particular case of the circle is somewhat implicit in [15], appears to be quite different from
the phase-space tomographic constructions of Wigner distributions that have proved effective in optics.
There it is observed that the phase-space X-ray transform applied to the Wigner distribution (referred
to as the Radon–Wigner transform) identifies its marginal distributions in all directions, and that these
marginals are natural hybrids of the coordinate marginals, involving the fractional Fourier transform.
The Wigner distribution is then (re)constructed by an application of the classical (left) inverse X-ray
transform; see, for example, [17, 3].

Remark 9.3. The cut-off Φ𝜆 is included in the statement of Proposition 9.1 as 𝑋𝑆 (|𝑔d𝜎 |2) is not in
general defined for 𝑔 ∈ 𝐿2 (𝑆) (unless there is a suitable transversality property satisfied – see [15]).
This may already be seen when 𝑆 = S1 and 𝑔 ≡ 1, as then |𝑔d𝜎(𝑥) |2 is comparable to (1 + |𝑥 |)−1 on
sufficiently large portions of R2.

Proof of Proposition 9.1. A routine (distributional) argument, using the well-known fact that

F𝑣 (𝑋 𝑓 ) (𝜔, 𝜉) = 𝑓̂ (𝜉), 𝜉 ∈ 〈𝜔〉⊥,

reveals that

(−Δ 𝑣 )
1/2𝑋𝑆 (Φ𝜆 |𝑔d𝜎 |2) (𝑢, 𝑣) =

∫
𝑇𝑢𝑆

𝑒2𝜋𝑖 𝜉 ·𝑣 |𝜉 |Φ̂𝜆 ∗ (𝑔d𝜎) ∗ (𝑔d𝜎) (𝜉)d𝜉. (9.1)

In order to take the limit as 𝜆 → ∞ it suffices, by the dominated convergence theorem, to show that

sup
𝜆≥1

|𝜉 | |Φ̂𝜆 | ∗ (𝑔d𝜎) ∗ (𝑔d𝜎) (𝜉) � (1 + |𝜉 |)−𝑁 (9.2)

for some sufficiently large 𝑁 ∈ N. This may be seen by first appealing to the strict convexity of S, along
with the assumed properties of g, to show that (𝑔d𝜎) ∗ (𝑔d𝜎) (𝜉) � |𝜉 |−11𝐵 (𝜉) for some ball 𝐵 ⊂ R2;
see [43, Section 2] for the appropriate detailed computations. The estimate (9.2) then follows using the
rapid decay of Φ̂. Taking this limit, it follows that

lim
𝜆→∞

(−Δ 𝑣 )
1/2𝑋𝑆 (Φ𝜆 |𝑔d𝜎 |2) (𝑢, 𝑣)

=
∫
𝑇𝑢𝑆

𝑒2𝜋𝑖 𝜉 ·𝑣 |𝜉 | (𝑔d𝜎) ∗ (𝑔d𝜎) (𝜉)d𝜉

=
∫
𝑆

∫
𝑆

𝑔(𝑢′)𝑔(𝑢′′)𝑒2𝜋𝑖 (𝑢′−𝑢′′) ·𝑣 |𝑢′ − 𝑢′′ |𝛿((𝑢′ − 𝑢′′) · 𝑁 (𝑢))d𝜎(𝑢′′)d𝜎(𝑢′).

Now, for fixed 𝑢, 𝑢′ the function 𝑢′′ ↦→ (𝑢′ − 𝑢′′) · 𝑁 (𝑢) vanishes if and only if either 𝑢′′ = 𝑢′ or
𝑢′′ = 𝑅𝑢𝑢

′, as defined in Section 4, and so it remains to establish the formula∫
𝑆
|𝑢′ − 𝑢′′ |𝛿((𝑢′ − 𝑢′′) · 𝑁 (𝑢))d𝜎(𝑢′′) =

|𝑢′ − 𝑅𝑢𝑢
′ |

|𝑁 (𝑢) ∧ 𝑁 (𝑅𝑢𝑢′) |
(9.3)

whenever 𝑢′ ≠ 𝑢; see Remark 4.6. Making the change of variables 𝑢′′′ = 𝑢′′ − 𝑅𝑢𝑢
′ (we stress that 𝑢′′

is the variable of integration in (9.3) rather than a simplified notation for 𝑅𝑢𝑢
′), and using H1 to denote

1-dimensional Hausdorff measure in the plane, we have that
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𝑆
|𝑢′ − 𝑢′′ |𝛿((𝑢′ − 𝑢′′) · 𝑁 (𝑢))d𝜎(𝑢′′)

=
∫
𝑆−{𝑅𝑢𝑢′ }

|𝑢′ − 𝑅𝑢𝑢
′ − 𝑢′′′ |𝛿(𝑢′′′ · 𝑁 (𝑢))dH1(𝑢′′′)

= |𝑢′ − 𝑅𝑢𝑢
′ | lim
𝜀→0

1
2𝜀

H1({𝑢′′′ ∈ (𝑆 − {𝑅𝑢𝑢
′}) : |𝑢′′′ · 𝑁 (𝑢) | < 𝜀}),

from which (9.3) follows from the smoothness of S by elementary geometric considerations. �

Remark 9.4 (Stein’s inequality as a lower bound on the X-ray transform). Stein’s inequality (1.2) may
of course be interpreted as a certain lower bound on the X-ray transform 𝑋𝑆 . Here we make some
contextual remarks relating to this in the setting of the paraboloid, where the corresponding inequality
(2.8) takes the form∫

R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 �
∫
R𝑑

‖𝜌∗𝑤(·, 𝑣)‖𝐿∞ (R𝑑) |𝑢̂0 (𝑣) |
2d𝑣, (9.4)

recalling the caveat in Remark 2.1. Somewhat similar-looking lower bounds may be obtained from the
adjoint Loomis–Whitney inequality introduced in [16]. Arguing as in [16, Section 8] it follows that

𝐶 (|𝑢̂0 |
2)‖𝑤‖𝐿𝑝

𝑥,𝑡
≤

(∫
R𝑑

‖𝜌∗𝑤(·, 𝑣)‖𝑟
𝐿𝑞 (R𝑑)

|𝑢̂0 (𝑣) |
2d𝑣

)1/𝑟
(9.5)

whenever 𝑤 ≥ 0, 0 < 𝑝, 𝑞 ≤ 1, 𝑟 > 0 and 1
𝑑+1

(
1
𝑞 − 1

)
= 1
𝑑

(
1
𝑝 − 1

)
. Here

𝐶 (|𝑢̂0 |
2) :=

(∫
(R𝑑)𝑑+1

����det
(

1 · · · 1
2𝑣1 · · · 2𝑣𝑑+1

)���� (𝑑+1)𝑟
𝑑

(
1
𝑝−1

)
|𝑢̂0 (𝑣1) |

2 · · · |𝑢̂0 (𝑣𝑑+1) |
2d𝑣

) 1
(𝑑+1)𝑟

.

Of course (9.5), while superficially similar, is numerologically very different from (9.4), and also
phenomenologically: 𝐿𝑝 norms below 𝐿1 reflect spread rather than concentration. In particular, raising
(9.5) to the rth power, setting 𝑟 = 𝑞 and taking a limit as 𝑝 → 0 one obtains( ∫

(R𝑑)𝑑+1

����det
(

1 · · · 1
2𝑣1 · · · 2𝑣𝑑+1

)����|𝑢̂0 (𝑣1) |
2 · · · |𝑢̂0 (𝑣𝑑+1) |

2d𝑣

) 1
𝑑+1

|supp 𝑤 |
𝑑

𝑑+1

≤

∫
R𝑑

|supp 𝜌∗𝑤(·, 𝑣) | |𝑢̂0 (𝑣) |
2d𝑣.

(9.6)

It was observed in [13] (see also [15]) that the left-hand side of (9.6) (and the expression 𝐶 (|𝑢̂0 |
2) in

general) has a space-time formulation in terms of u, emphasising further the parallels with (9.4). The
factor |supp 𝜌∗𝑤(·, 𝑣) | is a measure of the ‘visibility’ of w in the space-time direction (−2𝑣, 1), making
(9.6) a certain visibility version of (9.4). Similar remarks may be made for more general surfaces S and
are left to the interested reader.

10. Applications to a variant of Flandrin’s conjecture

The phase-space integral formula (2.6) exposes a formal similarity between the parabolic Mizohata–
Takeuchi inequality (2.9) (or its local substitute (2.11)) and a variant of a conjecture of Flandrin [27]
from time-frequency analysis. This conjecture, which was formulated in [25], states that∬

𝐾
𝑊 (𝑢0, 𝑢0) (𝑥, 𝑣)d𝑥d𝑣 � ‖𝑢0‖

2
2 (10.1)
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uniformly over all convex subsets K of R𝑑 × R𝑑 . This is a weakened form of the original conjecture
that was made with constant 1, following a recent counterexample in [25]; we refer to [37] for further
discussion, along with a number of supporting results.

In this section we show that the basic methods of this paper are effective towards (10.1) by establishing
a version of it in the plane involving an arbitrarily small loss in terms of the Lebesgue measure of K.
We then show how (10.1) implies the parabolic Mizohata–Takeuchi inequality (2.9) for a special class
of weights.

Theorem 10.1. For each 𝜀 > 0 there exists a constant 𝐶𝜀 < ∞ such that∬
𝐾

𝑊 (𝑢0, 𝑢0) (𝑥, 𝑣)d𝑥d𝑣 ≤ 𝐶𝜀 |𝐾 |𝜀 ‖𝑢0‖
2
2 (10.2)

for all convex subsets K of R2.

Proof. Arguing as in Section 2, and indeed Sections 3 and 4, by the Cauchy–Schwarz inequality and
the duality of the homogeneous Sobolev spaces �𝐻𝑠 and �𝐻−𝑠 , we have∬

𝐾
𝑊 (𝑢0, 𝑢0) (𝑥, 𝑣)d𝑥d𝑣 ≤

∫
𝜋2 (𝐾 )

‖𝑊 (𝑢0, 𝑢0) (·, 𝑣)‖ �𝐻−𝑠
𝑥
‖1𝐾 (·, 𝑣)‖ �𝐻 𝑠

𝑥
d𝑣, (10.3)

for each 𝑠 < 1
2 , where 𝜋2 (𝐾) ⊆ R is the projection of K onto the v-axis. We now compute both of these

Sobolev norms explicitly.
To compute the �𝐻𝑠𝑥 norm, we fix v and observe that by the convexity of K,

1𝐾 (·, 𝑣) = 1[𝑎,𝑏]

almost everywhere for some real numbers 𝑎, 𝑏. Since

|1̂[𝑎,𝑏] (𝜉) | =

���� sin(𝜋(𝑏 − 𝑎)𝜉)

𝜋𝜉

����,
‖1𝐾 (·, 𝑣)‖2

�𝐻 𝑠
𝑥
=
∫
R

|𝜉 |2𝑠
(

sin(𝜋(𝑏 − 𝑎)𝜉)

𝜋𝜉

)2
d𝜉 = (𝑏 − 𝑎)1−2𝑠

∫
R

|𝜉 |2𝑠
(

sin(𝜋𝜉)

𝜋𝜉

)2
d𝜉 ≤ 𝑐𝑠diam 1(𝐾)1−2𝑠,

with finite constant 𝑐𝑠 since 𝑠 < 1
2 . Here diam 1 (𝐾) is the diameter of K in the first coordinate direction.

To compute the �𝐻−𝑠
𝑥 norm we argue as in Section 2, and indeed Sections 3 and 4, to write

‖𝑊 (𝑢0, 𝑢0) (·, 𝑣)‖ �𝐻−𝑠
𝑥

= 𝐼2𝑠 (|𝑢̂0 |
2, |𝑢̂0 |

2) (𝑣)1/2,

where 𝐼𝑠 is given by (2.25). We estimate this term further by applying the weak-type estimate

‖𝐼𝑠 (𝑔, 𝑔)‖𝐿𝑞,∞ (R) � ‖𝑔‖2
𝐿1 (R)

, (10.4)

from [33] (see also [31]), which holds whenever 𝑠 ∈ (0, 1) and 1
𝑞 = 1 + 𝑠. In particular, given 𝜀 > 0 and

writing 𝑠𝜀 = 1
2 − 𝜀, we have

‖𝐼2𝑠𝜀 (𝑔, 𝑔)1/2‖𝐿𝑞𝜀 ,∞ (R) = ‖𝐼2𝑠𝜀 (𝑔, 𝑔)‖1/2
𝐿𝑞𝜀/2,∞ (R)

≤ 𝐶𝜀 ‖𝑔‖1, 𝑞𝜀 :=
1

1 − 𝜀
.

With this in mind, we apply the Lorentz–Hölder inequality in (10.3) to write∬
𝐾

𝑊 (𝑢0, 𝑢0) (𝑥, 𝑣)d𝑥d𝑣 ≤
##𝐼2𝑠𝜀 (|𝑢̂0 |

2, |𝑢̂0 |
2)1/2##

𝐿𝑞𝜀 ,∞ (R)

##‖1𝐾 (𝑥, 𝑣)‖ �𝐻 𝑠𝜀
𝑥

##
𝐿𝑞

′
𝜀 ,1 (𝜋2 (𝐾 ))

,
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where 𝜋2 (𝐾) is the projection of K onto the v-axis. Consequently,∬
𝐾

𝑊 (𝑢0, 𝑢0) (𝑥, 𝑣)d𝑥d𝑣 ≤ 𝐶𝜀 ‖|𝑢̂0 |
2‖1

##‖1𝐾 (𝑥, 𝑣)‖ �𝐻 𝑠𝜀
𝑥

##
𝐿𝑞

′
𝜀 ,1 (𝜋2 (𝐾 ))

≤ 𝐶𝜀 ‖|𝑢̂0 |
2‖1

##‖1𝐾 (𝑥, 𝑣)‖ �𝐻 𝑠𝜀
𝑥

##
𝐿∞

|𝜋2 (𝐾) |
1
𝑞′𝜀

≤ 𝐶𝜀𝑐
1
2
𝑠𝜀diam 1(𝐾)

1−2𝑠𝜀
2 |𝜋2 (𝐾) |

1
𝑞′𝜀 ‖𝑢0‖

2
2 .

It remains to observe that

1 − 2𝑠𝜀
2

=
1

𝑞′
𝜀
= 𝜀,

and appeal to the fact that diam 1(𝐾) is comparable to the average diameter |𝐾 |/|𝜋2 (𝐾) | uniformly over
all convex bodies K by an application of Brunn’s theorem. �

Remark 10.2 (Higher dimensions). Our proof of Theorem 10.1 does not extend to higher dimensions,
at least readily. This may already be seen if K is the Euclidean unit ball in R2𝑑 , since its d-dimensional
sections, also being Euclidean balls, fail to belong to �𝐻𝑠 whenever 𝑠 ≥ 1/2; see [48]. Evidently, a
routine extension of our argument would require such control for all 𝑠 < 𝑑/2. For further discussion of
Sobolev norms of indicator functions we refer to [26].

Remark 10.3 (Inequalities of Flandrin type for surface-carried Wigner distributions). Our proof of
Theorem 10.1 reveals that the convexity hypothesis on K may be weakened to the requirement that the
sections {𝑥 ∈ R : (𝑥, 𝑣) ∈ 𝐾} are intervals for each 𝑣 ∈ R, provided we replace the measure of K with the
diameter of K in (10.2). As such our argument should extend to Flandrin-type inequalities of the form∬

𝐾
𝑊𝑆 (𝑔, 𝑔) � ‖𝑔‖2

𝐿2 (𝑆)

for the surface-carried Wigner distributions 𝑊𝑆 of Section 4, on the assumption that 𝐾 ⊆ 𝑇𝑆 is such
that {𝑣 ∈ 𝑇𝑢𝑆 : (𝑢, 𝑣) ∈ 𝐾} is an interval for each 𝑢 ∈ 𝑆. This would require a weak-type addition
to Theorem 7.2, analogous to Theorem 1(b) in [33], and would introduce some dependence on the
curvature quotient 𝑄(𝑆).

We conclude this section by establishing a simple direct connection between the parabolic Mizohata–
Takeuchi inequality (2.9) and the Flandrin-type inequality (10.1), although with one caveat: that the
support condition on the right-hand side of the parabolic Mizohata–Takeuchi inequality is dropped.

Proposition 10.4. If the Flandrin-type conjecture (10.1) is true, then the undirected Mizohata–Takeuchi
inequality ∫

R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 � ‖𝜌∗𝑤‖∞‖𝑢0‖
2
2 (10.5)

holds for space-time weight functions w that are concave in the spatial variable.

Proof. We begin by observing that if w is a concave function in the spatial variable, then 𝜌∗𝑤 is a
concave function. This is immediate since whenever (𝑥𝜆, 𝑣𝜆) = 𝜆(𝑥1, 𝑣1) + (1 − 𝜆) (𝑥2, 𝑣2) ∈ R

𝑑 × R𝑑 ,

𝜌∗𝑤(𝑥𝜆, 𝑣𝜆) =
∫
R

𝑤(𝜆(𝑥1 − 2𝑡𝑣1) + (1 − 𝜆) (𝑥2 − 2𝑡𝑣2), 𝑡)d𝑡

≥

∫
R

(𝜆𝑤(𝑥1 − 2𝑡𝑣1, 𝑡) + (1 − 𝜆)𝑤(𝑥2 − 2𝑡𝑣2, 𝑡))d𝑡

= 𝜆𝜌∗𝑤(𝑥1, 𝑣1) + (1 − 𝜆)𝜌∗𝑤(𝑥2, 𝑣2)
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for all 0 < 𝜆 < 1. Applying the layer-cake representation,

𝜌∗𝑤(𝑥, 𝑣) =
∫ ‖𝜌∗𝑤 ‖∞

0
1𝐾 (𝑠) (𝑥, 𝑣)d𝑠, (10.6)

where 𝐾 (𝑠) = {(𝑥, 𝑣) ∈ R𝑑 × R𝑑 : 𝜌∗𝑤(𝑥, 𝑣) ≥ 𝑠}, it follows from the convexity of 𝐾 (𝑠) for each s,
Fubini’s theorem and the conjectural inequality (10.1) that∫

R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 =
∫
R𝑑×R𝑑

𝑊 (𝑢0, 𝑢0) (𝑥, 𝑣)𝜌∗𝑤(𝑥, 𝑣)d𝑥d𝑣

=
∫ ‖𝜌∗𝑤 ‖∞

0

(∬
𝐾 (𝑠)

𝑊 (𝑢0, 𝑢0) (𝑥, 𝑣)d𝑥d𝑣

)
d𝑠

� ‖𝜌∗𝑤‖∞‖𝑢0‖
2
2 . �

Remark 10.5. If instead of applying the conjectural (10.1) one applies the established (10.2) in the
proof of Proposition 10.4, an application of Chebyshev’s inequality reveals that∫
R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 ≤ 𝐶𝜀 ‖𝑢0‖
2
2

∫ ‖𝜌∗𝑤 ‖∞

0
|𝐾 (𝑠) |𝜀d𝑠 ≤

𝐶𝜀
1 − 𝑝𝜀

‖𝜌∗𝑤‖
𝑝𝜀
𝑝 ‖𝜌∗𝑤‖

1−𝑝𝜀
∞ ‖𝑢0‖

2
2

for 0 < 𝑝 < 1/𝜀. This might be interpreted as a certain 𝜀-loss form of (10.5). We thank one of the
reviewers for suggesting such an observation.

Remark 10.6 (Connections with maximally modulated singular integrals). Our proof of Theorem 10.1
hints at a connection between the Flandrin-type conjecture (10.1) and another natural question in modern
harmonic analysis. Specifically, for subsets K of R × R whose vertical sections are intervals (and hence
for convex K), a routine calculation reveals that∬

𝐾
𝑊 (𝑢0, 𝑢0) � ‖𝐻∗(𝑢0, 𝑢0)‖𝐿1 (R) , (10.7)

where

𝐻∗( 𝑓1, 𝑓2) (𝑥) := sup
𝜆∈R

����∫
R

𝑓1

(
𝑥 +

𝑦

2

)
𝑓2

(
𝑥 −

𝑦

2

)
𝑒𝑖𝜆𝑦

d𝑦

𝑦

����
is the maximally modulated bilinear Hilbert transform. The Flandrin-type conjecture (10.1) would
therefore follow from the bound

‖𝐻∗( 𝑓1, 𝑓2)‖𝐿1 (R) � ‖ 𝑓1‖𝐿2 (R) ‖ 𝑓2‖𝐿2 (R) . (10.8)

The operator 𝐻∗ is a natural (bi-sublinear) analogue of the classical Carleson maximal operator. Tools
from time-frequency analysis have proved very effective in the study of various related maximally
modulated singular integral operators (such as in [42] and [41]) following the celebrated work of Lacey
and Thiele [35, 36] on the boundedness properties of the bilinear Hilbert transform. However, as far as
we are aware, no nontrivial bounds for the operator 𝐻∗ are known. We note that the bound (10.8) was
established for certain ‘non-resonant perturbations’ of 𝐻∗ in [9].

11. Questions

Here we collect a number of questions, some concrete and some more speculative.

Question 11.1 (Strengthening the parabolic Sobolev–Mizohata–Takeuchi inequality). For nonnegative
weights w, can one strengthen (2.27) to
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R𝑑×R

|𝑢(𝑥, 𝑡) |2𝑤(𝑥, 𝑡)d𝑥d𝑡 � sup
𝑣 ∈supp (𝑢0)

‖𝜌∗𝑤(·, 𝑣)‖ �𝐻 𝑠
𝑥
‖𝑢0‖

2
2 ,

as suggested by (2.9)?

Question 11.2 (Tomographic constructions of Wigner distributions in higher dimensions). In Section 9
we saw that geometric Wigner distributions may be constructed tomographically from |𝑔d𝜎 |2 when
𝑛 = 2 using the X-ray transform. Might there be a similar tomographic construction of a Wigner
distribution that functions in all dimensions, perhaps involving the Radon transform?

Question 11.3 (Fractional Stein and Mizohata–Takeuchi inequalities). Are there interesting fractional
forms of (2.8) or (2.9) suggested by considering an oblique phase-space marginal of the Wigner
distribution in place of (2.4)? See Remark 9.2 on phase-space tomography.

Question 11.4 (A Flandrin-type inequality with an 𝜀-loss in higher dimensions). May the statement of
Theorem 10.1 be extended to dimensions 𝑑 > 1?
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