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Abstract

The purpose of this paper is to expose and investigate natural phase-space formulations of two longstand-
ing problems in the restriction theory of the Fourier transform. These problems, often referred to as the
Stein and Mizohata—Takeuchi conjectures, assert that Fourier extension operators associated with rather general
(codimension 1) submanifolds of Euclidean space may be effectively controlled by the classical X-ray transform
via weighted L2 inequalities. Our phase-space formulations, which have their origins in recent work of Dendri-
nos, Mustata and Vitturi expose close connections with a conjecture of Flandrin from time-frequency analysis, and
rest on the identification of an explicit ‘geometric’ Wigner transform associated with an arbitrary (smooth strictly
convex) submanifold S of R". Our main results are certain natural ‘Sobolev variants’ of the Stein and Mizohata—
Takeuchi conjectures and involve estimating the Sobolev norms of such Wigner transforms by geometric forms of
classical bilinear fractional integrals. Our broad geometric framework allows us to explore the role of the curvature
of the submanifold in these problems, and in particular we obtain bounds that are independent of any lower bound
on the curvature; a feature that is uncommon in the wider restriction theory of the Fourier transform. Finally, we
provide a further illustration of the effectiveness of our analysis by establishing a form of Flandrin’s conjecture in
the plane with an g-loss. While our perspective comes primarily from Euclidean harmonic analysis, the procedure
used for constructing phase-space representations of extension operators is well-known in optics.
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1. Introduction
1.1. Background: the Stein and Mizohata—Takeuchi problems

A central objective of modern harmonic analysis is to reach an effective quantitative understanding of
Fourier transforms of measures supported on submanifolds of Euclidean space, such as the sphere or
paraboloid. Problems of this type are usually formulated in terms of Fourier extension operators: to
a smooth codimension-1 submanifold S of R”, equipped with surface measure do-, we associate the
extension operator

gdo(x) = / g(uw)e ™ do (u); (1.1)
S

here g € L'(do) and x € R". The extension operator (1.1) is often referred to as an adjoint restriction
operator, as its adjoint restricts the n-dimensional Fourier transform of a function to the submanifold S.
The estimation of extension operators in various settings is known as (Fourier) restriction theory.
A key instance of this is the celebrated restriction conjecture, which concerns bounds of the form
[ @'Ilq < llgllp- Surprisingly many problems from across mathematics call for such an understanding,
from dispersive PDE to analytic number theory; see [50] for a recent survey. Such connections are often
quite intimate, as hopefully this paper serves to illustrate — in this case with regard to optics, or optical
field propagation.

In this paper we look to estimate extension operators in the setting of L?> norms with respect to
general weight functions w. This setting has been the subject of some attention since the influential
work of Stein and others in the 1970s in the closely related context of Bochner—Riesz summability. At
its centre is a variant of a question posed by Stein in the 1978 Williamstown conference on harmonic
analysis [47] (see [11] for further historical context). In its global form, for a given S, this asks whether
there is a constant C < oo for which

/ 1800 () Pw()dr < C / g sup Xw(N(u). v)dor () (12)
Rn S

vel, S

for all nonnegative weight functions w. Here N : § — S~ is the Gauss map, and X denotes the classical
X-ray transform

Xw(w,v) :=/mw(v+tw)dt, (1.3)

o0

where w € $""! and v € (w)* together parametrise the Grassmannian manifold of lines £ = £(w,v) =
{(w) + {v} in R"; here T,,S = (N(u))* denotes the tangent space of S at the point u € S. This is a
natural inequality for a number of reasons, and it is instructive to begin by considering the simple case
where g is the indicator function of a small cap (the intersection of § with a small ball in R"). The key
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observation is that | g’&az is then bounded below on a neighbourhood of a line segment with direction
normal to S, so that the left-hand side of (1.2) computes a variant of the X-ray transform of the weight
w. The inequality (1.2) therefore proposes that | g’d;'|2 concentrates on lines, or families of lines, rather
more generally. An affirmative answer to this question is easily given in the case that S is contained
in a hyperplane — a fact that follows quickly from Plancherel’s theorem. More substantial results in
support of (1.2) have been obtained for restricted classes of weights, notably when S is the sphere S~
and the weights are radial [22, 5, 4]; see also [15] and the references there. Inequalities of this general
type, where an operator is estimated with respect to a general weight function, are often referred to as
Fefferman—Stein inequalities — see [0] for a recent example. We shall also be interested in the simpler
Mizohata—Takeuchi inequality

[ 0@ Pwe0d < Cllglayy sup Xw (NG, (14
R (u,v)eT s

where the supremum is restricted to u € supp (g), as suggested by (1.2), and TS denotes the tangent
bundle of S. This emerged independently of (1.2) through work of Mizohata and Takeuchi on the well-
posedness of Schrodinger equations in the 1980s. We refer to [5] and the references there for further
context.

Remark 1.1 (The strength of (1.2)). The original motive for establishing (1.2), or some appropriate
variant of it, is that it would allow the restriction conjecture to follow (and almost immediately) from
the Kakeya maximal function conjecture, the Kakeya maximal function being a close relative of

sup Xw(N(u),v),
veTl,S

at least when S is suitably curved. We refer to [14] and the references there for further details and
discussion. In the original setting proposed by Stein, this amounts to the implication of the Bochner—
Riesz conjecture from the Nikodym (or Kakeya) maximal conjecture. There is a number of precedents
for this sort of integro-geometric control of oscillatory integral operators — see, for example, [11, 7].

Remark 1.2 (Failure of the global inequalities (1.2) and (1.4)). Very recently, and since earlier drafts of
this paper, Cairo [ 18] has succeeded in constructing a counterexample to (1.4) (and thus (1.2)) whenever
S is not contained in a hyperplane. However, her subtle example does not exclude the possibility that
the local variants

/ 1530 () 2w (x)dx < R / 18P sup Xw(N (). v)dor(u) (1.5)
B(O,R) s veT,S
and
[ @Rt s Rgl gy, swp Xw(N@.) (16)
B(0,R) (u,v)€TS

of (1.2) and (1.4) (resp.) might hold for exponents @ > 0; here R denotes a large parameter. That (1.5)
(and thus (1.6)) holds for some @ > 0 is an elementary exercise, and we refer to [21] for recent local
results of this type. In order to be meaningful for general w the inequalities (1.2) and (1.4) may therefore
be qualified with the additional assumption that w is supported in a ball of fixed radius R > 1, accepting
some growth in R in the constant factors. We clarify that such considerations are not relevant to the
results presented in this paper.

Remark 1.3 (The role of curvature). Somewhat unusually in the setting of Fourier extension estimates
it appears that the above Stein and Mizohata—Takeuchi-type inequalities should not require that S has
nonvanishing curvature; we have already noted that (1.2) is easily verified when S is a hyperplane. Related
to this fact is the observation that (1.2) and (1.4) are dilation invariant in the sense that their validity for a
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given S and a given (dilation-invariant) class of weights, implies their validity for any isotropic dilate kS
of S, uniformly in k& > 0; this follows by a routine scaling argument. This scale-invariance is important
in applications, as may be seen in the established setting of the sphere and radial weights — see [5].

1.2. Phase-space formulations

Recently in the setting of quadratic submanifolds, Dendrinos, Mustata and Vitturi [24] observed that the
Mizohata—Takeuchi inequality (1.4) may be reformulated in terms of the classical Wigner distribution,
providing it with a natural phase-space interpretation. The purpose of this paper is to establish and
explore such phase-space formulations of the Stein and Mizohata—Takeuchi inequalities for quite general
(codimension-1) submanifolds, exposing the role played by the underlying geometry. The starting point
is the surprising observation that a rather general Fourier extension operator (in modulus square) has a
natural and explicit phase-space representation, namely,

lgdo|? = XiWs(g, 8): (1.7)

see the forthcoming Proposition 4.8. Here Ws (g1, g2) : TS — R is a certain geometric (or S-carried)
Wigner transform, and X is the pullback of the X-ray transform by the Gauss map; concretely,

Xsw(u,v) := Xw(N(u),v)

for (u,v) € TS. Such phase-space representations have their origins in quantum mechanics in the case
that S is the paraboloid — a perspective that we develop in Section 2. They are also well-known in optics,
particularly when S is the paraboloid or the sphere, and we develop this perspective in Section 3. As
we shall see in the later sections, identifying a suitable Wigner transform Wy explicitly in terms of the
geometry of a general (strictly convex) submanifold S requires some careful geometric analysis. This
is one of the main achievements of this paper, and it is hoped that it will also find some interesting
applications beyond harmonic analysis. From the point of view of harmonic analysis, our treatment
of these surface-carried Wigner transforms naturally involves controlling associated surface-carried
singular integral and maximal averaging operators, which we hope will be of some independent interest.
By duality the representation (1.7) immediately gives rise to the phase-space integral formula

/ 1800 () Pw (x)dx = / W (g, §) (1, v) Xsw (i, v)dvder (u). (18)
Rn TS

leading to phase-space formulations of the Stein and Mizohata—Takeuchi problems. Here the integral on
the tangent bundle 7'S is defined in the usual way, by first integrating with respect to Lebesgue measure
on the tangent space 7,5, and then with respect to surface measure do-(u) on S.

Remark 1.4 (Connections with Flandrin’s conjecture). The phase-space formulation of the Mizohata—
Takeuchi problem has striking similarities with a conjecture of Flandrin [27] and its variants [37] in the
setting of the classical Wigner transform W. A recent form of this conjecture states that

// Wig.g) < gl (19)
K

uniformly over all convex subsets K of phase-space; this was originally formulated by Flandrin with
constant 1, although a counterexample to this stronger statement was constructed recently in [25].
The methods of this paper are also effective here, and we illustrate this in Section 10, establishing a
form of this conjecture in the plane involving an &-loss in the measure of K and by establishing that
the Flandrin-type conjecture (1.9) implies the parabolic Mizohata—Takeuchi inequality under a simple
convexity assumption on the weight function w.
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Remark 1.5 (Connections to maximally modulated singular integrals). The Flandrin-type conjecture
(1.9) in the plane (and thus (1.2) and (1.4)) is also intimately connected to boundedness questions for
the maximally modulated bilinear Hilbert transform

[l ale-3)en |

H.(f1, f2)(x) :=sup
A€R

We refer to Section 10 for details.

Evidently the phase-space formula (1.8) goes some way to motivate the original inequalities (1.2)
and (1.4). The first remark to make is that the most naive use of (1.8) is easily seen to fail for any S
through the observation that the L' estimate

/T Ws(e. )l 5 lg(uP, (1.10)

fails, despite Ws(g, g) satisfying the marginal property

Ws (g, g)(u, v)dv = |g(u)|? (1.11)
T.S

(possibly under some additional minor regularity assumption on S); see Section 8 for details, along with
the sense in which such pointwise identities hold. Of course if Xsw (u, v) is independent of v, then the
failure of (1.10) is of no consequence, and (1.2) follows quickly from an application of Fubini’s theorem
and (1.11).

Our explicit phase-space representation (1.7) requires rather little of the submanifold S. The main
assumption is that S is smooth and strictly convex in the sense that its shape operator is strictly positive
definite at all points. On a technical level we also assume that its set of unit normals N () is geodesically
convex (i.e., the intersection of N(S) with any great circle is connected), along with a mild additional
differentiability hypothesis (see Remark 4.2), which we expect to be automatic from the smoothness of S.

For the purposes of our phase-space approach to the Stein (1.2) and Mizohata—Takeuchi inequalities
(1.4), it will be convenient to restrict further to compact graphs. The assumption that S is a graph is
a very mild assumption as the Stein and Mizohata—Takeuchi inequalities (and their variants) behave
well under partitioning a manifold § into boundedly many pieces. This allows us to extend our results a
posteriori to closed manifolds such as the sphere, for example. With this in mind we make the additional
(technical) assumption that
1
N(u)-Nu') > 3 forall u,u’ € S, (1.12)
meaning that the normals to S lie in a cone of some fixed aperture.

As indicated in Remark 1.3, it is not anticipated that the discussed Stein and Mizohata—Takeuchi
inequalities have a quantitative dependence on any lower bound on the curvature of S, and our results in
this paper reflect this. Identifying this feature is one of the reasons why we have insisted on making our
analysis as geometric (or parametrisation-free) as possible. Curiously, while our bounds do not depend
on the curvature of S in absolute terms, as we shall see, certain dilation-invariant curvature functionals
naturally emerge. For example, for curves in the plane our Stein-type inequality may be controlled by
the quantity

A(S) := sup

u,u’ €S

b 1/2
( w — u”IK (w) ) : (1.13)

IN(u) AN(u")]|

where K (u) denotes the Gaussian curvature of S at the point u, and u”’ is a certain point on S constructed
geometrically from points u,u’ € S (we refer to Section 4 for details). However, in this paper we
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shall formulate our main results in terms of a relatively simple curvature functional related to the
quasi-conformality of the shape operator of S. This has the advantage of being effective in both the Stein
and Mizohata—Takeuchi settings, and in all dimensions. To describe this it is helpful to again begin with
the case n = 2, where we shall say that a strictly convex planar curve S has bounded curvature quotient
if there exists a finite constant ¢ such that

K(u) < cK(u") (1.14)

forall u,u’ € S. Let us denote by Q(S) the least such c. We extend this to higher dimensions by defining
Q(S) to be the maximum ratio of the principal curvatures of S, namely the smallest constant ¢ such that

Aj(u) < cAg(u’) (1.15)

forall u,u” € Sand 1 < j,k < n— 1, where 4,(u) denotes the jth principal curvature of S at the point
u. Evidently Q(kS) = Q(S) for all isotropic dilates kS of S — a natural property in this setting as we
have indicated in Remark 1.3.

Remark 1.6 (Relation to shape quasi-conformality). The finiteness of Q(S) may be interpreted as a
certain rather strong quasi-conformality condition on the shape operator dN of S. Indeed it quickly
implies that the shape operator is Q(S)-quasi-conformal, that is

AN < Q(S)" 2K (u) forallu € S;

see, for example, [2] for a treatment of quasi-conformal maps. This simply follows from the fact that the
principal curvatures of S are the eigenvalues of the shape operator. Arguing very similarly we see that
the finiteness of Q(S) also implies the ‘long-range’ quasi-conformality condition

lANL "™ < Q(S)" 'K (u’) forall u,u’ €S, (1.16)

which has the advantage of having content also when n = 2, where it reduces to (1.14). This latter
condition is actually equivalent to S having bounded curvature quotient even in higher dimensions,
since (1.16) = (1.15) with ¢ = Q(S)" L.

Our main theorems are the following Sobolev variants of the Stein and Mizohata—Takeuchi inequal-
ities (stated somewhat informally for the sake of exposition — see the forthcoming Theorems 4.11 and
4.13 for clarification):

Theorem 1.7 (Sobolev—Stein inequality). Suppose that S is a smooth strictly convex surface with
curvature quotient Q(S), and s < "T_l Then there is a dimensional constant ¢ such that

/R lgdo ()Pw()dr < cQ(8)™F /S Is. 2518 18 @) 21 Xsw (. Ml (7,407 (). (117)

where Is s is a certain bilinear fractional integral on S of order s, and H*(T,S) denotes the usual
homogeneous L* Sobolev space on the tangent space T,S.

Theorem 1.8 (Sobolev—Mizohata—Takeuchi inequality). Suppose that S is a smooth strictly convex
surface with curvature quotient Q(S), and s < "T_l Then there is a constant ¢, depending on at most n,
s, and the diameter of S, such that

In

—_— -12

1240 () Pw (x)dx < ¢Q(8) T 1gl2a ) sup I Xsw (it sz (7, - (1.18)
R () S
n ue

Remark 1.9. While the constant in (1.17) does not depend on the Sobolev index s, the restriction

s < "T_l is imposed in order to ensure that the kernel of the fractional integral operator Is », is a locally
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integrable function; see the statement of Theorem 4.11 for clarification. We refer to Remark 1.12 for the
optimality of the threshold "T_]

Remark 1.10 (Improved constants). It is not expected that the particular powers of Q(S) featuring in
Theorems 1.7 and 1.8 are best-possible, at least in dimensions n > 2. Moreover, and as we have already
indicated, the curvature quotient Q(.S) does not capture all of the relevant geometry of the surface S. For
example, in the relatively simple two-dimensional setting our arguments reveal that the power of Q(S)
in Theorem 1.7 may be replaced by the smaller quantity A(S) in (1.13). It is straightforward to see that
A(S) may be finite when S has a point of vanishing curvature, such as in the case of the quartic curve
S ={(t,1*) : |t| < 1}. We refer to Section 4.4 for more on this.

Remark 1.11 (Permissibility of signed weights). Our proofs of Theorems 1.7 and 1.8 reveal that they
continue to hold for signed weights w. This marks an essential difference between these theorems and
the original Stein and Mizohata—Takeuchi problems.

Remark 1.12 (The strength of Theorem 1.7). As we clarify in Section 4, Theorems 1.7 and 1.8 (when
specialised to non-negative weights w) are easily seen to be formally weaker than the global Stein and
Mizohata—Takeuchi inequalities (1.2) and (1.4) respectively (as we have commented in Remark 1.2, the

latter were recently shown to fail as stated in [18]). This follows via a standard Sobolev embedding and,

as may be expected, the range s < "—51 is best-possible in this respect. Despite its weakness relative to the

Stein inequality, the Sobolev—Stein inequality (1.17) continues to be effective in transferring estimates
for the X-ray transform to Fourier extension estimates, particularly in two dimensions. To see this, let
0 € R and write

0
-804 EgPIB = [ 1EgPw.
Rn
where w = (~A)?|Eg|?. By Theorem 1.7 (noting Remark 1.11) and the Cauchy—Schwarz inequality,
[ 1 s
(=M 1EgPIE < Is.as (181 |g|2)||zl(5)||(—A)ZXS((—A)9|E8|2)||L2(TS)

whenever s < ”—51 By our forthcoming bounds on Is ¢ (see Section 7, and in particular (7.1)),

1
175261817 18117 5, N8l (1.19)

Next, since S is strictly convex its Gauss map is injective, and hence by a change of variables followed
by the isometric property of the X-ray transform,

1 1 1
1K ()2 (=Ay)* Xswllp2rs) < [(=Av)* Xwlla = callwllp2gn)-

Therefore, provided S has everywhere nonvanishing Gaussian curvature it follows that

s 1 s_1
(=8)2Xs((-A) | Eg) 2 rs) = 1(=A)3 Xs((=A) 273 Eg D)l 2 rs)
s_1
S IK @) (=) X5 ((-0)* 273 1Eg1) |l 2 rs)
s_1
S =075 |Eg ||l

Hence

() s_1
I(=A)Z [EgPll; < NglZ(=A)**2 7| Eg|2
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whenever s < "T_l Setting g =0+35 - %, or equivalently 6 = % — s, it follows that

9
I(=8)21EgPll2 < liglly

whenever 6 > 1 — 7. This Sobolev-extension estimate is reminiscent of the well-known Strichartz
inequalities of Ozawa and Tsutsumi [44]; see [10] for some further contextual discussion. In partic-
ular, when n = 2 this implies the classical restriction theorem for smooth compact planar curves of
nonvanishing curvature, since the missing case § = 0 is the missing (endpoint) L* estimate in that
setting. We note that curvature only plays a role in the X-ray estimate, which is structurally consistent
with Stein’s inequality (1.2). This implication via (1.17) should be compared with the passage from the
Kakeya maximal conjecture to the restriction conjecture implied by Stein’s inequality (1.2) outlined in
Remark 1.1. Some related arguments in the setting of the paraboloid may be found in [46, 52, 8].

Remark 1.13 (The strength of Theorem 1.8). The proximity of (1.18) to (1.4) varies depending on the
nature of the weight w, and evidently this relates to the tightness of the Sobolev embedding referred to
in Remark 1.12. For example, in the case of the sphere (or suitable portions of it — see Theorem 3.4) and
for weights of the form w(x) = ¢(x/R), where ¢ is a smooth bump function and R > 1, Theorem 1.8
quickly leads to the inequality

1 _
R lgdo(x)|*dx < C.R®Igll>
B(0,R)

for all € > 0 and R > 1. Up to the &-loss this coincides with (1.4) and is the well-known Agmon-—
Hormander inequality [1]. For weights w that lack regularity one should expect the Sobolev embedding
referred to in Remark 1.12 to be weak, and thus (1.18) to be considerably weaker than (1.4). Examples
of such weights seem likely to include those that are known to be ‘critical’ for (1.4) in the sense that they
have large mass globally, but small mass on any line, such as the weights of Cairo [18], or the random
weights of Carbery [19] and Mulherkar [40]; see also [32].

Remark 1.14. While the curvature quotient Q (S) is invariant under isotropic dilations of S, our Sobolev—
Mizohata—Takeuchi theorem (Theorem 1.8) is not. This stems from the fact that necessarily s is strictly
less than "T’] for the implicit constant to be finite and manifests itself in the dependence on the diameter
of S in the statement of Theorem 1.8. That said, it does provide a bound that is independent of any lower
bound on the curvature of S.

Remark 1.15 (Relation to the wavepacket approach). The representation (1.7) may be viewed as a certain
‘scale-free’ (and ‘quadratic’) version of the wavepacket decomposition that has proved so effective in
Fourier restriction theory. There an extension operator is expressed as a superposition of wavepackets
adapted to tubes in R", with the tubes corresponding to a discrete set of points in the tangent bundle of S.
The distinction arises from a use of a conventional windowed Fourier transform (a linear operator) in
the wavepacket decomposition, rather than a Wigner distribution — the latter being a form of windowed
Fourier transform where the window is the input function g itself (a quadratic operator). We refer to [21]
and the references there for progress on the Stein and Mizohata—Takeuchi problems based on wavepacket
analysis.

Structure of the paper. In Section 2 we consider the case when S is the paraboloid, motivating our
perspective and results in classical quantum mechanical terms that date back to Wigner’s original work.
In Section 3 we prove Theorems 1.7 and 1.8 when S is the sphere, interpreting our perspective from the
point of view of optical field theory. In Section 4 we turn to the much more involved geometric analysis
in the setting of general submanifolds, proving Theorems 1.7 and 1.8, although deferring the necessary
analysis of Jacobians, distances and bilinear fractional integrals to Sections 6, 5 and 7 respectively. In
Section 8 we establish the characteristic marginal properties of the geometric Wigner transforms via
an analysis of the appropriate geometric maximal operators. In Section 9 we observe that the phase-
space perspective presented here coincides with a certain tomographic perspective introduced in [14]
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when n = 2, highlighting a tomographic method for constructing geometric Wigner distributions. In
Section 10 we illustrate the effectiveness of our basic methods by establishing a form of Flandrin’s
conjecture in the plane with an £ loss. Finally, in Section 11 we pose some questions.

Notation. Throughout this paper, for nonnegative quantities A, B we write A < B if there exists a
constant c¢ that is independent of S such that A < ¢B. The independence of the implicit constant ¢ of
various other parameters will be clear from the context. In particular, such constants will never depend
on the input function g, nor the weight function w.

2. The paraboloid: a quantum mechanical viewpoint

In the particular case when S is the paraboloid, the phase-space representation (1.7) has a well-known
quantum mechanical derivation going back to the original work of Wigner [53]. As may be expected,
this involves the classical Wigner transform, and as we shall see in this section, leads to some addi-
tional insights and simplifications in our arguments. Moreover, parametrised formulations of the Stein
and Mizohata—Takeuchi inequalities (1.2) and (1.4) will emerge rather naturally from these classical
considerations, permitting them some physical (or probabilistic) interpretations.

The Wigner transform is defined (see, e.g., [28]) for g1, g2 € L?>(RY) by

W(g1,82)(x,v) = /Rd g1 (x + %)gz (x - %)e‘z”iv'ydy- 2.1

For a solution # : R? x R — C of the Schrodinger equation

Ou
ZHlE =Axu

with initial data ug € Lz(Rd ), it is a classical observation dating back to Wigner [53] that

fv,t) =W, 0,u,0))(x,v) (2.2)
satisfies the kinetic transport equation
af
=L =2v.v,
ot ’ 4

from classical mechanics. Consequently

fx,v, 1) = folx +2tv,v),

where fy = W(uo, ug) : R4 x R — R is the Wigner distribution of the initial data uo. We note that the
function f may be reconciled with the corresponding f in the forthcoming Sections 3 and 4 using the
Fourier invariance property (see 1.94 of [28])

W(gls g2)('x’ V) = W(§1,§2)(—V,X). (23)

By the classical marginal property

[, W o)y = 1P 24)

of the Wigner distribution we obtain the phase-space representation

lu(x,0)|* = /Rd f(x,v,t)dv = /Rd fo(x +2tv,v)dv = p(fo)(x,1). (2.5)
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The operator p, which is referred to as a velocity averaging operator in Kinetic theory, is easily seen to
be a certain (parametrised) adjoint space-time X-ray transform, indeed

P @) = [ gl-2mna
R
which is of course an integral of the space-time function g along the line through the point (x, 0) with
direction (—2v, 1). We caution that the parameter v, being a velocity, describes the direction of this line.
This differs from elsewhere in this paper where v is used as a translation (or position) parameter.

As we have indicated in the introduction, the above phase-space representation is particularly natural
if one is interested in weighted L? norms of u, since by duality

/ lu(x, ) ]*w(x, r)dxds =/ W (ug, ug) (x, v)p*w(x, v)dxdv. (2.6)
RIXR RAxRA

We refer to [24] where this identity was recently derived directly. If the initial data ug is a Gaussian
then W (ug, up) is also a (real) Gaussian, and being nonnegative it follows that

/ |u(x,t)|2w(x,t)dxdt3/ (/ W (1o, uo) (x, v)dx | sup p*w(x, v)dv
RIXR R \J R x
=/ it (v)|? sup p*w(x, v)dv,
R4 x
which in turn implies that

/ lu(x,)Pw(x,t)dxdt < sup  pw(x,v) ||u0||%.
RIXR

xeR4
v esupp (i)
Here we have used the further marginal property
[, Wiy = P @
R
of the Wigner distribution, followed by Plancherel’s theorem. It is therefore reasonably natural to ask
whether
/ lu(x, 1)|*w(x, 1)dxdr < / |i2o(v)|? sup p*w(x, v)dv, (2.8)
R4xR R4 X
and thus
/ lu(x,t)*w(x,)dxdr s sup  p*w(x,v) |luol)? (2.9)
RIXR xeR?
v esupp (i)

might hold for general ug. As we clarify shortly in Remark 2.3, the inequalities (2.8) and (2.9) are
parabolic forms of the Stein (1.2) and Mizohata—Takeuchi (1.4) inequalities and as such also fail (see
Remark 1.2).

Remark 2.1. As indicated in Remark 1.2, the recent counterexamples in [ 18] leave open the possibility
that for iz supported in the unit ball (say),

/ lu(x, 1)|?w(x, t)dxdr < CSR‘E/ lito(v)|? sup p*w(x, v)dv (2.10)
|(x,t)|<R R4 X
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and

/ lu(x,0)|*w(x,t)dxdt < CeR®  sup  p*w(x,v) [luoll (2.11)
|(x.0)| <R xeRd
v esupp (ito)

might hold for each € > 0 and all R > 1; in other words, (2.8) and (2.9) under the assumption that
w is supported in the space-time ball B(0, R), accepting a factor of R in the implicit constant on the
right-hand sides for each € > 0. The requirement that iz is supported in some fixed compact set (the
unit ball here) prevents scale-invariance considerations reducing (2.10) and (2.11) to (2.8) and (2.9)
respectively. We remark that these inequalities are naturally referred to as Strichartz estimates, being
bounds on space-time norms.

Remark 2.2 (A quasi-probabilistic interpretation). In the phase-space formulation of quantum
mechanics the Wigner distribution W (ug, ug) is interpreted as a (quasi-) probability distribution on
position-momentum space for a quantum particle, and so the inequalities (2.8) and (2.9) for any given
weight w are the assertions that

Ex,v(p*w) < Ex,v(”p*W”L;") (212)

and
Exv(p™w) S llp"wlle (2.13)

respectively; we recall that these inequalities are known to fail for general w unless we make some
additional localisations (see Remark 2.1). Here the expectation is taken with respect to the quasi-
probability density W (uo, uo), where of course ||up|l» = 1. Note that E, , (|[o*wllr2) = B, (llo"wllze)
by the marginal property (2.7), where E,, is taken with respect to the probability density |izo(v)|>. The
forthcoming Theorems 2.4-2.8 may be interpreted similarly. Evidently the subtleties in (2.12), (2.13)
and all of these inequalities arise from the fact that the Wigner distribution typically takes both positive
and negative values.

Remark 2.3. Although (2.8) is false in general (see Remark 2.1), for any given weight w it may be seen
as an instance of (1.2) where d = n — 1 and

S=P% :={u= (" ug) €RYXR : uger = |u'|*} (2.14)
is the paraboloid. This is a consequence of a certain change-of-measure invariance property enjoyed

by the general inequality (1.2): specifically, if d6(u) = a(u)do (u) for some density a on S, then (1.5)
quickly implies that

/ |gda (x)Pw(x)dx < C/|g(u)|2 sup a(u)Xw(N(u),v)dd(u). (2.15)
R S veT, S

Next we define the (affine surface) measure dé on P4 by

/d)dﬁ':/ O(u’, [u’)?)du’, (2.16)
S R4

so that a(u) = (1 +4|u|?)~"/2. With these choices, a scalar change of variables reveals that

sup a(u)Xw(N(u),v) =supp*w(x,u’).

veTl,S x

Finally, defining g : § — Cby g(-, |-|?) = iy, we have that u(x, 1) = g/d\é'(x, t), from which (2.8) follows.
The change-of-measure invariance property (2.15) enjoyed by (1.2) is not inherited by the corresponding
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Mizohata—Takeuchi inequality (1.4), meaning that there is in principle a different Mizohata—Takeuchi
inequality for each density a — namely

/ g5 (x)Pw(x)dx < € sup a(@)Xw(N(w),v)lgll}2 g5 (2.17)
R” (u,v)ers

where again, the supremum is restricted to u € supp (g). It is straightforward to verify that (2.9)
coincides with (2.17) with the above choice of density a on the paraboloid. Similar change-of-measure
arguments relate the paraboloid-carried Wigner distribution referred to in (1.7) to the classical Wigner
distribution (2.1), reconciling (2.5) with (1.7). We clarify this in Remark 4.7 in Section 4.

Perhaps the most obvious difficulty in going beyond Gaussian initial data is that W (ug, ug) is
everywhere nonnegative if and only if ug is a Gaussian (this is known as Hudson’s theorem, see [28]
for a treatment of this and other fundamental properties of the Wigner transform), and the inequality
[|W (ug, uo)ll1 < ||u0||§ fails for general uq (see [37]). Of course the LP estimates that do hold for the
Wigner distribution (see [38]) yield variants of (2.9) via Holder’s inequality, such as

/ lu(x, 1) Pw(x, )dxdt < (0wl 2 max-1.14) lluoll3, (2.18)
RIXR

as was observed in [24] whenever i is supported in the cube [—1, 1]¢. Here we observe that further
variants arise from certain Sobolev estimates on the Wigner transform. For example, we have the
following:

Theorem 2.4. For s > d/2,

/ lu(x, 1) [*w(x, 1)dxdt < / L (o % o) () 2o w (-, v) g dv, (2.19)
R4xR R4
where

ai(v+ el -3)

(1+ )7

Lag) )= [ a

and H denotes the usual inhomogeneous L? Sobolev space in the variable x.
Theorem 2.5. Fors > d/2,
/ Jux, 1)*w(x, 1)dxdr < sup llo*w (o) g llwoll3 (2.20)
RIXR ved (supp (ito) +supp (o))
where the implicit constant depends on at most d and s.

Remark 2.6. As our arguments quickly reveal, Theorems 2.4 and 2.5 require no positivity hypothesis
on the weight w. This point aside, Theorems 2.4 and 2.5 may be viewed as substitutes for (2.8) and (2.9),
which are false for general weights; see Remark 2.1. This is a consequence of the elementary Sobolev
embedding H*(R?) c L*(R%), which holds whenever s > d/2. It is natural to ask whether the stronger

/R WO DPw( 0dxdr s sup g )l ol (2.21)
ax

v esupp (ip)

holds, as suggested by (2.9) for arbitrary positive weights.
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Proof of Theorem 2.4. By (2.6) and an application of the duality of H* and H~* we have

/ lua (x, £)[*w (x, 1)dxds < / W (o, uo) (-, ) lezs " w (-, v) |z dv,
RIXR R
and so it remains to show that

IW (0, 10) (s V)17 = Tas (Jio ], [0 *) (v). (222)

This follows from the classical Fourier invariance property (2.3), which implies

Fi'W(g1,82)(£,v) =§1(—v+§)3(—v— éﬁ), (2.23)

where F, denotes the Fourier transform in x. The identity (2.22) now follows by Plancherel’s theorem
and the definition of the inhomogeneous Sobolev norm. O

Proof of Theorem 2.5. Observe first that Iy (|iio|?, |ii|?) (v) = 0 whenever
1 - —~
v ¢ E(supp (o) + supp (ug)).
Hence, by Theorem 2.4, it suffices to show that

175 (g1, 82) I gy s llgallilig2ll (2.24)

whenever s > d. The operator I, is a variant (with singularity only at infinity) of the bilinear fractional
integral operator

£ _£
g 0= [ i 2|§5,2(V 2)d§ (225)

treated by Kenig and Stein in [33] and Grafakos and Kalton in [31] (see also [30] for estimates above
L"), and the bound (2.24) follows a brief inspection of their arguments. For similar arguments, see also
Section 7. O

Theorems 2.4 and 2.5 cease to be natural if the initial datum uo has compact Fourier support, as they
involve inhomogeneous Sobolev spaces, which respond to high frequencies of 1 only. The appropriate
substitutes are the following, which align with our main Theorems 1.7 and 1.8:

Theorem 2.7 (Parabolic Sobolev-Stein). For s < d/2,
/ |u(x, 0)[*w (x, 1)dxdr < / g (Jito*. it0]*) () 110w (-, v) | dv, (2.26)
RIXR R4

where I4(g1,g2) is given by (2.25) and HS denotes the usual homogeneous L*> Sobolev space in the
variable x.

Theorem 2.8 (Parabolic Sobolev—Mizohata-Takeuchi). For s < d/2,

/ lu(x, 1) Pw (x, 1)dxdz < sup o™ w ()l luoll3 (2.27)
R4xR

vel (supp (iio)+supp (ito))

whenever supp (i19) € B(0; 1). The implicit constant depends on at most d and s.
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Remark 2.9. Theorems 2.7 and 2.8 also permit signed weights. Restricting to positive weights,
Theorems 2.7 and 2.8 are also easily seen to be respectively weaker than (2.8) and (2.9) via a Sobolev
embedding. Specifically, by the support hypothesis on zy we may find a spatial bump function ® such
that

/ |u(x,t)|2w(x,t)dxdt£/ |u(x, 1)|>® % w(x, t)dxdr,
RIXR RIXR

and so it suffices to observe that for any v € R?,
P (@ + w) (s )lleo S l0* W V)l

whenever s < d/2. This follows by Plancherel’s identity and the Cauchy—Schwarz inequality.

The proofs of Theorems 2.7 and 2.8 are very similar to those of Theorems 2.4 and 2.5 above, the
essential difference being the use of homogeneous rather than inhomogeneous Sobolev norms, and
matters are reduced to an L' x L' — L'/? bound on the bilinear operator

£ _£
T(g1,g2)(v) = /B(O;l) gl(v+ Zéiz(v 2)

This is a local form of the bilinear fractional integral operator I defined in (2.25), and again the required
bound follows a brief inspection of the arguments in [33].

3. The sphere: an optical viewpoint

The extension operator for the sphere

g’d;'(x) = /S'H 27X Vo (w)do (w)

is of central importance in optics, providing a description of a unit-wavelength (or monochromatic)
optical wave field as a superposition of plane waves; note that g/d; solves the Helmholtz equation
Au +u = 0 on R". Of particular physical significance is | g’(ﬁ'|2, sometimes referred to as the local
intensity of the field; see, for example, [3]. The Stein and Mizohata—Takeuchi inequalities (1.2) and
(1.4), when specialised to the sphere S = S"~!, become statements about this intensity, namely

/ 1530 (0 Pw()dr < € / g@)P sup Xw(w,v)do (), 3.1)
R~ sn-l1 ve(w)t
and
/ AP < C sup X0, o cann s o, (3.2)
R wesupp (g)

respectively. These conjectural inequalities are well-known for radial weights, as discussed in the
introduction, although we recall that for general weights they should carry a further localisation hypoth-
esis following the counterexamples of Cairo [18]; see Remark 1.2 for clarification. Both (3.1) and (3.2)
capture the expectation that the intensity | grzl}|2 concentrates on rays (lines), and as such connect physi-
cal optics to geometric optics. A good illustration of this is found in the high-frequency limiting identity

Reoo (Zn)n+1

imsop ! [ @R = s [ s@( [weonfire, 69
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established (for compactly supported w) by Agmon and Hérmander in [1]; see [5]. Accordingly (3.1) and
(3.2) call for an optical (or spherical) analogue of the quantum-mechanical (or parabolic) phase-space
perspective from Section 2. Fortunately such a perspective is well-known in modern optics (see [3]) and
involves the spherical Wigner transform that we define next. For g1, g» € L>(S"™!) let

Wan1 (g1, 82) (w,v) = / 81(0)g2(Rpw ) e 2™V (@ Ro@) J (0 ") dor (w). (3.4)
Sn—l

Here w € $" !, v € (w)*, and for a point w’ € S"7!, the point R, w’ is defined to be the unique
w” € S"! for which w is the geodesic midpoint of w’ and w"’; that is,

Ryw =2(w- 0w - o' (3.5)

The function J (w, w’) := 2" %|w - w’|""? (see the forthcoming Remark 4.7) is chosen so that
/ DR, w) (w,w)do(w) = / ®do
gn-1 gn-1

for each w’. This expression for J may be obtained by direct computation, noting that the map
w — w"” = R,w’ is not a bijection; it maps each component of "1\ (w’)* bijectively to S"~'\{-w’}
with

do(w”) =2" Nw - " 2do(w). (3.6)

The essential features of this construction are those described in [3]; see also [34].
Motivated by the role of the transport equation in Section 2, for g € L?(S"~!) we define the auxiliary
function f : S"~! x R* — R (not to be confused with (2.2)) by

flw,x) = f g(w")g(Rpw e 2™ ¥ (@ Rue) j (4 w')do (w),
Sn—l

so that Wga-1 (g, g) is the restriction of f to the tangent bundle T7S"™! := {(w,v) : w € $"71,v € (w)*}.
That f is real-valued follows from the fact that R, o R, = I for each w. Evidently f satisfies the transport
equation

w-Vyef =0, (3.7)
meaning that f(w,x) = f(w, X (u)r) = Wan-1(g, 8)(w, X(w)r), where x ) is the orthogonal projection

of x onto {(w)*. The functions f and Ws.-1 have some nice features; for example, we have the marginal
identity

[, foxio =1z, 8

by Fubini’s theorem and the definition of J. We note in passing that we have the additional marginal
property

[ Worrteo@nar= 3 (g +s-0)P).
(w)*

very much as in the setting of the classical Wigner distribution. This may be obtained by fixing
w and considering the contributions to Wg.-1(g, g) coming from the integrals over the hemispheres
s"!:= {w’ : +w - w’ > 0} and using the fact that the mapping w’ — w’ — R,w’ is a bijection from
each of S”~! to the unit ball of (w)*; see the forthcoming proof of Theorem 3.2 for a similar argument.
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These observations lead to the desired spherical analogue of (2.5):

Proposition 3.1 (Spherical phase-space representation).
lgdo? = X Wgn1(g. 8).

Proof. By (3.8), (3.7) and Fubini’s theorem,
/ lgdo (x)|Pw (x)dx = / f(w,x)do (w)w(x)dx
R Rn JSn-1

2/ f(a),x<w>L)(/ w(x<w> +X<w>L)dx<w> dJC(w)Ld(T((.U)
St S (w)t (w)

:/ Wan-1(g, 8) (W, v) Xw(w, v)dvdo (w)
sl J ()t

- [ XWo (g wr

for all test functions w. m]

As we have already indicated, Proposition 3.1 is well-known in some form in optics (at least in
low dimensions) where it provides a representation of the local intensity of an optical field as a linear
superposition of light rays — a useful and explicit connection between physical and geometric optics;
see Alonso [3]. Proposition 3.1 may be used to prove the following spherical versions of Theorems 1.7
and 1.8:

Theorem 3.2 (Spherical Sobolev—Stein). For s < "T_l there exists a dimensional constant ¢ such that

-/R |gdor (x)[Pw(x)dx < C/s o218 18 (@) PIXW (@, ) s (o) 4o (), (3.9
where

o gl(w/)gz(wal) rn-2 ’
Ign1 5(g1,82) (w) = /Sn_l m|w.w |""“do(w’).

Remark 3.3. The hypothesis s < "T*I in the statement of Theorem 3.2 serves only to ensure that the
kernel of the fractional integral operator Ig.-1 g is locally integrable, giving meaning to Ign-1 ;. The
corresponding Sobolev-Mizohata—Takeuchi theorem that follows rests on the availability of suitable
bounds on this fractional integral, and so involves a constant that also depends on s.

Theorem 3.4 (Spherical Sobolev—Mizohata—Takeuchi). For s < "T_l

lgdo (x)Pw(x)dx < sup IIXW(w,-)IIHS((W)IIgIIiz(Sn_l), (3.10)
R? wesupp *(g)

where supp *(g) is the set of all geodesic midpoints of pairs of points from supp (g). The implicit constant
depends on at most n and s.

Remark 3.5. Theorems 3.2 and 3.4 may be seen to follow from Theorems 1.7 and 1.8 respectively.
This involves partitioning the sphere into suitable geodesically convex patches as alluded to in the
introduction, and indeed this is how our proof below begins. This elementary step appears to require
the weight w to be non-negative, despite non-negativity not being a requirement of either Theorem 1.7
or 1.8.
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Proof of Theorem 3.2. By partitioning S"~! into boundedly many (depending only on n) geodesically
convex subsets (caps), it suffices to show (3.9) under the assumption that g is supported in a cap S
satisfying w - w’ > % for all points w, w’ € S (in line with (1.12)). By Proposition 3.1 and the Cauchy—
Schwarz inequality it suffices to show that

Wt (85 8)(@, M e e < Lo 22l I (@), (3.11)

for some implicit constant depending only on n. Next, for fixed w € § we make the change of variables
& = w — R,w’, which maps S bijectively to a subset U of {(w)*. Defining w’ : U — S by & =
W' (¢) — R,w' (€) we have

Wont (g..8)(@,v) = / (g R )o@ Rt J (0, 0')dor (o)
S

J(w,0'(€)) 4

IR (e LiVE
/ R e

where J| (w,w") =2"'w - w’ ~ 1 is the Jacobian of the change of variables. Hence

Fu(5.8)(@06) = 80/ ()R @) 5 2 S0 ), (.12
and so by Plancherel’s theorem on (w)~,
2
. s (0, 0(€)
Weret (2 8@, M+ gy / ||§| $( @R @) 5 = ) e
4 r|—48 ’ 7 ( > ,)2 4
. /S 0 = R | lg @) Ple(RuwP Z2do (@) a1

< / 10— R | |g(@")Plg (Row’)Plw - '] 2dor (o)
S
= Lo, (g% 8P (@),
The inequality (3.11) follows. O

Remark 3.6. The reader may be puzzled by the retention of the specific factor |w - w’|"~2 in the third
line of (3.13), and its inclusion in the definition of /ga-1 ;. This is significant as it is (up to a constant
factor) the Jacobian J(w, w’), which is natural as it ensures that Igu-1 ¢ is symmetric and enjoys the
appropriate Lebesgue space bounds. This feature will become clearer in Section 4 in the context of more
general submanifolds S.

Proof of Theorem 3.4. Arguing as in the proof of Theorem 3.2, it suffices to establish (3.10) for g
supported in a single cap S. Since Ign-1 5, (IgI%, [g|*) (w) = 0 if w ¢ supp*(g),

—— 1/2
/ lgdo()Pw@dr s sup  1Xw(@. ) lgzs (quy Mzt 25 (U 18P
R wesupp *(g)

by Theorem 3.2. It therefore suffices to show that

g1(w)g2(R,w") |

- e w'|"2do(w')
IU.) - wa |

Is 5(81,82)(w) = Ign1 (g1 15, 8215)(w) =/
s

is bounded from L! x L' into L!/?2 whenever s < n — 1. This will be established in Section 7, where
more general surface-carried bilinear fractional integral operators are estimated. m}
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4. General submanifolds: a geometric viewpoint

As we shall see, identifying a phase-space representation of |§a}|2 that is explicit enough to establish
Theorems 1.7 and 1.8 requires some careful geometric analysis, beginning with the identification of a
suitable generalised Wigner distribution (or transform). We present this for general smooth submanifolds
of R that are strictly convex in the sense that their shape operators dN,, are positive definite at all points
ues.

4.1. Surface-carried Wigner transforms

The general procedure for constructing a suitable Wigner transform on a submanifold of Euclidean
space is again well-known in optics [3], [45]; see, for example, [29] for related intrinsic constructions
in quantum physics. As is pointed out in [3], for n > 3 matters are considerably more involved as there
is some choice to be exercised.

For compactly supported function g1, g € L?(S) let

Wter, ) 0) = [ 1 )gaRar)e 2 a0 o). (@.1)
Here u € S, v € T,,S, and we define, for u” # u, R,u’ to be the unique point u”” € S with u”” # u’ such
that
(' —u"")-N(u)=0 4.2)
and
Nu) ANw')AN@”)=0. 4.3)

Define R,u := u for all u € S. Condition (4.2) stipulates that u’ — u”’ € T, S, which as we shall see, is
necessary for the phase-space representation (1.7); see Figure 1. Condition (4.3), which stipulates that
N(u), N(u"), N(u'"") lie on a great circle, is where we have exercised some choice. This appears to be
physically significant and is at least implicitly referred to in the optics literature; see, for example, [3]
(p. 346) in the context of the sphere. Moreover, the appropriateness of (4.3) is particularly apparent
when S is the paraboloid, as we clarify in the forthcoming Remark 4.7. In (4.1) the function J(u, u") is
the reciprocal of the Jacobian of the mapping u — R, u’, so that

/d)(Ruu')J(u,u')dO'(u) =/(I)d0' 4.4)
S S

for each u’ € S. The required bijectivity here follows from the assumed geodesic convexity of N(S)
referred to in Section 1. We refer to Ws(g1, g2) as the Wigner transform on S, and Ws(g, g) as the
Wigner distribution on S. As we shall see shortly, the Jacobian J is a bounded function on compact
subsets of S x S, allowing Wg(g1, g2) to be defined as a Lebesgue integral.

The point #”” may seem rather difficult to identify at first sight, although it has a simple alternative
description that is constructive. This is shown in Figure 2, and will play an important role in our analysis.

Remark 4.1 (Existence of u’’). There is a technical point that we have glossed over in the above
definition of Wg and Figures 1 and 2. For given u, u’ € S our hypotheses do not guarantee the existence
of such a point u”’ := R,u’, unless S is closed (the boundary of a convex body in R"™). One way to
remedy this might be to continue S to a closed submanifold, upon which R, u’ may always be defined,
and observe that the resulting function Ws (g1, g2) is independent of the choice of extension since g3 is
supported on S. In any event, the integral in (4.1) should be interpreted as taken over

{weS:w -u") - Nu)=0and N(u) ANu’) A Nu") =0 for some u” # u'}.

Naturally such domain restrictions will be apparent in our analysis of the Jacobian J in Section 6.
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N(u)

TS +u

N(u') N (")

TS + ' Lttt LS

Suw

Figure 1. A depiction of the choice of u"’ via the conditions (4.2) and (4.3).

PrsN(u)

Figure 2. The construction of u” via parallel supporting hyperplanes in T,,S + {u’}.

Remark 4.2 (Differentiability of u’"). We expect that the maps u — R,u’ and u’ — R, u’ are differen-
tiable away from u = u” and that this should follow from (4.2) and (4.3) by a suitable application of the
implicit function theorem; see Figure 2. This smoothness is of course clear when S is the sphere thanks
to the explicit formula (3.5) and is assumed to be true of the submanifolds S considered here.

Remark 4.3 (Rationale for the choice of third point u’"). As is pointed out in [3] and [45], for n > 3
there are many possible ways of defining the third point "’ in terms of u’ and u, although for the
purposes of proving Theorems 1.7 and 1.8 there are a number of natural requirements that significantly
constrain this choice. First of all, the choice should be ‘nondegenerate’ in the sense that the distances
|’ — u| and |u’ — u”’| should be comparable (suitably uniformly in terms of the geometry of §); it
should be symmetric so that the resulting Wigner distribution is real-valued (and the Wigner transform

is conjugate symmetric), and it should be geometrically/physically natural, so that the Jacobian J may
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be expressed in terms of the Gauss map N and its derivative dN (the shape operator). The forthcoming
Propositions 4.4 and 4.5 show that our choice of u”” has these features. As we shall see, the coplanarity
condition (4.3) is natural as it allows the mapping u +— R, u’ to be transformed to a relatively simple
‘outward vector field’ on the tangent space 7,/S. This involves parametrising S using the Gauss map
followed by stereographic projection (a composition that may also be found in the theory of minimal
surfaces).

It will be important for us to understand how the distances between the three points u, u’, u’’ relate
to each other. This is provided by the following proposition, whose proof is deferred to Section 5. In
particular it tells us that the function p(u,u’) := |u” — R,u’| on S X § is a quasi-distance, as we clarify
in Section 8.

Proposition 4.4 (Distance estimates). For all u,u’,u”’ € S withu” = R, u’,
' —u”| < Q(S)"*u—u'| 4.5)
and

lu" —

" 1 ’
u |Zm|u—u| 4.6)

We now turn from the metric properties to the measure-theoretic properties of the map R,,, and a
host of explicit identities satisfied by the Wigner transform Wy.

To see that Wy is conjugate-symmetric, which in particular implies that the Wigner distribution
Ws(g, g) is real-valued, already appears to require some work. For fixed u € S observe first that if
u"” = R,u’ then u’ = R,u”, and so by a change of variables,

Wg (81, gz)(u’ V) — /gl (Ruu//)gz(uu)e—Zﬂiv-(Ruu//_u//)J(u’ RMM”)A (M, M”)dO’(M”),
S

where A (u,u’”) is the Jacobian of the change of variables u” = R,u”’. It therefore remains to show that
J(u, u)A(u,u”) = J(u,u’),

recalling that J was defined in (4.4). Fortunately we have explicit formulae for the Jacobians J and A
from which this quickly follows. In the following proposition we denote by K () the Gaussian curvature
of S at the point u, recalling that K (u) is the determinant of the shape operator dN,,. Further, we denote
by Pw v the orthogonal projection of a vector v € R" onto a subspace W of R".

Proposition 4.5 (Jacobian identities). For all u,u’,u’’ € S with u” = R, u’,

Sy = (NG ) )"‘2 W =l N (") Kw o
’ [N(u) AN ()l (Pr,,sN(u), (dN,»)~ " (Pr,,sN(u))) | K (u"’)’ '
Aluu’) = (|N(u) AN )”_1 [{Pr,sN(u), (dNM/)_l(PTu,sN(u)))l K(u") 4.8)
' [N(u) AN )] [{P,,sN(u), (dN,) 1 (Pr,,sN(u)))| K(u”) '
and
Ju, u YA(u,u’y = J(u,u’). 4.9)

We defer the proof of Proposition 4.5 to Section 6.
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Remark 4.6 (Interpreting J). The expression for J in Proposition (4.5), while seemingly rather
complicated, may be understood in somewhat simple geometric terms. In particular:

(i) Matters are much simpler when n = 2, where we may write

" —u', Pr,sN(u")) K (u)
(Pr,,,sN (), (AN) " (Pr,,sN (u))) | K (u”’)
|u” —u'| - IN(u) AN@u")]|

= T PrsNwpE KW

'l

J(u,u’) =

|M”—

= NG A NG <

Here we have used the (two-dimensional) formula

_ 1
(P1,,,sN(w), (dN,) " (Pr,,sN (1)) = ——|Pr,,sN ()|,
K(u")
along with the elementary identities |Pr,,, s N (u)| = |P7,, sN(u")| = |[N(u) A N(u")|.
(ii) The factor

(Pr,,sN(u), (AN, (Pr,,sN(u)))™" (4.10)

is bounded above by (Pr,, s N (), dN,~(Pr,,sN(u))) by the harmonic-arithmetic mean inequality.
This bound is (up to a suitable normalisation factor) the directional curvature of S at the point u"’
in the direction Pr,,sN(u). One might therefore interpret the factor (4.10) as a certain ‘harmonic
directional curvature’.

(iii) The factor

IN(u’) AN ")
IN(u) AN(u)|

quantifies (in relative terms) the transversality of the tangent spaces to S at the points u, u’, u”’, and
is therefore also a manifestation of the curvature profile of S; see Figure 1.

(iv) The factor (u” —u’, N(u")) is different in nature as it explicitly relates to the positions of the points
u’,u”. It is instructive to use the fact that u’ — u’’ € T,,S to write this as

"o 77 _ 7 "o I,{”—ul PTuSN(uN)
" = PN () = NG A NGO =l =2, EESTUCL ),

We observe that the inner product in the final expression above quantifies the extent to which u”’ is
displaced from the line through u’ in the direction Pz, s N(u’’"); see Figure 2.

(v) The Jacobian J is scale-invariant in the sense that an isotropic scaling of S leaves J unchanged.
This is apparent from the definition of J but is also manifest in the formula (4.7).

Remark 4.7 (Examples). Proposition 4.5 is easily applied to examples.
() If S =P" !, the paraboloid (2.14), then a careful calculation using Proposition 4.5 reveals that

1+4MNPY”

.] , 7 :2n—1
(e, ) (1+4up

where we are writing u = (x, |x|?), u’ = (x",|x’|?), u” = R,u’ = (x”,]x”|?). As should be
expected from our analysis in Section 2, the parabolic Wigner distribution Wpn-1 may be pulled
back to the classical Wigner distribution via a suitable map ® : R? x RY — TP<; in this case
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q)(x7 V) = ((x7 |X|2), PTX"X‘Z
condition (4.3) transforms to a colinearity condition in parameter space. More specifically, if for a

function g : RY — C we let Lg(x, |x|?) = (1 +4|x|?)~2g(x), and for a function / : TP4 — C we
let Uh(x,v) = (1 +4|x|>)!/2h(®(x,v)), then

)]Pnd(V,O)). This uses the simple geometric fact that the coplanarity

UWgpa(Lg, Lg) =W(g,g).

Moreover, X*,h = p(Uh), allowing one to deduce the quantum-mechanical phase-space represen-
tation (2.5) from the forthcoming Proposition 4.8. We refer to [3] (p. 353) for a similar remark.

(i) If S = $"°!, evidently K = 1 and N(w) = w, and to be consistent with Section 3 we use w rather
than u to represent a point. We may use the explicit formula (3.5) to write

IN(@) AN@I)] _ (1= (@ -0 [Pnw”]
IN@) AN (1 -(w-w)?): [Pyl

2w - W'l
On the other hand, since (w”’ — w’, N(w")) = (0" — w’, P,y w"'), projecting both sides of (3.5)
to {w)* yields

(" = ', N(@") =)l 1= (@)
(ProusN(@), N (Pr,sN@) |~ 1T= (@ w2 1= (@- )]

]

since w - w”’ =w-w and W’ - W’ =2(w - w’)? - 1. Altogether we conclude that
J(w,0)=2"Nw- "2,
as appears in (3.6).

We now come to the phase-space representation of | gzd;|2, and we begin by defining an auxiliary
function f : S X R" — R by

flu,x) = /S g(u)g(Ryu)e 2™ W=Ratl) j(y y"ydor (u'),

so that Ws(g, g) is the restriction of f to the tangent bundle 7'S := {(u,v) : u € S,v € T,,S}. As in the
spherical case, we continue to have the marginal identity

/S Fu,)dor(u) = |83 @.11)

by Fubini’s theorem and the definition of J. While we shall not need to use it, it is pertinent to also note
the second marginal property

/ Ws (. 8) (. v)dv = g () 4.12)
T,S

u

here (possibly subject to an additional regularity assumption on S) referred to in the introduction; we
refer to Section 8 for clarification of this, along with the sense in which it holds as a pointwise identity.
Another key property is that f satisfies the transport equation

N(u)-Vif =0, (4.13)

meaning that f(u,x) = Ws(g, g)(u, Pr,sx), where Pr, s : R" — T,S is the orthogonal projection onto
T,S.
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Proposition 4.8 (General phase-space representation).
lgdor]” = X5Ws(g.8) (4.14)
where Xsw(u,v) := Xw(N(u),v), the pullback of Xw under the Gauss map
TS 3 (u,v) = (N(u),v) € TS,

We note that for a phase-space function & : TS — C we have the explicit expression
Xgh(x) = /Sh(u, Pr,sx)do(u).
Proof of Proposition 4.8. By (4.11), (4.13) and Fubini’s theorem,
/ lgdo (x)|Pw (x)dx = / /f(u,x)do-(u)w(x)dx

R7 R JS

= / f(u,v) (/ w(v +z)dz)dvda(u)
s JT,S (T S)*

= [ [ Wste.0) ) xw (¥ vdvdor o

S JT,S

- /R XiW(g, @) (W (x)dx

for all test functions w. ]

Remark 4.9 (A polarised form). The polarised form

gi1do gado = XcWs(g1,82)

of (4.14) may be established similarly, and indeed may be deduced directly from (4.14).

Remark 4.10. There is a point of contact here with [15], where among other things it is shown that the
classical Radon transform fails to distinguish | g@-lz from Xgv for a large class of distributions v on
TS, provided a suitable transversality condition is satisfied. Perhaps unsurprisingly, Ws(g, g) is easily
seen to be an example of such a distribution.

We are now ready to state or main theorems (Theorems 1.7 and 1.8) in full.

Theorem 4.11 (1> Sobolev—Stein inequality). Suppose that S is a smooth strictly convex surface with
curvature quotient Q(S), and s < "T_l Then there is a dimensional constant ¢ such that

/R 183 () Pw()dx < cQ(5) T /S Is.25 (18P 18P () U Xsw (1, Mlggs (7,5, dor ), (4.15)

where

81 (u/)gQ(Ru“’)
|’ — Ryu’|’

Is s(g1,82)(u) == ./s J(u,u’)do (u'). (4.16)

Remark 4.12. The S-carried fractional integral I s is natural for a number of reasons relating to the
presence of the Jacobian factor J. In particular, it is symmetric thanks to (4.9) (a property that is
analogous to the conjugate symmetry of the Wigner transform Wg), and as we shall see in Section 7,
its Lebesgue space bounds do not depend on any lower bound on the curvature of S. The restriction

s < ;%1 ensures that the kernel of /g g is locally integrable.
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Theorem 4.13 (L> Sobolev—Mizohata-Takeuchi inequality). Suppose that S is a smooth strictly convex
surface with curvature quotient Q(S), and s < "—51 Then there exists a constant c, depending on at

most n, s and the diameter of S, such that

S 9n-12
/ lgdo()Pw0dx < Q)T sup  Xsw(u, Mgz, 1811725 4.17)
R uesupp *(g)

where supp *(g) :={u € S : R,u’ € supp (g) for some u’ € supp(g)}.

Remark 4.14. We remark that supp (g) C supp *(g), and often this containment is strict. When S is the
sphere, supp *(g) is the ‘support midpoint set’, consisting of all geodesic midpoints of pairs of points
from the support of g. Hence supp *(g) € cvxsupp (g) in this case, where cvx forms the geodesic
convex hull. More generally, supp *(g) € N~'cvx (N (supp (g))), so that

- In—12
/ 1gdo () Pw(x)dx < cQ(8) ™5 sup  Xw(@. Mg i 1802 )
R" weevx (N (supp (8)))

Remark 4.15. While we expect that the power of Q(S) in the statement of Theorem 4.11 is sharp
when n = 2, it seems unlikely that it is in higher dimensions. The power of Q(S) in the statement of
Theorem 4.13 is of course larger still, incurring extra factors from the bounds on the bilinear fractional
integrals Is ¢ in Section 7.

4.2. Proof of the Sobolev-Stein inequality (Theorem 1.7)

In this section we prove Theorem 1.7, or more specifically, Theorem 4.1 1. We begin with an application
of Proposition 4.8 and the Cauchy—Schwarz inequality to write

/R gdoPw < /S W (g 2) (. Mlrg-s 1.5 1 Xsw (it Yo 15,40 (a0 4.18)

for any s € R. In order to estimate the Sobolev norm of the Wigner distribution above we fix u € § and
make the change of variables

E=u'—R,u'. (4.19)

Since S is the graph of a strictly convex function, the map u’ +— ¢ is a bijection from S to a subset U of
T,.S. To see this it suffices to establish injectivity, and hence we look to show that u’ — R,u’ # i’ — R, ii’
foru’ # ii’. We may assume that u’ — R,u’ and ii’ — R,,ii’ are parallel, as otherwise the desired conclusion
is immediate. Observe that u’ — i’ ¢ T,,S, as otherwise strict convexity of the level sets of S (sections of
S by translates of 7,,5) would force u’ = &t’ or R,u’ = ii’; see Figure 2. Since u’ — ii’ ¢ T,,S and S is the
graph of a function, the level sets of S through u’ and i@’ respectively, when projected onto 7}, S, are both
enclosed by the supporting hyperplanes depicted in Figure 2; this may require interchanging the roles of
u’ and @t’, as we may. Since u’ — R,,u’ and ii’ — R, i’ are parallel, it follows that |’ — R, i’| < |u’— R,u’|,
and thus u’ — R,u’ # @i’ — R,ii’. As a result of this bijectivity,

L S
T (u, u'(£))

W (8. 8) (0. M-s ) = /T / 8 ()8 Ru @I € € J(u,u' () =

where J (u,u’) is the Jacobian of the map u’ +— £&. Hence by Plancherel’s theorem on 7}, S,

oS (u,u'(£))
T(u,u'(£))
lg () *|g (Ruu')[* J (u, u’)? do(u').
s =Rau>  J(u,u’)

Ws(g.8) () ez, ) = / g (W ()8R @))€

e

https://doi.org/10.1017/fms.2025.10127 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10127

Forum of Mathematics, Sigma 25

In order to complete the proof of Theorem 4.11 it therefore suffices to prove that

J(u,u’)
J(u,u’)

<08 (4.20)

with implicit constant depending only on the dimension. We do this in two steps.

Step 1: Bounding J (1, u’) _
The goal here is to obtain a suitable lower bound for J(u, u").

Proposition 4.16. We have that
T, ') = (1+Au,u')?)? (4.21)
Jorallu,u’ € 8.
Proof. Letu € S be fixed. The Jacobian J of the change of variables
) =u" - R,
may be expressed as

= 1w ) A A (A€ (Vi)

J(u,u’
(u, ) [ViA- Avp]

4.22)

where v, ...,v,_1 is a basis for 7,,,S. We remark that
(O (V1) A+ A (A0 (vr) € AP N(TLS) and vy A+ Avpoy € AT S),

and we identify the exterior algebras A"~!(7,,S) and A"~!(T,S) with subspaces of A"~!(R") via the
natural embedding induced by the inclusions 7,,,S ¢ R" and 7,,S c R", respectively.

It will be convenient to fix " and express (4.22) in terms of unit velocities of trajectories along smooth
curves in S emanating from u’. In what follows ¢ : I — S will denote the arc-length parametrisation of
such a curve, where [ is an open interval containing O such that ¢(0) = u’. If C denotes the set of all
such mappings c, then evidently

TS = ({¢(0) : ¢ € C}).

By the strict convexity of S, the (n — 1)-dimensional spaces 7,/S and 7,S intersect in an (n — 2)-
dimensional subspace . We then pick curves cy, ..., c,—2 € C such that

H = (él (0)’ AR ] én—2(0)>,
and the set {¢;(0) }; <;<n—2 is orthonormal. To obtain an orthonormal basis for 7S, we simply take any
other curve c¢,,_; € C such that ¢,,_1(0) € H* NT,/S. There is one more degree of freedom in choosing
cn-1, and we assume without loss of generality that ¢,,_;(0) - N(u) > 0. This gives
TS =(¢1(0), . .., ¢4-2(0), ¢4-1(0)).
Since

(d&)w (¢:(0)) = (£ 0¢;)"(0) = ¢i(0) = (AR (¢:(0)), 1<i<n-—1,
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then, since |¢1(0) A - -+ A ¢,-1(0)| = 1 by orthonormality of the chosen basis of 7,,/S,

T, u') = |(d€)u (¢1(0)) A+ A (dé)w (¢n-1(0))]
= |(Cl(0) - (dRu)u'(cl(O))) ARRRNA (én—l(o) - (dRu)u'(én—l(O))” (423)
= W) — Wa,

where

Wi = (¢1(0) = (dRw)w (¢1(0))) A -+ A (€n2(0) = (dRw)w (¢2-2(0))) A ¢n-1(0),
W2 = (él (O) - (dRu)u’(él (0))) JARRA (én—Z(O) - (dRu)u’(én—Z(O))) A (dRu)u’(én—l (O))

The next claim collects a few useful facts about the action of (dR,, ), on H.
Claim 4.17. The following hold:

1. The subspace H = T,,SNT,S generated by the set of vectors {¢(0),. .., ¢,-2(0)} is invariant under
the map (dR,,),s. Moreover, (dR,),|x : H — H is an isomorphism. Equivalently,

H=(¢1(0),...,¢,2(0)) = (AR (¢1(0)), . . ., (R ) (¢n-2(0))). (4.24)

2. Let My, := (dRy)w |y : H — H denote the restriction of (dR, ), to the invariant subspace H.
ThenI - M, ,, : H — H satisfies

det (1 — My) > 1. (4.25)

Proof. Let w := N(u). Notice that the coplanarity condition (4.3) implies that

- P<w>LN(u,) P<w>iN(u") .
1= = — =
[PwysN ()] |P(wy+N(u”)]

—V). (4.26)

On the other hand, v| and v, are the outward normal vectors (in 7,,5) of the convex submanifold
Suw =SSN (T,S +u’) (4.27)
at u” and u”’ respectively, hence
TwSuw = Tuw Suw
from which (4.24) follows; see Figure 2. Observe also that on S,, ;,» we have
R’ =N"'(-Nu)), (4.28)

where N : S, — §"2 is the Gauss map of S, C u’ +T,,S. Computing derivatives, (AR, ). |3 :
H — H satisfies

— _qn-! v
(AR = ~dN"% o dNy.

Finally, since dﬁ:}%( and dN,, are positive definite (recall that our assumptions on S imply positive

u’)
definiteness of dN,, for all u € S, hence the same holds for dN,,) the product dN _11V( n o dN, has
- u

positive eigenvalues, therefore
det (I — M, /) = det (I + dfv'jV ) ° dN,) > 1. O

The next claim contains three key identities involving W and W5.
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Claim 4.18. The following identities hold:
<W] 5 Wl> = det (I - Mu,u’)z,
<W1’ W2> = det (I - Mu,u’)2<(dRu)u'(én—l (0))7 Cn-1 (0)>
(Wa, Wa) = A (u,u')* det (M), = 1)’

Proof. Let 01y (n—2) be the 1 X (n —2) zero row and let X,, ,» be the (n —2) x (n —2) matrix whose (i, )
entry is given by

(Xu,w)i,j = (€i(0) = (dRy,)w (¢i(0)), ¢;(0) = (dRy)u (¢(0))).
Observe that

Xu,u’ OT

(Wi, W) = det( ‘X<1"-2>) = det (X, /) = det (I = My, ,»)*,

015 (n-2)

where we used the facts that # is invariant under (dR,,),  (as verified in Claim 4.17) and that ¢,,—; (0)
is orthogonal to H. Now let Y,, ,» be the (n —2) X (n — 2) matrix whose (i, j) entry is given by

(Yuu)ij = ((dRy),' (6(0)) = ¢(0), (dR.)' (¢,(0)) = ¢;(0)).
Analogously,

(W2, Wa) = [(¢1(0) = (AR (¢1(0))) A+ -+ A (€-2(0) = (AR (¢4-2(0))) A (AR (¢-1(0))?
2

n-2
= A(u,u')? (/\(dRu);’l [¢;(0) - (dRu)u’(éj(O))]) A ¢n-1(0)
J=1

2

n-2
= Au,u')? ( AR - 1](&;(@)) A én1(0)
J=1

= A(u,u’)? det(Y, )
= Au,u’)? det (M, - n’.

Finally,
X A(n—2)><1
Wi, Ws) = det ’ . .
Wi, o (le(nz) (AR (n-1(0)). Emr (0))
=det (I - Mu,u')2<(dRu)u’(én—l (0)), ¢n-1(0)),
where A(,,_2)x1 is a (n —2) X 1 column that does not feature in the final expression. ]

Expanding |W; — W»|? using the standard scalar product on the exterior algebra A"~ !(R"),

(Wi = Wa|? = (Wi, W) = 2(Wy, Wa) + (Wa, Wa)

= det (I - Mu,u’)2 —2det (I - Mu,u’)2<(dRu)u’(én—1 (O)), én—l (0)> (429)

+A(u,u’)? det (M, - 1%,

thanks to Claim 4.18. We continue with the following key observation:
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HE
N (u)
N(u")

&n-1(0)

Py:[(dRy) (én—1(0))]

Figure 3. A graphical representation of the proof of Claim 4.19.

Claim 4.19. Under (1.12), it holds that
((dRw)w (¢n-1(0)), ¢n-1(0)) < 0.

Proof. Recall that ¢,,-1(0) - N(u) > 0 by assumption, therefore differentiating at ¢ = O the identity
(Ru(cn-1(1)) = cp-1 (1), N(u)) =0

gives ((dR, ), (¢4-1(0)), N(u)) > 0. Next, observe that N(u’), N(u), N(u”’) and ¢,_1(0) are in H*,
the (two-dimensional) orthogonal complement of 7 in R”. Since N(p) - N(q) > 1 forall p,q € S by
assumption, the angles a; (between N(u’) and N(u)) and a; (between N (u) and N(u’")) are such that
0 < @y +az < §. Since N(u) € H*, we have by the self-adjointness of the projection operator Py,

0 < ((dRu)u (¢n-1(0)), N(u)) = ((dRy)uw (¢n-1(0)), P+ N(u)) = (Py [(dRy)u (¢n-1(0))], N (u)),

which implies that P32 [(dR,). (¢,-1(0))] is in the upper-half space of H* (here we are assuming
without loss of generality that N(u) = e,, the second canonical vector of H* = R?). On the other
hand, (dR,,), (¢,-1(0)) € T,»S, hence (P [(dRy ) (¢,-1(0))], N(u"")) = 0, that is, the angle between
N(u") and P32 [(dRy)w (¢n-1(0))] is 5. Since 6 := T —(a+az) is strictly positive, the angle y := 7 +6
between P+ [(dRy)w (¢n-1(0))] and ¢,,-1 (0) is strictly larger than 7 (see Figure 3), which implies that

(Pyr [(dRy)w (¢n-1(0))], ¢n-1(0)) < 0.
Finally, again by the self-adjointness of Py,

((dRw)w (¢n-1(0)), ¢4-1(0)) = {((dRy)uw (¢n-1(0)), Py [¢2-1(0)])
= (Py [(dRy)w (¢n-1(0))], ¢4-1(0))
<0,

which concludes the proof of the claim. O
Returning to (4.29),
Wi = Wal? = det (I = Myu)* = 2det (I = Miu) (AR (¢n-1(0)), -1 (0))
+ AGu,u’)? det (M7, - 1’ (4.30)

> 1+A(u,u’)?,

by (4.25) and Claim 4.19, which concludes the proof of Proposition 4.16. O

https://doi.org/10.1017/fms.2025.10127 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10127

Forum of Mathematics, Sigma 29

Step 2: Bounding J/J
Let A;(p) < 12(p) < --- < A,-1(p) be the eigenvalues of the shape operator dN at p. Since u”’ —u’ €
(N(u)*,

W’ —u',Nu'")) ' 3 ’ (u” —u',N(") - N(u))
(Pr,,sN(u), (dN,) ' (Pr,,,sN(w))|  [{(Pr,,sN(u), (dN,»)"" (P, sN (1))
|{u” —u’, N(u"’) = N(u))|

|P7,,sN (u)|?

< /ln—l(u”)

Using the fact that |Pr,,sN(u)| = [N(u”’) A N(u)| = |[N(u”’) — N(u)|, which follows from (1.12), we

have
T (IN(M’) /\N(u”)l) (u” —u',Nu")) K (u)
’ [N(u) AN ()l (Pr,,sN(u), (dN,»)~' (P, /,sN(u))> K(u")
(IN(M’) N(u”)l)" 2’ -, Nw”) = Nu)| TI7= 45 ) L)
IN(u) = N(u)] |Pr,,sN(u)|? 1 A4 (u ~)
< (lu’ |) z(supp - 1<v>) Flu —w'] - IN@”) = NG| T2 45(w) (u)
u— inf, 11 (p) IN@W) = N@P 172 4, w”) A
' —u’|\"? | 2(n-2)
( P ) NG _N(u)|Q(S) Sl;p/ln—l(p)-
Hence by (4.5) and the fact that J (u,u”) > 1 (see Proposition 4.16),
J(u,u’) s’ — |
— 3500 T ——— n— .
) o(S) NG —N@)| o sup Ap-1(p). (4.31)

On the other hand, using the fact that J (u,u”) = A(u,u’), which also follows from Proposition 4.16,

J(u,u’) < J(u,u’) |Lt’—u”|)"_2 lu” —u’|

=J(u,u”) S ( 0(8)* "2 sup A,-1(p)
pr

J(u,u’) ~ Alu,u’) |l —u”| [N(u') = N(u)]
S(n 2 |u// _ /|
< 0(9) o Sup Au-1(p),
NG~ NGl

by the distance estimate (4.5) and by (4.9). Consequently,

J(M, I/t,) 7 ’ 3(n-2) 1

— s u’ - Z supA,-1(p)

J(u,u’) max{|N(u”) = N(u)|, IN(u’) = Nw)|} » pin1ip

(n 2) 1
< u” = u’|Q(S) sup A,-1(p)

INW”) = N@)|+|Nw') = N@)| p
|u//_u/|

(4.32)
T IN@”) = N(u)|

0(8)™ sup -1 (7)

hS mQ(S) SUP/ln 1(p)

by the mean-value inequality applied to the Gauss map N. This implies (4.20), completing the proof of
Theorem 1.7 (Theorem 4.11).
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4.3. Proof of the Sobolev—-Mizohata—Takeuchi inequality (Theorem 1.5)

In this section we prove Theorem 1.8, or more specifically, Theorem 4.13. We begin by observing
that if u ¢ supp®(g) and u’ € S, then either u’ ¢ supp(g) or R,u’ ¢ supp(g), meaning that
Is s(lg|* |g|*) (u) = 0. Consequently, by Theorem 4.11,

—_— n-8
lgdoPw < cQ($)™ T sup  IXsw(u, Mg z,s) / Is s (g1 1g1») () dor (u),
R uesupp *(g) S

and so we are reduced to proving a suitable L' (S) x L'(S) — L'/2(S) estimate on the bilinear operator

g1(u")g2(Ryu")

- Ryl J(u,u’Ydo (u”) (4.33)

Is.(g1.82)(u) = /S

whenever s < n — 1. This follows by a direct application of the forthcoming Theorem 7.2.

4.4. Improved Sobolev-Stein constants in the plane

Our proof of Theorem 1.7 identifies ||J/ J~||io/ 2 as the naturally occurring dilation-invariant functional
on the surface S, rather than the power of the curvature quotient Q(S) that we use to bound it. In two

dimensions our expression for J, being relatively simple, permits the bound ||J/J ||;,/ 2 < A(S), where
A(S) is defined in (1.13). To see this we argue as in (4.32), using Propositions 4.5 and 4.16 to write

1 1
IN(u) AN@”)|” IN(u) AN ()]

J(u,u’)
J(u,u’)

<min{J(u,u’), J(u,u”)} = |u’ — u”|K(u) min{ } < A(S).

The two-dimensional case of Theorem 1.7 may then be strengthened to the following:

Theorem 4.20 (Improved Sobolev—Stein in the plane). Suppose that s < % There is an absolute constant
¢ such that

/R lgdor(0)Pw(@)dr < eA(S) /S Is.2 (1817 1817 () 11 Xsw (. ) s 7,5 dor ().

A similar, although potentially rather more complicated statement is possible in higher dimensions,
and is left to the interested reader.

5. Estimating distances: the proof of Proposition 4.4

We begin with (4.5), and the elementary observation that if 7 is 2-plane that is normal to S at a point u,
then by (1.12), it must be close to normal at all points of intersection with S. More specifically, foru € S
we have

|PxN(u)| = |Pz,5)+N(u)| = N(u) - N(u) > 1/2.

It follows by Meusnier’s theorem that for such a 7, the curvature of the curve SN at a point is comparable
to a normal curvature of S at that same point. This allows us to transfer the curvature quotient of S to
such curves, and we shall appeal to this momentarily.

Now let 7’ and 7"/ be the normal 2-planes at the point u that pass through the points u’ and u”
respectively. Let x be the orthogonal projection of u onto the plane 7,,S + {u’}, and note that {u,u’, x}
and {u,u’”,x} are the vertices of right-angled triangles in the 2-planes 7’ and 7"’ respectively. Next
observe that by the triangle inequality and Pythagoras’ theorem, it is enough to show that

b —u”’ < Q) |x —u. (5.1)
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To see this we write S as a graph over 7,,S + {u’} as follows: let ¢,, : T,,S + {u’} — R be such that
x" — x" + ¢, (x")N(u) is a bijective map from a subset U C T,S into S; see Figure 1. That this is
possible, and indeed that ¢,, is uniquely defined, follows from (1.12) (a point that is elaborated in [15]).
Notice that

$u(u’) = 0,¢,(x) =|x —u| and V¢, (x) =0, (52

by construction. Assuming that N(u) = e,, as we may, the graph condition (1.12) implies that the
normal vector (V¢,, —1) lies in some fixed (proper) vertical cone, and so in particular we also have

Voul < 1. (5.3)

We now apply Taylor’s theorem on the line segment [x, u’], along with (5.2), to obtain

1
= ul = ¢u(x) = du (') = Sk (u,u")x - '),

where k’(u,u’) is a quantity comparable to some normal curvature of S at some point. Here we have
used (5.3) along with our initial observation via Meusnier’s theorem. By symmetry a similar statement
may be made with u” in place of u’, from which we deduce that

k’(l/t, u/)|x _ u/|2 = k”(u, M”)I.x _ u//|2.

The inequality (5.1) now follows from the definition of Q(S) and taking square roots.
Turning to (4.6), we fix u and exploit the properties of the map H := H,, = N~! o ®,, from Section 6.
By the mean value theorem and Claim 6.4,

, , , [(1 = n(x"))x’] |x" = x"'|
lu—u’|=|H(0) — H(x")| < sup||[dHg|| - |x"| < sup||[dHol| - ——=—— =sup [|[dHyl| - ——=—~-
0 0 [1—n(x")] 0 11 —7(x")]
where x’’ is such that H(x"") = u’’. Consequently,
, HYHX)) -H Y H (K"
) < sup ) O~ H HGO))
0 11— n(x")]
_1y JHG) - H”)|
< sup||dHg]| - sup IIdH(;lII T = o
0 3 11 —n(x")]
_ |u/ _ u//|
= sup ||dHp|| - sup [|[dH-'|| - ———=—.

o N T 0]

and therefore
1 — = !
W e I
supg [|[dH || - supg [|dH ||
‘We also have, for a fixed 6,
1
[dHgl| < [|[dNZ g Il - 1dDg]| £ ————— - ldDg]lLs
() inf,cs A1 (p) Ly

where inf ;s 41 (p) is the infimum over p € S of the smallest eigenvalue A;(p) of the shape operator
dN,,. Similarly,

||dH(31|| < ||dd>;71|| [ldNg g Il < ||dd>;71||LZ.° -slll)pxln—l(l?),
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where sup, g 4,-1(p) is the supremum over p € S of the largest eigenvalue A, (p). Consequently,

inprS A1 (p)

' —u"l 2 1 -7x")]» ———
SUpPes An-1(p)

| lu —u'l, (5.4)

M—M’l > ;
(9)

since 77 < 0 by the strict convexity of S.

6. Computing Jacobians: the proof of Proposition 4.5

In this section we provide detailed proofs of (4.7), (4.8) and (4.9). The key idea is that the maps u +— R, u’
and u’ — R,u’ may be transformed into outward vector fields on Euclidean spaces (specifically 7,,S and
T, S respectively) by conjugating them with a composition of the Gauss map and a suitable stereographic
projection. The derivatives of such vector fields have only two eigenspaces, allowing the computation of
their Jacobians to be reduced to the identification of just two eigenvalues, one of which has multiplicity
n — 2 (see the forthcoming Lemma 6.2). This is manifested in the factor raised to the power n — 2 in the
formula (4.7) for J. We begin by recalling and introducing the notation and geometric objects that will
feature in our computations of J and A.

o N : S — §*! is the Gauss map, dN, : T,§ — TN(M)S"‘l is the shape operator (recall that
T,S = TN(L,)S"‘I), and K (u) = det(dN,,) is the Gaussian curvature at u € S.

o The formulas of this section will be written in terms of the parameters u, u’ and u” = R,u’, which
are points on S. We will denote their images via the Gauss map by w, w’ and w”’, respectively.

o Forafixed w’ € "1, @, : (w')* — S""! denotes the inverse of the stereographic projection map
with respect to —w’. Explicitly

2x 11— |x)?
o,x)=|——ms, ——— 6.1
wr (%) (1+|x|2 1+ |x|? .1
via the identification R” = (w’)* X {w’). If w = @, (x), it follows that
w—{w, W)W
=— 6.2
. 1+ {w,w’) ©.2)
The differential (d®,,), : {(w’)* — (w)* satisfies
(AP )x (%) = {w, w)Hw — w'. (6.3)
The determinants of (d®,, ), and its inverse are, respectively,
2 n—1
det((dDo)y) = [ ——5] =1+ (w,)"! (6.4)
1+ |x|?
and
1 n-1
det((d® ))y) = | ———| . 6.5
eU((dP))0) (H(w’w) ©.5)

We refer the reader to Chapter 4 of [39] for further discussion on the properties of these maps.
o For w fixed, set

H,=N'o®d,.
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H,, will play a crucial role in this section. As we shall see, it allows us to reduce the computations
of J and A to certain Euclidean analogues with simple spectral structure (outward vector fields, as
discussed above and alluded to in Remark 4.3).

We are now ready to prove (4.7), (4.8) and (4.9).

6.1. Computing J
For fixed w’ we define the map ¥, : N(S) — S"! by
W (@) = N(Ry-1(yN~ (). (6.6)

Strictly speaking the domain of ¥, depends on w’, as we allude to in Remark 4.1. The parameter
w € S"! will be a variable and we will use x € (w’)* to represent its preimage by the map ®,, .
Explicitly,
D N~!
X/ wrH—u.

By (6.6) and the definition of J(u,u’), along with the fact that the Gaussian curvature K (u) is the
determinant of the shape operator dN,,, we have

K(u)

J(u, u’) = ’det (d‘PN (u) (N(M)))| K(u//) .

6.7)

The next step is to reduce the computation of the Jacobian determinant det (d¥y (,) (N («))) to one of
a much simpler outward vector field ¢ on the tangent space at u” (see Lemma 6.2 below). This will be
achieved by combining properties of the inverse stereographic projection map @, with the geometric
condition (4.3). To this end we define the map ¢ : (w’)* — (w’)* by

p(x) = (IDLI, oW, o®,(x).
Claim 6.1. The vector field ¢ : {(w’)* — (w’)* is given by
¢(x) =n(x)x, (6.8)

where

(G H(RE,, (nHw (0) (6, @ (w"))
lx[? x|

(%) (6.9)

Proof of Claim 6.1. By definition of the map R(.u’, the normals w, w’ and w”’ are coplanar; therefore,
they lie on a great circle. This implies that

@(x) = p(x)x

for some u(x), which we conclude to be equal to i7(x) by taking scalar products with x on both sides of
the equation above. O

By the chain rule,
det(dep(x)) = det((d®,)(w")) det((d¥r) (w)) det((d@ ) (x)),

hence

det(de(x))

det((d¥o)(w)) = det((d®-)) (w")) det((dDor) (1))
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This implies, by (6.7),

) | det(dp(x))| K ()
| det((d,},) ()] det((deb o) (x)| K (u)”

J(u,u’) (6.10)

We are now in a position to invoke the following elementary lemma, whose proof is left to the reader:

Lemma 6.2 (Differential structure of an outward vector field). Let 5 : R — R be a C! function and let
¢ : R?Y — R? be given by

p(x) =n(x)x. (6.11)

The linear map

dp(x) =x(Vn(x)" +n(x)1a

has eigenvalues A1(x) = n(x) and A;(x) = (Vn(x), x) + n(x) of multiplicity (d — 1) and 1, respectively.
The eigenspaces associated to these eigenvalues are

Eq (x) = (Vn(x))*,
E/lz(x) = (x).

In particular,

det(dg(x)) = ()] ((Yn(x),x) +n(x)). (6.12)

The parameter u” € S is fixed in this subsection; therefore, w’ will also be fixed, and we write H,, = H
to simplify notation. Let us use (6.12) to compute det(de(x)). The eigenvalue 1 (x) of de(x) is

(x, H' (R (x)H(0)))
Jx[? ’

A1 (x) =n(x) =

hence, by (6.12), all there is left to do is to compute the eigenvalue 2, (x) of dg(x). By definition of the
map R(.,yu’, the vector R,u’ — u’ is in the tangent space of S at u. In short,

(Ryu’ —u',N(u)) =0.
Equivalently,
(H(n(x)x) — H(0), N(H(x))) = 0. (6.13)
Differentiating both sides of (6.13) with respect to x,

0=d(N o H){ (H(n(x)x) = H(0)) + (x - Vn(x)" +n(x)I,-1) dH,

n(x)x(N o H(x)).

Taking scalar products on both sides with x and using that N o H = ®,,, we have

0= (H(n(x)x) = H(0). (4D ) (1)) + (AH ) (D0 (). (6 - V()T +7(x) ) ().

By Lemma 6.2,

(x - V() " + () In1) (x) = ((In(x), x) +1(x))x,
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and hence

_(H@n(x)x) — H(0), (AP )x (x))
(dH] ) (P (X)), x)

n(x)x

A2 (x) = (Vn(x), x) +n(x) =

By Lemma 6.2 again,

n2 {H((x)x) — H(0), (AP )x (x))

det(de(x)) = —[n(x)] (dHT, | (D, (x)),x)

n(x)x
By (6.10),
it ! (H ()0 ~ H(O), (d00)e ()] K(w)
) = . (6.14
T = e R @0 ) 9 der((00,1) (@) det((@ ) () Ky O

To proceed, we need to understand each factor in the formula above, which is the content of the next
claim.

Claim 6.3. The following identities hold:

(0.),(1)”> _ (w,w’)(w’,w”) .

= [ e o (T = @, | (19

(H(n(x)x) = H(0), (dP o )x(x)) = —(u” —u’,0'); (6.16)

(dHT (@ (x)),x) = L(w, AN, (0", 'Y - w')). (6.17)
70 n(x)

Let us assume Claim 6.3 for the moment and complete the proof of the proposition. By the claim,
(6.4) and (6.5),

Sy = | {0~ {0 @)W 07 oy [ —u'\ )] |1+ (" )" K ()
' (1+ (", )1 = {w,0))|  [w,dN_ (0", o)’ - w))| |1 +{w,w)""1 Ku")
_ ‘(w,w”> —{w, W' N, 0"}, [{u” —u',w')| K(u)
1 —{w,w’)? Kw,dN_), ((w”, 0" — w’))| K(u") .
" (= w0 K(w)

_ ’ //2%
_ ((1 (W', 0")) 6.18)

(1 = (w, w')?)?

(P, sN(u), (ANy) " ({0, 0w = W) K(u”)’

where we used the facts that (w, v) = (Pr,,sN(u), v) forevery v € T,,»S, and that three coplanar vectors
w,w" and w”’ on the sphere satisfy

(0,07 = (@)W ") = (1= (@ ")) (1 - (@, 0.

We exploit the coplanarity of w, w” and w” twice more. First, it implies the existence of a, b € R such

that
W' =aw+bw. (6.19)
Consequently,
Ku” —u', ") [Ku” —u',aw+ bw’)|
12 ’ ’ = ’” ’ ’ = |b|’
("’ —u', ') Ku” —u', ')l
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since u”’ — u’ is perpendicular to N (u) = w. On the other hand, projecting both sides of (6.19) to {w)=*
gives

Pyt = bPoyia = [p] = L@
= p—t = s
or@ = O ere 1P (-]

which in turn implies

(" —u', )| _ |Pwyrw”|

(" w0 [P(o)re]

(1 - (w07

:>|<u"—u’,a)’)|: 1
(1 -{w,w")?):?

[u"” —u’,Nu"))|. (6.20)

Second, the fact that w, w’ and w"’ are coplanar also gives us that P+’ and P »y.w are parallel,

therefore
Proyi = (@0}
wu’ U)’>(1)” —w = P(wﬂ>i(1)/ — M ()t = MPTL‘”SN(M)_ (6.21)
[Pyt w] (1= (w,w”)?)2
Likewise, or by symmetry,
P/t 1= /, 17\2 %
(w//’w/>w/ —w' = P(w’)iw” — M ()W = MPT'A/SN(M). (622)
1P (0wl (1 - (w,w’)?)?

Using (6.20) and (6.21) in (6.18) gives (4.7). We now move to the final part of the argument.
Proof of Claim 6.3. By (6.9) and (6.2),

|1+ (w, o)

|w = (w, w)w'|?

1+ {w,w) = 1+{w’, )

In(x)] = ‘<

B <0.),0.)”> _ <(,L),0J,><(L),,0J”>
B (1 + ((1)”,(1)’))(1 - <(U, (1)’>)

w— <U.),0.)/>0.)/ w// _ (w”,w’)w’>

s

which verifies (6.15). To establish (6.16), we simply observe that H(n(x)x) — H(0) = u”’ — u’, and this
together with (6.3) implies that

(H(n(x)x) = H(0), (d@u)x(x)) = (" =, (w, 0" )0 = ') = =" =, '),

since u’’ — u’ is perpendicular to w by definition of u”’. Finally, notice that @, (n(x)x) = w”’ and that a
direct computation gives

1 " ’ 7" ’
(dcbw’)n(x)x(x) = %((w swHo" —w'). (6.23)

Therefore by definition of H, the chain rule and (6.23), we have

<dHT (Com (x))»x> = <(’~)s dHl](x)x ()C)>

7(x)x
=(w, dNE)L’(U(x)x) © (dq)w/)n(x)x ()

1
= ——(w, dn}

T](x) ((wu’ w/>wu _ w/)>,

w”

which concludes the proof of Claim 6.3. O
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6.2. Computing A
Arguing as in Section 6.1, for fixed w we define the map ¥, : N(S) — S" by

P, () = N(Ry-1(oyN " (w). (6.24)
Recalling from Section 4 that A (u, u”’) is the Jacobian of the change of variables u’ = R,u"’, it follows
that
" _ 3 )| K (@)
A, ') = |det (d‘I‘N(u)(N(u ))) X (6.25)

Recall that w’ € $"! is a variable now. We will use x” € {(w)* to represent its preimage by the map ®,,:

/‘Dw /N71 ’
X o — .

Once more we reduce the computation of det (d‘f‘N )y (N (u’))) to an application of Lemma 6.2. Define
¢ {w)* = (w)* by
(') =@ oW, 0 @ (x)).
Claim 6.4. ¢ is given by
e(x") = nx")x", (6.26)
where

' Hy (Ru,, ) Hw (X)) _ (L0 (@)

nx'y = 6.27
n(x") ™ e (6.27)
The proof of Claim 6.4 is similar to the one of Claim 6.1. By the chain rule,
det(d@(x")) = det((d®,)) (")) det((d¥e) (@) det((dDy,) (x)),
hence
~ , det(deo(x’
det((d%,,) (@) = __det(dg(x’)) .
det((d®@, ) (w”)) det((dP)(x"))
This implies, by (6.25), that
A | det(dp(x")| K(w) 625

" det((dg) (")) det((d,,) ()| K (™)’

The parameter u € S is fixed in this subsection (and therefore so is w € S"1), so we lighten notation
by writing H,, = H. We may again compute det(dg(x’)) using Lemma 6.2. The eigenvalue 11 (x”) of
do(x’) is

(', H (Ru0)H(x")))

x| ’

() = (') =
hence we just have to compute the eigenvalue 1, (x") of dg(x’) and use (6.12). Recall that

(Ryu" —u’,N(u)) =0.
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Equivalently,
(H(n(x")x") = H(x"), N(H(0))) = 0. (6.29)
Differentiating both sides of (6.29) with respect to x” and taking scalar products with x” as well gives
((dHg(x) 0 dpx) (@ (0)),x") = (w, dH (")),
which in turn implies that
(dHg(x)) " (), (d@x) (x)) = ((dHv) "0, (x)) = (w, dH (x)).

Using the fact that x” is an eigenvector of d@(x’) with eigenvalue A5 (x”) and that H = N™! o @, yields

(@, AN o (dD)e (7)) (w, AN (W, 0)0 - @)
@ AN 0 (@m0 ) (o dN L (@ ) — )

w”

L(x') =

By Lemma 6.2 once more,

aot (@, AN ((w, 0" )’ — w))
(w, dN;l,, (", w)w” — w)) '

det(d@(x")) = [7(x")]

By (6.28),
, 1 — inet Kw,dN ) ((w, 0" Yo' — )| K(u’)
A(I/t, u ) = 1 " , |77(x )l -1 ” 7 2%
| det((dDy, ) (w”))|| det((dD,) (x"))] w,dN_), (w”, w)w" — w))| K(u")
By (6.27),
7] = '<w’ —{w,ww W’ - (w",w)w> 1+ {w, w)|?
= I +{w,w) ~ 1+{w” w) |w = {w, w)w|?

(6.30)
_ <(,U/, wl/) _ <w’ w/><w’ wl/)

I+, @) (1 = (w,w)

By (6.4), (6.5), and (6.30),

(', W) = {w, N w,w) g Hw, AN ((w, 00" — )| K(u’)
(1+(w”,w)) - (1 = {w,w’)) Kw,dN_ ), ((w”, w)w” — w))| K(u”)
~ (|N(u) AN(@u")| )"‘ [(Pr,,sN (W), (dNuw)~" (Pr,, sN())| K(u)
~\IN(u) AN [Pz, sN (), (ANy)~ (Pr,,sN ()| K (u”)’

1+ {w”,w)
1+{w’, w)

n-1

A(u,u’) =

by (6.21), (6.22) and by similar geometric considerations to those in Section 6.1. This establishes (4.8).

6.3. Relating J and A
Here we establish (4.9), the ‘switching property’ of A. By (4.7) we have

(Pr,,sN(u), (AN,) "' (Pr,,sN () | [{u” = u',N(u))| K(u")
(Pr,,sN(u), (AN)™ (P, sN(w))) |{u” =, N(u”))| K(u’)

JGu,u”) [ IN@) AN@) ">
J(u,u’) (|N(u) A N(u”)|)
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Using the coplanarity condition (4.3), an elementary argument similar to that leading to (6.20) reveals
that

(= N@D| _ Py NI (1= w0} _ IN@) AN
" = NN~ Py NG (1= (@02t IN@ AN@T?

from which (4.9) follows.

7. Surface-carried fractional integrals

In this section we establish Lebesgue space bounds on the bilinear fractional integrals

g1(u")ga(Ryu’)

J(u,u')d !
- R (u,u’)do (u")

Is.s (g1, 82) () = /S

arising in Section 4.

Remark 7.1 (Relation to classical fractional integral operators). This is a surface-carried variant of the
bilinear fractional integral operator

1L f2) () —/ fils+ &{f( 2y

that naturally arises when S is the paraboloid (see Section 2), and has been studied by several authors;
we refer to [30] and [33].

As indicated in Section 4, the presence of the factor J in the kernel implies that this operator is
symmetric — that is, Is (g1,82) = Is (g2, 81). It is also natural for geometric reasons, allowing for
bounds that are independent of any lower bounds on the curvature of S. For example, we have

Us.s(fio )l = / / Mf(u,wda(u)da(u')

— /|s

//ﬁ(u’ifz/(fr‘”)d (u')der () (7.1)
< Gsllfillzll f2llas

where
d 7
Cs = sup/ﬂ,),.
ues Js lu—u'|

Evidently C does not depend on any lower bound on the curvature of S. More generally we have the
following:

Theorem 7.2. Let0 < s <n—1,q € [%, 1], and S be as above. Then

15,5(81.82)lLa sy < (> VligillL2as)llg2llr2as).
where the implicit constant depends on n, s, q and the diameter of S.

In order to prove Theorem 7.2 we adapt the argument of Kenig and Stein [33] from the Euclidean
setting.

Proof of Theorem 7.2. For each dyadic scale 4 < diam (S) we decompose S into a collection ®, of
A-caps 6, noting that |@] ~ A"~! for such a cap. Performing a dyadic decomposition and using the
embedding ¢9 c ¢!, for ¢ < 1, we have that (recall that u” = R,u’)
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q
q —-qs ’ ’” / ’
‘/SIS,S(gl,gg) do(u) < Z A ./S(./u'eS:|u'—u"|~/1g](u Vg2 (u")J (u,u’)do (u )) do(u).

0<Agdiam (S)

Next, we fix an arbitrary dyadic scale A and decompose

q
./(./ gl(“')gz(u")J(M,u')dff(u')) do(u)
S w eS:|u'—u" |~

q
=3 /(/ gl(u')gz(u”)J(u,u')dO'(u')) dor (u)
0 u eS:|u'—u" |~

00,
q
carvao S| [ f &1 () (u, ') dor (' der () |
00, 0 JueS:\u'—u"|~A

Here we used that 0 < ¢ < 1 once more. Recall that |u — u’| < Q(S)|u’ — u”| for all u,u’” € S by
Proposition 4.4. Thus if u € § € ®, and |u’ —u"’| ~ A, then |u —u’| < Q(S)A which means that u” € 6%,
where 0* is an O(Q(S)) dilate of 6. Similarly, u” € 6*. Consequently,

q
J (/ gdu’)gz(u"w(u,u')da(u’>) dor(w)
N weS:u-u"|~A

q
< A(=D(-9) Z (L/S81]10*(u/)g216’*(””)J(”’”/)do'(”’)do—(”))

0eB,
= A DED N gl g lg2Ler I, )

969/1
1 3
st Q)( > ”gl]la*“L(I](S)) ( 2, ”gﬂ”*”LqW)
96@,{ 66@,1
1 1
: 1
1 -4 2 ;
< 2D -0 (o ($)0) "D ( Z ||g1119*||LC,1;(5)) ( Z ||g21lg*||L‘f,(S)) ’
06@,1 966/1

for p > 1, where we have used that
[ [ 7@ wara) = Ul el

Since g > % and p = 2¢, we obtain that

q
/ (/ g1(u) g (') (u,u’)do (u') | do(u)
S u eS:\u'-u" |~

(- ] _
< AN Q) I Q) Mgl ) g2l s)

~1)(1- -1 _
= AU 0 (8)24 0D gy 14, llgald s,

since the set of dilated caps {6* : § € ®,} covers S with a Q(S)"! overlap factor. The geometric series
converges as long as —gs + (n— 1)(1 — g + %) > 0. Since p = 2¢, this is equivalentto s <n—1. O
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8. Surface-carried maximal operators

Recall from Section 4 that the geometric Wigner distribution Wg (g, g) possesses the marginal properties
(4.11) and (4.12). In the (superficially) more general polarised form these are the identities

/S Ws (g1, 82) (. Pr, sx)dor () = g1 (x) g2 (x) @8.1)
and
/T | Ws(g1,82)0)d = 1 (02200 (82)

respectively. While (8.1) is an elementary consequence of Fubini’s theorem and the definition of the
Jacobian J, the property (8.2) appears to be a little more delicate in general. In particular, for g, g>
merely in L2, the integral in identity (8.2) should be interpreted as a suitable pointwise limit — see
the forthcoming Proposition 8.4. As may be expected, a maximal analogue of the bilinear fractional
integral operator Is ¢ of Section 7 naturally arises in our analysis. For locally integrable functions
fi,f2: S = Ry and 0 < 6 < 1 we define the ‘averaging’ operator

As.s(fi fo)(u) = 6~ / Fi W) (Rt ) st )dor (),

lw'-Ryu’|<6

and maximal operator

Ms(f1, f2)(u) = OSI;PI As s(f1, f) ().

Remark 8.1 (Relation to classical maximal operators). The operator My is a surface-carried variant of
the classical bi(sub)-linear Hardy—Littlewood maximal operator

M(fi, f2)(x) = sup

6>0 |B((;, 9| JB(0.6) /i (x " %)fz(x - %)dy

on a Euclidean space.
We shall need the following estimate:

Theorem 8.2. If S is smooth, strictly convex and has finite curvature quotient Q(S), then
Mg : L*(S) x L>(S) — L">(S). (8.3)

Proof. We begin by using the Cauchy—Schwarz inequality to write

1/2
As,s(f1, f2)(u) < (5_("_1)/' fl(M')ZJ(M,M')dO'(M'))

'Ry u'|<8

1/2

X (6—(}1—1) / fZ(Rqu)ZJ(”, u’)do—(ul)) °
' -~R,u'|<8

Making the change of variables R,u’ = u” in the second factor above, using Proposition 4.5, and the
fact that R,u’’ = u’, we see that

/ P Rut'Y2d (') dor (') = / 2T o)A (e (u”)
lu'-R,u’|<6 lu”-Ryu”|<é
_ / B2, u”ydor ()
[/ —Rout” | <5
= / Fo(u) T (u, u")do ().
lu'-Ryu'|<6
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Thus,
Ms(f1, f2)(u) < Mg(fD) )" > Mg(f3) ()2,
where
M(f)(u) := sup 67D / F ') (u,u’)do (u').
0<o6<1 lu'-R,u’|<6
Hence

Au € S: Ms(fi, o) () > A4 < Al{u € S : MU Mg (£)w0) > 2|
<AWueS:My(fD)(w) > ea}]
+A{ues: M) > e

for all & > 0. We claim that the sublinear operator Mé is of weak-type (1,1), and assuming this
momentarily we have

AueS: Ms(fi, L)w) > A} < e IAlZ +ell ol

uniformly in €. Optimising in € now yields the claimed weak-type bound on the bi-sublinear operator
M. A similar argument in a Euclidean context may be found in [30].

It remains to establish that Mg : L'(S) — L', and we do this by applying the well-known abstract
form of the classical Hardy—Littlewood maximal theorem presented in [48]. To this end we let Bs(u) =
{u" €S :p(u,u’) < 6}, the ball in S centred at u with respect to the function p(u,u’) := |u’ — R,u’|. By
Proposition 4.4 it follows that p is a quasi-distance, as defined in [48] (p. 10). Specifically, we may quickly
verify that (i) p(x,y) =0 & x =y, (i) p(x,y) < cp(y,x), and (iii) p(x,y) < c(p(x,2) +p(y,2)),
for some positive constant ¢ depending on Q(S). By the change of variables (4.19) and an application
of Proposition 4.16,

1Bo ()] = /m T @) < 0, (8.4)
so that

1 ’ ’ ’
Ms () < SUD TBot] Sy | 14 (o)A ().

Arguing as in the proof of (4.31), we have

5(n-2) lu” —u’|

J(u,u') £ Q(S)" 7 sup A1 (p),

IN(u”) =N@)| p

which by a further use of Proposition 4.4 and the mean value theorem applied to the Gauss map shows
that J(u, u’) is, up to a dimensional constant, bounded from above by a power of Q(S). Consequently,

Mif(u) s sup f')do (u'),

0<s<1 |1Bs()| Jpysw)

where the implicit constant is permitted to depend on Q(S). It remains to show that the surface
measure on S is doubling with respect to the family of balls Bs(u), as we may then apply the abstract
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Hardy-Littlewood maximal theorem of [48] (see p. 37). By (8.4) it suffices to show that |Bs(u)| >
cQ(S) n=lgn=1 for some dimensional constant c¢. However, this follows from Proposition 4.4 since

Bs(u) 2{u' €S :|u" —u|l <Q(S)s}. O

Remark 8.3 (L? estimates for Mg). A minor modification of the arguments in the proof of Theorem 8.2
(a use of Holder’s inequality in place of the Cauchy—Schwarz inequality) shows that Mg : LP'(S) x
LP2(S) — L4(S) whenever py, p2,q > 1 and % + i = é Implicitly, and as in the statement of

Theorem 8.2, the bounds here depend on the dimension and Q(S).

Equipped with the above maximal theorem, we may now clarify the marginal property (8.2). While
we expect that (8.2) (suitably interpreted) holds for all of the submanifolds S that we consider in this
paper, our approach seems to require the additional assumption that

lim (dR,),s exists. (8.5)

u'—u

We note that (8.5) requires some interpretation since for each u’ # u, the map (dR,,), : T,»S — T,»S,
and the limit should be interpreted as a linear transformation of 7,,S. One way to do this is to parametrise
S by T, S, upon which the map R,, may be parametrised by a map y,, on the fixed domain 7,,S. We clarify
this technical point in the arguments that follow. The local statement (8.5) appears to be an extremely
mild assumption. It is straightforward to verify for parabolic S, and since a smooth strictly convex surface
is locally parabolic (by Taylor’s theorem), one might reasonably expect it to be verifiable in general.

Proposition 8.4. Let S be smooth and strictly convex. Suppose y is a Schwartz function on T, S with
x(0) =1, and y,(v) = x(v/r) for each r > 0. Then for compactly supported g, g> € L*(S),

. Ws(g1,82)(u,v) xr (v)dv — g1 (u)ga(u)

as r — oo for almost every u € S. Moreover, if g1, g2 are continuous, then this convergence holds at all
points u.

Before we turn to the proof of Proposition 8.4, we state a lemma whose (somewhat technical) proof
we leave to the end of the section.

Lemma 8.5. If the limit (8.5) exists then for each u € S,
lim J(u,u’) = 2"
u'—u

and

lim  J(u,u’) = -l
u —u
u'-u"e{w)

for each w € T,,S\{0}.

Proof of Proposition 8.4. We begin by writing

/ WS(gl,gz)(u, V)){r(V)dV — / /gl(u/)g2(Ruu/)e—27riV'(u’_Ruu’)J(u’ u’)do—(ul)Xr(V)dV
T.S T.S JS

u

/S 1 () G Rat? )T (= R’ (1, u'ydor (u')

s As (g1, 82) (u). (8.6)
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Since y is a bump function, it follows that Ms (g1, g2) () < Ms(|g1l, |g2|) (u) where

Ms(g1.82)(u) = sup |As.r (g1, 82) ().

Consequently
Ms : L*(S) x L*(S) — L"%(S), (8.7)
by Theorem 8.2. Proposition 8.4 requires us to show that
As - (g1,82) (1) — g1 (u)m for almost every u € S. (8.8)

The first step, which uses a minor variant of a standard argument in the setting of sublinear maximal
operators (see, e.g., [49]), is to use the maximal estimate (8.7) to reduce to the case of continuous
g1, 82. We leave this classical exercise to the reader. Suppose now that g1, g, are continuous functions.
It suffices to show that

As (1, 1) (u) = ‘/.)?r(u' - R,u)J(u,u’)do (1) — 1. (8.9)
N
Invoking the change of variables (4.19) and using polar coordinates in 7,,S we have

[ o @)
As (1, 1) (u) = /TuSX’(g)f(u,u’(f))dg

o0 n—-1—~ J(M, M'(f&))) n-2
./0 ‘/S"-Z(TMS) T Y (rtw) Ton.w() o ()" dt

- [ Py L (7 50))
= /0 /S H(Tus)X(Sw)j(u’u,(r_lsw))da(w)ds,

where $"72(T,,S) denotes the unit sphere in 7,,S. The limit (8.9) now follows by Lemma 8.5 since
u' (r~'sw) = uasr — oo, while u’ (r~'sw) — Ryu’ (r~'sw) = r'sw € (w). O

It remains to prove Lemma 8.5.

Proof of Lemma 8.5. We begin by clarifying the hypothesis (8.5), and showing that this limit must
actually equal —I, where I denotes the identity on 7,,S. This reflects a crucial ‘limiting symmetry’ of
the configuration of points u, u’, u” as u’ — u. By translation and rotation invariance we may suppose
that u = 0 and S = {(x’, #(x’)) : x’ € X}, for some smooth real-valued function ¢ on a subset X of
T,S satisfying V¢(0) = 0 and Hess (¢)(x’) >p,q O for all x’. The map R := R, then takes the form
R(x’,¢(x")) = (x”, #(x"")), for some unique x”’ € T,,S satisfying

P(x") = p(x’) (8.10)

and

Vo) _ V')
Vo (x”)] Vo (x)]
Observe that (8.10) follows by (4.2) and (8.11) is a consequence of (4.28). Writing x” = y(x’) allows

us to interpret (8.5) as the existence of the limit dyq := limy o dy, : T,,S — T,,S. In order to show that
dyo = -1, we fixv € T,,§ and let x; — 0 be a sequence in 7,,S satisfying

Vo)
NECAIN

8.11)
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for all k. This sequence exists as the Gauss maps N of the sections Su.w (see (4.27)) are bijections.
Differentiating (8.10) at the points of this sequence, we have

dy () T(Vo(y(xp))) = Vo (x").

Using (8.11),

Vo (x;) ) IVo(xp)l  Ve(xp)

@ ("L)T(|V¢<x;>| =

T Vo) VeI
which implies

Ve (xp)l

W0 =~ gan o

(8.12)

for all k£ € N. By the mean-value inequality,

(Vo (x;)l _ Sup [Hess ¢lloo X7 - sup ||Hess ¢ ||co 1
[Vé(y(x;))| ~ inf||[Hess @l |y(x;)] ~ inf [|[Hess ¢l [|dy(ck)lleo

for some ¢ with ¢, — 0. On the other hand, y(y(x;)) = x; (recall that R,(R,u’) = u’), hence
dy(y(x;))edy(x;) = I, which gives dy% = [, therefore ||dy(c )|l does not approach 0 and the sequence

Ve (xp)l
Ve (y(xp))l

is bounded. By passing to a subsequence and by taking limits, we conclude from (8.12) that
dyg (v) =-Lv

for some positive real number L and for all v € 7,,S. On the other hand, since dyf) = [, the only possible
eigenvalues of dyq are +1, hence dyy = —1. Finally, taking the limit as u” — u in the first identity of
(4.30) gives

lim J(u,u’) =2""". (8.13)
u —u

Turning to the limiting identity for J, we first establish some bounds relating to the limiting arrange-
ments of the points u, u’, u”” and their normals N (u), N(u’), N(u'"), beginning with

u' +u” —=2u=o0(lu-1ul. (8.14)
To see this (recalling that we are supposing # = 0) observe that u’ +u”" = (x" + y(x), 2¢(x")), and since
#(x’) = O(|x’[?), it remains to show that A(x’) := x” + y(x”) = o(|x’|). By the mean value theorem, it

suffices to observe that dh,y = I +dy, = o(1) as x” — 0, since dy,» — —I. A similar, albeit lengthier
argument reveals that

N )+N@w")-2N(u) = o(lu —u’]). (8.15)
Recalling the formula for J(u, u”), we observe first that the factor

IN(') AN@™)| _ 2IN(’) ANu)| +o(lu’ — ul)
IN(u’) AN (u)| IN(u’) AN (u)|
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as u’ — u. Here we are also using (1.12), which tells us that |[N(u") A N(u)| ~ |u’ — u|. It remains to
show that for each unit vector w € T, S,

<M” _ M', N(I/l”)>
(P1,,sN(u), (dN,)~' (Pr,,sN (1))

asu’ — u withu’ —u"" € (w). Noting that (u” —u’, N(u”")) = (u”’ —u’, P1,sN(u"")), by (8.14) we are
reduced to showing that

-2 (8.16)

. W'~ PrsN@)
u'—u <PTu,,SN(u), (dNu//)_IPTu,,SN(u»

u'-u"e{w)

By symmetry, we may replace u’’ by u’ here, so that the objective is to show that

. W = PrsN@W)
u'—u <PTM,SN(M), (dNu/)_IPTu,SN(u)>

u'-u"e{w)

(8.17)

To this end we Taylor expand N (u”) about 0 via the parametrisation u” = (x’, ¢(x")) =: ®(x’) to obtain
N(u') =N o®(x') = N o ®(0) +d(N o ®)ox’ + O(|x’]?)
= N(u) + (dN)y © (d®)ox" +O(Ix"*)
= N(u) + (dN),x" + O (Ix'[),

ian—l 0

where we have used that (d®), = (V 5(x') 0
n-1

) and V@(0) = 0. Thus, in view of the fact that
|x’| = O(|u’ — u|) we have
x" = (dN) (N (') = N(u) + O(|u’ — ul?)).
The numerator of (8.17) now becomes
(u" —u, Pr,sN(u')) = (Pr,s(u' —u), Pr,sN(u’))
= (', Pr,sN(u'))
= ((dN); ' (N (') = N(u) + O(lu’ ~ ul?)), Pr,sN(u")).

Note that
Pr,sN(') = N(u') = N(u) + O(Ju’ — ul*),
and so
(' —u, Pr,sN @) = ((N); (N@') = N(u) + O(|u’ = ul?)), (N(u') = N(u) + O(Ju’ = ul*))).
This is now similar to the denominator of (8.17). In fact,
Pr,sN(u) = =(N(u') = N(u)) + O(ju" - ul?),

and so
U —u,Pr,sN(u'))
(Pr,sN(u), (dAN,)~' Pz, sN(u))
((dN) (N = N(u) + O(Ju’ = ul?)), (N(u') = N(u) + O(|u’ - ul?)))
(@) (N(u') = N(u) + O(lu = ul?)), (N () = N(u) + O(lu’ — ul?)))
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Further, from (8.15) we have
1
N(u') = N(u) = E(N(u’) —“Nw") +o(|u-u')),

and hence,
(U —u,Pr,sN(u'))
(Pr,sN(u), (dN,) 1Pz, sN(u))
B <(dN),;l (N = N@"”)+o(|lu" —ul)), (Nu') = N@u") +o(|u’ - u|))>
- (@AN)H(N(’) = N(u”) + o(lu’ = ul)), (N(') = N(u”) + o(|u’ - u|))>

Consequently, if
. N(u’) = N(u")
lim @——~—
u'—u |N(u’) - N(u”)|
u'-u"e{w)
exists, then (8.17) follows. Here we have also appealed to the fact that
IN(') = N@”)| = [(dN)u (' = u”) + O(lu —u'|P)| 2 |u —ut'].
Arguing similarly using Taylor’s theorem, we also have
N(@u") = N(u) = (dN),x” + O (Ix"*),

from which it follows that

N@') = N(u") = (dN)ux’" = [@dN)x” + O (1x'?) + O (") = (dN)u (u” = u”") + O(lu — u' ),

and so
N@)=N@w") _ (AN =u") +O0(u-u'l) _ (dN)u(w) +O0(ju—u'])
IN@W) =N (AN —u”)|+O0(u~w?)  [(dN)u ()] +O0(ju—w])’
which converges (to (dN),w/|(dN),w|) as u” — u with u’ — u” € (w), as required. O

9. Tomographic constructions

In this section we show that the explicit geometric Wigner distributions from Section 4 may be con-
structed tomographically from the corresponding extension operators, at least when n = 2. This is
motivated by the tomographic approach to weighted extension inequalities developed in [14, 15]. For
the submanifolds S considered in Section 4, we saw that the natural tomographic transform is the S-
parametrised X-ray transform Xgw (u, v) := Xw(N (u), v). Here X denotes the standard X-ray transform
and N the Gauss map of S. We remark that if the Gauss map is bijective, such as when S is strictly
convex and closed, the operator X is easily seen to inherit the inversion formula

enXiK (A P Xy =y

from the classical inversion formula for X; here ¢ is a suitably well-behaved function and K (u) is the
Gaussian curvature of S at a point u (acting multiplicatively). This suggests the following:

Proposition 9.1. Let ® be a smooth bump function on R? such that ®(0) = 1, and let ®,(x) = ®(x/1)
foreach A > 0. If S is a strictly convex smooth curve in the plane then

Tim K (u) (=)' Xs (@a]gdor?) (u,v) = Ws(g,) (u,v)
for all compactly supported smooth functions g on S.
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Remark 9.2 (Phase-space tomographic methods in optics). This spatial tomographic construction,
which in the particular case of the circle is somewhat implicit in [15], appears to be quite different from
the phase-space tomographic constructions of Wigner distributions that have proved effective in optics.
There it is observed that the phase-space X-ray transform applied to the Wigner distribution (referred
to as the Radon—Wigner transform) identifies its marginal distributions in all directions, and that these
marginals are natural hybrids of the coordinate marginals, involving the fractional Fourier transform.
The Wigner distribution is then (re)constructed by an application of the classical (left) inverse X-ray
transform; see, for example, [17, 3].

Remark 9.3. The cut-off @, is included in the statement of Proposition 9.1 as Xg(| g’(E'lz) is not in
general defined for g € L?(S) (unless there is a suitable transversality property satisfied — see [15]).
This may already be seen when S = S! and g = 1, as then |gdo(x)|? is comparable to (1 + |x[)~! on

sufficiently large portions of R2.

Proof of Proposition 9.1. A routine (distributional) argument, using the well-known fact that

Fo(Xf) (@, &) = F(£), €€ (w)*,

reveals that

(A )2 X5 (®a]gdor ) (u, v) = / e2MEY £, + (gdor) * (gdor) (£)dE. 9.1)

TS

In order to take the limit as 4 — oo it suffices, by the dominated convergence theorem, to show that
sup |£]|4 = (8de) * (3d0) () < (1+ [N 92)
az

for some sufficiently large N € N. This may be seen by first appealing to the strict convexity of S, along
with the assumed properties of g, to show that (gdo) * (gdor) () < |€]7 1 z(&) for some ball B ¢ R?;
see [43, Section 2] for the appropriate detailed computations. The estimate (9.2) then follows using the
rapid decay of o. Taking this limit, it follows that

Lim (=A,)!2Xs (@algdo ) (. v)
- / PIEV|E| (gdor) * (gdor) (£)de
TS

= éLg(u/)g(ull)€2ﬂi(u,_u”)'v|I/t/ _ u"lé((u’ _ u//) . N(u))dO'(u")do-(u’)

Now, for fixed u,u’ the function u” + (u’ — u’’) - N(u) vanishes if and only if either u”” = u’ or
u” = R,u’, as defined in Section 4, and so it remains to establish the formula

’ " ’ ’” " o_ |M/_Ruu/|
/S|u —u”16((uw" —u"") - N(u))do ") = NG AN Ryt 9.3)

whenever u’ # u; see Remark 4.6. Making the change of variables u’”’ = u” — R,,u’ (we stress that u"’
is the variable of integration in (9.3) rather than a simplified notation for R,u’), and using H! to denote
1-dimensional Hausdorff measure in the plane, we have that
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[ = ws = Ny
S
— / |l/l, _ Ruul _ M,Nl(s(lzl,” . N(u))dHl(u/N)
S—{Ryu'}
1
=|u’ — Ryu'| lim —H'({u”" € (S—{Ruu'}) : [u””" - N(u)| < €}),
-0 2¢

from which (9.3) follows from the smoothness of S by elementary geometric considerations. O

Remark 9.4 (Stein’s inequality as a lower bound on the X-ray transform). Stein’s inequality (1.2) may
of course be interpreted as a certain lower bound on the X-ray transform Xg. Here we make some
contextual remarks relating to this in the setting of the paraboloid, where the corresponding inequality
(2.8) takes the form

/ (e 1) P (x, ) dxdt < / 10" (o)l oe e [0 () Py, 9.4)
R4xR R4

recalling the caveat in Remark 2.1. Somewhat similar-looking lower bounds may be obtained from the
adjoint Loomis—Whitney inequality introduced in [16]. Arguing as in [16, Section 8] it follows that

1/r
C(|EO|2)||W”L5J < (/Rd ||P*W(',V)||£q(Rd)|ﬁ0(V)|2dV) 9.5)
whenever w > 0,0 < p,g < 1,7 > 0 and L(l - 1) = é(l - 1). Here

d+1\ g p
1 - 1
C(|ip)?) = det
(17l?) (/(R) TR,

Of course (9.5), while superficially similar, is numerologically very different from (9.4), and also
phenomenologically: LP norms below L' reflect spread rather than concentration. In particular, raising
(9.5) to the rth power, setting r = g and taking a limit as p — 0 one obtains

( [R<l)d+l

1
(@r (1 4 _ @ nr
et )|uo(v1>|2---|uo<vd+1>|2dv) .

1 L 1 _ N d+1 4
det lao(vi)[? -+ - lito(vas1)1*dv | |supp w|d+
ZV] e 2Vd+l (96)

< / Isupp p*w (-, v)|[Fo(v)2dv.
R‘]

It was observed in [13] (see also [15]) that the left-hand side of (9.6) (and the expression C (|75p]?) in
general) has a space-time formulation in terms of u, emphasising further the parallels with (9.4). The
factor |supp p*w(-, v)| is a measure of the ‘visibility” of w in the space-time direction (—2v, 1), making
(9.6) a certain visibility version of (9.4). Similar remarks may be made for more general surfaces S and
are left to the interested reader.

10. Applications to a variant of Flandrin’s conjecture

The phase-space integral formula (2.6) exposes a formal similarity between the parabolic Mizohata—
Takeuchi inequality (2.9) (or its local substitute (2.11)) and a variant of a conjecture of Flandrin [27]
from time-frequency analysis. This conjecture, which was formulated in [25], states that

/f W (10, 1) (x, v)drdy < [uo]2 (10.1)
K
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uniformly over all convex subsets K of R¢ x R¢. This is a weakened form of the original conjecture
that was made with constant 1, following a recent counterexample in [25]; we refer to [37] for further
discussion, along with a number of supporting results.

In this section we show that the basic methods of this paper are effective towards (10.1) by establishing
a version of it in the plane involving an arbitrarily small loss in terms of the Lebesgue measure of K.
We then show how (10.1) implies the parabolic Mizohata—Takeuchi inequality (2.9) for a special class
of weights.

Theorem 10.1. For each € > 0 there exists a constant C < oo such that
// W (10, t0) (x, v)dxdy < ColK|®luo)2 (10.2)
K

for all convex subsets K of R2.

Proof. Arguing as in Section 2, and indeed Sections 3 and 4, by the Cauchy—Schwarz inequality and
the duality of the homogeneous Sobolev spaces H* and H~*, we have

JL W < [ W) Colp kGl 103)

m (K)

for each s < %, where 7, (K) C R is the projection of K onto the v-axis. We now compute both of these
Sobolev norms explicitly.
To compute the HS norm, we fix v and observe that by the convexity of K,

Ik (- v) = Liap)
almost everywhere for some real numbers a, b. Since

sin(m(b — a)f)'
né ’

T(a,p1 ()] =

2 _ 25 sin(m(b — a)¢) 2 o Nl-2s 25 [ Sin(7E) ? . 1-2s
A A e R e e b R

with finite constant ¢, since s < % Here diam | (K) is the diameter of K in the first coordinate direction.
To compute the H* norm we argue as in Section 2, and indeed Sections 3 and 4, to write

IW (0, 10) (s W)l = Tas (li0l, [t ) ()72,

where I, is given by (2.25). We estimate this term further by applying the weak-type estimate
175 (g, @)llzaw) < N8171 5, (10.4)

from [33] (see also [31]), which holds whenever s € (0, 1) and é = 1+ 5. In particular, given £ > 0 and

writing s¢ = % — &, we have

1/2 _ 1/2 —
125, (8. ) PllLocsey = 12s, (8- ) s ooy < Collglls g 1= 7.

With this in mind, we apply the Lorentz—Hélder inequality in (10.3) to write

//K W (a0, 40) (3, v)dedv < g, (1% 10/2) 2| o oy Tk G e et i
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where 7, (K) is the projection of K onto the v-axis. Consequently,

[ Wi vasas < @RIt e
K

|L‘1’s"(m<1<>)

1
Lol (K) |7

1
|72 (K)| 7 lluoll3 -

< Colll@lP I Ik (e, ) llyse

1 1-2s¢
2

< Cgcy diam ((K)

It remains to observe that

1-2s, 1
—_— = — =g,
2 9%
and appeal to the fact that diam | (K) is comparable to the average diameter |K|/|m(K)| uniformly over

all convex bodies K by an application of Brunn’s theorem. O

Remark 10.2 (Higher dimensions). Our proof of Theorem 10.1 does not extend to higher dimensions,
at least readily. This may already be seen if K is the Euclidean unit ball in R>¢, since its d-dimensional
sections, also being Euclidean balls, fail to belong to H*® whenever s > 1/2; see [48]. Evidently, a
routine extension of our argument would require such control for all s < d/2. For further discussion of
Sobolev norms of indicator functions we refer to [26].

Remark 10.3 (Inequalities of Flandrin type for surface-carried Wigner distributions). Our proof of
Theorem 10.1 reveals that the convexity hypothesis on K may be weakened to the requirement that the
sections {x € R : (x,v) € K} are intervals for each v € R, provided we replace the measure of K with the
diameter of K in (10.2). As such our argument should extend to Flandrin-type inequalities of the form

Ws(g,2) < llgll?
A b

for the surface-carried Wigner distributions Wy of Section 4, on the assumption that K C T'S is such
that {v € T,S : (u,v) € K} is an interval for each u € S. This would require a weak-type addition
to Theorem 7.2, analogous to Theorem 1(b) in [33], and would introduce some dependence on the
curvature quotient Q(S).

We conclude this section by establishing a simple direct connection between the parabolic Mizohata—
Takeuchi inequality (2.9) and the Flandrin-type inequality (10.1), although with one caveat: that the
support condition on the right-hand side of the parabolic Mizohata—Takeuchi inequality is dropped.

Proposition 10.4. If the Flandrin-type conjecture (10.1) is true, then the undirected Mizohata—Takeuchi
inequality

/ e, )P e, Ddedr < (1" w ol 2 (10.5)
R4xR

holds for space-time weight functions w that are concave in the spatial variable.

Proof. We begin by observing that if w is a concave function in the spatial variable, then p*w is a
concave function. This is immediate since whenever (x4, v;) = A(x1,vi) + (1 = 1) (x2, v2) € RY x R¢,

P w(xa,vy) = ‘/Rw(/l(xl =2tv) + (1 = D) (x2 — 21vy), 1)dr

> /(/lw(xl =2tvi, ) + (1 = DYw(xy — 2tvy, t))de
R

=Ap"w(x1,v1) + (1 = )p*w(x2, v2)
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for all 0 < A4 < 1. Applying the layer-cake representation,

[lo*W [l
prw(x,v) = / Li(5) (x v)ds, (10.6)
0

where K(s) = {(x,v) € R? xR : p*w(x,v) > s}, it follows from the convexity of K(s) for each s,
Fubini’s theorem and the conjectural inequality (10.1) that

/ u(x, 1) *w(x, £)dxdr = / W (ug, ug) (x, v)p*w(x, v)dxdv
R4xR R4xR4

llo*w lleo
:/ (/ W (1, uo) (x, v)dxdv |ds
0 K (s)

2
S lle*wlls lluoll; - O

Remark 10.5. If instead of applying the conjectural (10.1) one applies the established (10.2) in the
proof of Proposition 10.4, an application of Chebyshev’s inequality reveals that

"W o c
3 * > * l-pe
/ | (x, 1) [*w (x, £)dxdr < Ca||M0||§/ IK(s)|%ds < ——Ilp*wlhZ o wlles P lluoll3
RIXR 0 1 -pe

for 0 < p < 1/e. This might be interpreted as a certain &-loss form of (10.5). We thank one of the
reviewers for suggesting such an observation.

Remark 10.6 (Connections with maximally modulated singular integrals). Our proof of Theorem 10.1
hints at a connection between the Flandrin-type conjecture (10.1) and another natural question in modern
harmonic analysis. Specifically, for subsets K of R X R whose vertical sections are intervals (and hence
for convex K), a routine calculation reveals that

[ w0y < 1.0 s (10.7)
K

where

[l ele-3e0

is the maximally modulated bilinear Hilbert transform. The Flandrin-type conjecture (10.1) would
therefore follow from the bound

1H(fr, ) @ S 1Al 1202 @)- (10.8)

The operator H., is a natural (bi-sublinear) analogue of the classical Carleson maximal operator. Tools
from time-frequency analysis have proved very effective in the study of various related maximally
modulated singular integral operators (such as in [42] and [41]) following the celebrated work of Lacey
and Thiele [35, 36] on the boundedness properties of the bilinear Hilbert transform. However, as far as
we are aware, no nontrivial bounds for the operator H, are known. We note that the bound (10.8) was
established for certain ‘non-resonant perturbations’ of H. in [9].

H.(f1, 2)(x) := sup
AeR

11. Questions
Here we collect a number of questions, some concrete and some more speculative.
Question 11.1 (Strengthening the parabolic Sobolev—Mizohata-Takeuchi inequality). For nonnegative

weights w, can one strengthen (2.27) to
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/ e ) Pw(r.dvdr s sup (" w ()l ol
RIXR

v esupp (idp)
as suggested by (2.9)?

Question 11.2 (Tomographic constructions of Wigner distributions in higher dimensions). In Section 9
we saw that geometric Wigner distributions may be constructed tomographically from |g/d;'|2 when
n = 2 using the X-ray transform. Might there be a similar tomographic construction of a Wigner
distribution that functions in all dimensions, perhaps involving the Radon transform?

Question 11.3 (Fractional Stein and Mizohata—Takeuchi inequalities). Are there interesting fractional
forms of (2.8) or (2.9) suggested by considering an oblique phase-space marginal of the Wigner
distribution in place of (2.4)? See Remark 9.2 on phase-space tomography.

Question 11.4 (A Flandrin-type inequality with an e-loss in higher dimensions). May the statement of
Theorem 10.1 be extended to dimensions d > 1?7
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