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Abstract

The basic principle of any version of insurance is the paradigm that exchanging risk by sharing it in a pool is
beneficial for the participants. In case of independent risks with a finite mean, this is the case for risk-averse decision-
makers. The situation may be very different in case of infinite mean models. In that case it is known that risk
sharing may have a negative effect, which is sometimes called the nondiversification trap. This phenomenon is
well known for infinite mean stable distributions. In a series of recent papers, similar results for infinite mean
Pareto and Fréchet distributions have been obtained. We further investigate this property by showing that many of
these results can be obtained as special cases of a simple result demonstrating that this holds for any distribution
that is more skewed than a Cauchy distribution. We also relate this to the situation of deadly catastrophic risks,
where we assume a positive probability for an infinite value. That case gives a very simple intuition why this
phenomenon can occur for such catastrophic risks. We also mention several open problems and conjectures in this
context.

1. Introduction

The basic reason for the existence of any kind of insurance or other versions of risk sharing is the fact
that risk sharing typically leads to a reduction of risk. Under the assumption of independent and iden-
tically distributed risks with a finite mean, it is a simple consequence of the law of large numbers that
sharing risks will typically be beneficial for risk-averse decision-makers. The problem of an adverse
effect of diversification in case of infinite mean distributions has already been described in a seminal
papers by Fama (1965) and Samuelson (1967) for the case of stable distributions. Further studies of
this problem with infinite mean stable distributions have followed, for example, by Ibragimov et al.
(2009), where the term nondiversification trap has been introduced for the situation, where an indi-
vidual does not have an incentive to share his risk with others, as it may have a detrimental effect to
do so. Real-world situations where this may happen have been described by several authors. Hofert
and Wiithrich (2012) consider nuclear power accidents and estimate the parameters of a Pareto tail
to have infinite mean. Eling and Wirfs (2019) consider cyber risk and also find parameter values that
lead to infinite mean models. Similar observations have already been found for operational risks in
Neslehova ef al. (20006).

In recent years, several new papers have appeared that study this phenomenon under the assumption
of Pareto distributions and more general. Chen et al. (2024b) have shown that i.i.d. Pareto distributions
with infinite mean fulfill the inequality

X, <. ) 60X, (1.1)
i=1
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forall,>0,i=1,...,n, with ZZ’:l 6; = 1. Notice that we can assume without loss of generality that
the weights fulfill 6, > 0, as n is arbitrary. We will sometimes use this fact in proofs. This condition
means that no rational decision-maker will agree to any version of linear risk sharing, see Chen et al.
(2024a) for a detailed study of this case. We want to mention that linear peer-to-peer risk-sharing rules
of this type have recently been studied also in the context of flood risk pooling by Feng ef al. (2023).
As flood risks can also have very heavy tails this problem may also arise there. Chen and Shneer (2024)
have shown that the inequality (1.1) also holds more general for distributions that they call super-Fréchet
distributions. Another recent study of linear risk-sharing rules can be found in Yang and Wei (2025).

In this paper, we want to further study the class of distributions fulfilling the condition (1.1). Our
main results in Section 2 will demonstrate that this condition also holds for all distributions that we
will call super Cauchy distributions and we will clarify that this property is strongly related to skewness
properties of the distributions relative to a Cauchy distribution. In Section 3, we will consider the case
of risks that may have a positive probability of an infinite value with the interpretation of deadly risks. In
that case these results about a nondiversification trap are very intuitive, and this may help to understand
why the situation may be similar in case of very heavy tailed infinite mean risks. Section 4 relates our
results to other recent contributions and states some open problems.

Notation: Throughout the paper, we will assume the existence of a probability space (2, A, P),
on which we can define random variables X : 2 — R with arbitrary distributions. We will denote by
Fx(t) ;== P(X <1), t € R, the corresponding cumulative distribution function of X, and we will also call
F just the distribution of X. For any distribution function F, we define the generalized inverse

F'(w):=inflxeR:Fx)>u}, O<u<1.

We will denote by X, — X convergence in distribution, that is pointwise convergence of Fy, to Fy in
continuity points of Fy. We write X =, Y if Fy = Fy and we define the usual stochastic order by

X <,Y, if Fx(t) > Fy(¢) for all t € R.

This usual stochastic order <, can also be found under the name first-order stochastic dominance in an
economic context, and it is generally agreed that any rational decision will prefer a risk X to arisk Y, if
X <, Y holds. It is the strongest of the well-known stochastic dominance rules used for decisions under
risk and in contrast to weaker notions like the second-order stochastic dominance it is defined for any
distributions, including infinite mean models. For properties of this and related stochastic orders, we
refer to the books Miiller and Stoyan (2002) and Shaked and Shanthikumar (2007).

2. Main results

Throughout the paper, we will consider risks X, where we assume that these are random variables on
some probability space (€2, A, P) with a known distribution. We allow for arbitrary real values of X even
though in many applications, in particular in an insurance context, we may have X > 0. Even if one is
only interested in the case of nonnegative risks X > 0, it is helpful to consider the more general case of
arbitrary random variables X as this will give additional insight and more elegant proofs. In particular,
it is helpful to relate the problem to stable distributions like the Cauchy distribution, which plays a
fundamental role in this context. We will now give the main definition of the class of distributions that
we want to consider.

Definition 2.1. Ler D~ denote the set of distribution functions Fx with the property that
X < Y 0X,, @.1)
i=1

forall;>0,i=1,...,n,with Z?=1 0, =1, where X,, ..., X, are i.i.d. random variables with distribu-
tion functions Fy. We will also write X e D™, if Fxy e D
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We denote by D the set of distribution functions Fxy where inequality (2.1) holds in reverse order,
that is,

D 0X: <4 Xi. 2.2)
i=1

Notice that X € D* if and only if —X € D~. Therefore, we will mainly study properties of D~ in the
following. The property X € D~ means in terms of risks that diversification of a portfolio of independent
such risks has a negative effect by stochastically increasing the risk. This property may be a bit surprising
at first sight, as one typically assumes that diversification is good at least for risk averse decision-makers.
A detailed discussion of this property in the context of risk exchange is given in Chen et al. (2024a).

The following simple result unifies and generalizes part (ii)—(iv) of Proposition 1 in Chen and Shneer
(2024).

Theorem 2.2. Assume that X,Y € D~ are independent and that ¢ : R* — R is an arbitrary increasing
convex function. Then ¢p(X,Y) e D~.

Proof. This simply follows from the fact that for i.i.d. X;, X5,...and ¥, Y5, ... we get

X1, V) <, b (Z 0.X:, Zax-) <Y 606X, Y).
i=1 i=1 i=1
Here the first inequality follows from (2.1) for any increasing function as shown in Theorem 1.2.16 of
Miiller and Stoyan (2002), and it is an immediate consequence of the definition of convexity that the
second inequality holds pointwise for all w € 2. 0

We will now collect a list of several elementary properties of the set D~. Many of them can be found
already in similar forms in the references Chen et al. (2024a); Chen et al. (2024b) and Chen and Shneer
(2024), but for completeness we add the simple proofs for all of them.

Theorem 2.3.

(a) ifX, €D, neN,and X, > X, then X € D~

(b) if X € D~ is non-degenerate, then E|X| = oo.

(c) ifXeD, thenaX+beD foralla>0andbeR.

(d) ifX,Y € D~ and X,Y are independent, then X +Y € D~.

(e) if X,Y € D~ and X,Y are independent, then max{X,Y} € D~.
(f) if X €e D™ and ¢:R — R is increasing convex, then ¢p(X) € D~.

Proof.

(a) This follows immediately from the well-known facts that convergence in distribution is pre-
served under continuous mappings and thus when building convex combinations, and that <
is preserved under convergence in distribution, see for example Theorem 1.2.14 in Miiller and
Stoyan (2002).

(b) Itis well known that X <, Y and EX = EY implies X =, Y, which is an easy consequence of

EY —EX = f ) (Fy(t) — Fy(t))dt.

Therefore, X € D~ and E|X| < oo implies X =, X, = Zf;l X;/n for all n € N and due to the
law of large number and part a) finally X =, lim, ., X, = EX a.s. under this assumption. Part
(c)—(f) immediately follow from Theorem 2.2. O

We can use Theorem 2.3 to show that X € D~ implies that this property also holds for scaled limits
of sums or maxima of i.i.d. random variables from the corresponding distribution. Recall that a random
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variable X is said to be in the sum-domain of attraction of a random variable Z, if there exist sequences
a,>0and b, € R, neN, such that

aX, ... +X,)—b, 57, 2.3)

where X, X,, . . . are i.i.d. copies of X. We write X € DOA™(Z) in this case. The possible limits are called
sum-stable distributions. Similarly, one can define the max-domain of attraction of a random variable
Z, if there exist sequences a, > 0 and b, € R, n € N, such that

a, max{Xy, ..., X,} — b, > Z, (2.4)

where X;, X, . . . are i.i.d. copies of X. We write X € DOAY(Z) in the case of the max-domain of attrac-
tion of a max-stable random variable Z. For details on sum-stable distributions and their domains of
attraction, we refer to Nolan (2020). The topic of max-stability and their domain of attraction is con-
sidered in the extreme value theory literature. We refer to Resnick (2008) for a good reference on the
details that we will use here. The following result is now easy to show.

Theorem 2.4.

(a) If X €D and X € DOA(Z), then Z € D~.
(b) If Xe D™ and X € DOAY(Z), then Z € D~.

Proof. This follows immediately from the preservation of D~ under independent sums and maxima,
scaling, and distributional limits as mentioned in Theorem 2.3. U

The possible limits in (2.3) are necessarily what is called a stable distribution. We use here the fol-
lowing notation for stable distributions, which corresponds to parametrization 1 in Nolan (2020). For
0<a<2and —1 < B <1, wesay that Z ~ S(«, f) has a stable distribution, if the characteristic function
fulfills

E(exp (iuZ)) =exp (— |u|*[1 —iB tan (wa/2)(sign(u))]), u € R,
ifa # 1, and
E(exp (iuz)) =exp ( — |u|[1 + 2i8/m (sign(u) In (Ju]))]), u € R,

if « = 1. Any more general stable distribution with 4 parameters («, 8, v, §) can be obtained as a linear
transformation yZ + § for Z ~ S(«, B), but for the purpose of this paper, it is sufficient to consider stable
distributions Z ~ S(«, B), as the set D~ is invariant under linear transformations. The parameter « is
typically called the characteristic exponent, and the parameter B is called the skewness parameter. These
stable distributions have an infinite mean if @ < 1. Any convex combination of i.i.d. stable distributions
is again a stable distribution and the obtained parameters can be found in equation (1.7) in Nolan (2020).
Using this we can derive the following result for stable distributions.

Theorem 2.5. We have Z ~ S(«, B) € D~ if and only if one of the following conditions holds:

(a) a=1and B >0;
(b) e <land B=1.

Proof. Fora > 1, we have E|Z| < oo and therefore Z ¢ D~. In case o = 1 we get from (1.7) in Nolan
(2020) for any convex combination ) w;X; of i.i.d. stable distributions that > w,X; =, X, + &, where

28 —
8 = - E i l i
T i=1 win )
and therefore Z € D~ if and only if § > 0, which holds if and only if 8 > 0.
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If @ < 1, then we get > w,X; =, yX, with

n 1/a
- (z W7) .,
i=1

and thus we have y > 1, if w; > 0 for at least two indices i. Therefore, Y w;X; >, X, in this case, if and
only if P(X; > 0) = 1. This holds if and only if 8 = 1. O

Notice that we get a very special case, if we choose @« =1 and 8 =0. Then we get a Cauchy

distribution with distribution function
F(x)= l arctan (x) + l, xeR.
b4 2

This has the special property that we get equality in (2.1).

Combining Theorems 2.4 and 2.5 yields a necessary condition for X € D~, as X € DOA*(Z) and
Z ¢ D~ implies X ¢ D~. As an example, we can consider X° for X a Cauchy distribution. In this case,
we get X € DOAY(Z) for Z~ S(1/3,0) ¢ D~ and hence X ¢ D~.

Among the max-stable distributions, the Fréchet distribution with cdf

Fx)=¢ '™, x>0,

has an infinite mean, if « < 1. A random variable X in the sum-domain of attraction of a stable distribu-
tion Z with parameter o < 1 fulfills X € DOA"(Z) for a Fréchet distribution Z with the same parameter
«. This follows from the fact that both domains of attraction are characterized by regular variation of
order « for the survival function, see Theorem 3.14 in Nolan (2020) and Proposition 1.11 in Resnick
(2008) for details. Therefore, we can derive the following result.

Theorem 2.6. We have X € DOAY(Z) with Z € D~ if and only if Z is a Fréchet distribution with o < 1.

Proof. According to Theorem 2.5, we have for any o <1 a stable distribution X e D~. If X €
DOAY(Z), then it follows from Theorem 2.4 that Z € D~. But this holds for Z a Fréchet distribution
with & < 1. As these Fréchet distributions are the only max-stable distributions with infinite mean, the
result follows. g

Chen and Shneer (2024) gave an alternative direct proof of the result that infinite mean Fréchet distri-
butions are in D~. We will demonstrate now that this result and the related results for Pareto distributions
given in Chen et al. (2024b) are all special cases of the simple fact that all these distributions are convex
transformations of Cauchy distributions. Notice that for continuous distributions, ¥ = ¢(X) can only
hold for an increasing ¢, if we choose ¢(x) = F;'(Fx(x)). This relative inverse distribution function ¢ is
strongly related to the statistical concept of a quantile—quantile plot (or shortly Q-Q plot). The condition
of the relative inverse being convex is a well-known order relation between distributions describing an
increase in skewness. This concept is discussed in detail in Zwet (1964) and Oja (1981). We will use
the following notation.

Definition 2.7. A cdf G is said to be more skewed than F (written F <y,,, G), if the function ¢(x) =
G Y (F(x)) is convex.

If densities f and g exist, then taking the derivative of ¢ yields the condition that F <., G holds if
and only if
FFE W)
Ub> ——
8(G~'(w)
In the case of a Cauchy distribution, where we get equality in distribution in (2.1), we can even choose
arbitrary convex transformations to remain in D~.

is non-decreasing, u € (0, 1). (2.5)

Theorem 2.8. Assume that X has a Cauchy distribution and that ¢ : R — R is an arbitrary convex
Sfunction. Then ¢(X) € D~.
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Proof. This simply follows from the fact that convexity of ¢ implies for any convex combination

P(X1) =y ¢ (Z QX> <Y 6o (X)

i=1 i=1
P.-a.s. O

For a distribution F with a heavy right tail, a convex transformation leads to a distribution, which has
even more heavy right tails. Therefore, several authors introduced classes of super heavy-tailed distri-
butions by requiring a convex transformation of a specific heavy-tailed distribution. We will consider
now the relationship between some of these concepts and their relation to the class D~.

Definition 2.9. (a) For any c.d.f. F, we can define the class of distributions
S(F) = {G F Eskew G}
(b) If
1
Fx)=1——-, x>1,
X
is the c.d.f. of a Pareto(1) distribution, then Sp := S(F) is called the class of super Pareto distributions.
If
Fx)=e'", x>0,

is the c.d.f. of a standard Fréchet distribution, then Sy := S(F) is called the class of super Fréchet
distributions.

If
1 1
F(x) = — arctan (x) + =, x € R,
T 2

is the c.d.f. of a Cauchy distribution, then Sc := S(F) is called the class of super Cauchy distributions.

The class of super Pareto distributions has been introduced in Chen et al. (2024b), and the class of
super Fréchet distributions was considered in Chen and Shneer (2024). It is natural to also consider the
class of super Cauchy distributions, and we will show now the relationship between these classes and
that they are all contained in D~.

Theorem 2.10. The following relations hold: Sp C Sy C Sec C D"

Proof. The relationship Sp C S follows from Example 11 in Chen and Shneer (2024), where it
is shown that a Pareto(1) distribution is super Fréchet. Therefore, we mainly have to show Sp C Sc.
Consider a Fréchet distribution with G(x) = e~'/* and a Cauchy distribution F(x) = ”i arctan (x) + % We
have to show that G~ (F(x)) is convex, or equivalently that z(x) = F~'(G(x)) is concave. We get

h(x) =tan (re” """ — 7/2), x> 0.
Taking the second derivative yields
e (e *(2x — 1) + 27 cot (1 /e'))
sin” (re=1/*)xt :

For x < 7 /4, the slope of tan (x) is smaller than 2 and thus we have tan (x) < 2x and hence cot (x) >
1/(2x). This implies 7" (x) <0 for x < 1/2 <z /4. For x > 1/2, it obviously holds that 4" (x) < 0. Hence,
h is concave and thus F is less skewed than G. The relation S¢ C D~ is an immediate consequence of
Theorem 2.2. O

' (x) = —

This result shows that there are additional distributions in D~ compared to the classes considered in
Chen et al. (2024b) and Chen and Shneer (2024).
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We will now show that even the restriction of S¢ to nonnegative distributions is strictly larger
than S.

Theorem 2.11. If X has a Cauchy distribution, then the distribution function F(x) = 2 arctan (x)/m, x >
0, of |X| fulfills F € S¢, but F & Sr.

Proof. To show that this distribution with F(x) =2 arctan (x)/7 is not a super Fréchet distribution,
we have to consider the relative inverse with respect to G(x) = ¢~"/*. We get

¢ (x) = F'(G(x)) =tan (me~ "/ /2).

A straightforward calculation similar to the one in Theorem 2.10 shows that this function is concave for
large x and thus F & Sk. O

Theorem 2.12. If X > 0 is non-degenerate, then X ¢ D™.

Proof. Assume that X > 0 is non-degenerate and X € D" so that in particular

1 n
X>, - X, =Y, 2.6
> Z (2.6)
for X, X, . .. i.i.d. with the same distribution as X and for all n € N. As the Cauchy distribution is the
only non-degenerate distribution with stochastic equality in (2.6) for all n, we must have Fx(t,) < Fy, (t,)
for some 7, > 0 and for some n € N, if X > 0 fulfills (2.6). For ¢ > #,, we get

E(t—-X), = / Fx(z)dz < / Fy()dz=E(t = Y,),.
0 0

However, if X has a finite mean, then we have E[X;|Y,] =Y, and thus X >, Y,. Therefore, we get for the
convex function f(x) = (t — x), that

Ef(X)=E(1—X), = E(t —Y,),,

a contradiction. If X does not have a finite mean, this still applies, as the proof is only based
on values of X below 7, and therefore, we can apply the argument to the bounded random
variable X := min{X, #}. O

We want to mention that there are of course also random variables with X > 0, EX = oo, and X € D~
The following example demonstrates that X € D~ leads to conditions also for the values of the c.d.f. for
small x and thus also demonstrates that there cannot be any sufficient conditions for X € D~ based only
on the tail behavior of the distribution of X.

Example 2.13. Assume that X,, X, are i.i.d. with X, >0, EX; =00 and P(0<X, <2)=P2 <X, <
4)=0.4. Then

P(Xi+X5)/2<3)zP0=X,=40=X<2)+PO0=X, =2,2<X,<4)=0438.

Hence, F ¢ D, if F(0)=0,F(2)=0.4, F(3) < 0.48, and F(4) =0.8.

Notice that we can derive similar and sharper bounds for Super-Pareto and related distributions for
F(3), if we assume F(0) =0, F(2) = 0.4, and F(4) = 0.8. If we denote by G the distribution function of a
Pareto(1) distribution, then F is Super-Pareto, if and only if G\ (F(x)) is concave. This implies in case
F@0)=0,F2)=0.4, and F(4) = 0.8 that

—1 1 —1 —1 10
G (F(3))Z§(G F2)N+G (F(4)))=?

and thus F(3) > 0.7. A similar calculation yields that in the case of a super-Fréchet distribution we get
the condition F(3) > 0.698 and in the case of a super-Cauchy distribution we get the necessary condition
F(3) > 0.654.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 11:53:13, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.10054


https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.10054
https://www.cambridge.org/core

754 Alfred Miiller

3. Deadly risks with P(X = o00) > 0

Let us now consider the case that the random variables have values in R U {oo}. In particular, we consider
the case of P(X;, = o0) =p =1 — P(X, =0) for some p > 0. Then it obviously holds that for a convex
combination

Y=Y 06X weget P(Y =0)=[] (1 = p)ljgoq=1—P(Y =00),
i=1 i=1
and hence this distribution is in D~. Notice that we can write X; = ¢(Z;) for any continuous real valued
random variable Z by choosing

oo, ifx>F;'(p),
0 , else.

P(x) = {

This function ¢ is convex, so that we can consider this distribution as the extreme case of the most
skewed infinity mean distribution that exists. We can give a nice intuitive interpretation of this result by
assuming that X = co means a deadly risk. Assume that a pool of people stranded on a deserted island.
Every individual collects some food. You have to eat a certain amount of food to survive, but all available
items have independent of the others a probability p of being poisoned and leading to death even if you
only eat a small amount of it. So if you must eat something to survive, it is intuitively clear that it is
optimal to just eat from one item leading to a probability of death of p, whereas you can only increase
this probability if you eat from several potentially deadly items. In this case, we have the property that
X, and cX, have the same distribution for every ¢ > 0, and this makes it immediately obvious that such
a result holds. So in this case of deadly risks it is intuitively clear that risk sharing is not a good idea.
Knowing this it may appear a bit less surprising that similar things can happen in the case of infinite
mean models with extremely heavy tails.

4. Relation to other recent contributions and open problems.

Several other authors recently considered this question of finding large classes of distributions in D~
independently of our approach. Chen and Shneer (2024) define the class H of distributions with the
property that x +— hr(x) := —log (F(1/x)) is subadditive. Arab et al. (2024) consider the class of
distributions with the property that x — gr(x) := 1 — F(1/x) is subadditive. Let us call this class of
distributions by G. It is easy to see that H C G. Both papers contain examples of distributions F in their
respective class with F € S¢. A simple example with F' € H, but F ¢ S¢ can be constructed by using a
subadditive function % with a kink with increasing slope. As a concrete example we can choose

2x, x <1,
he(x)=42, 1<x<2,
x, x>2.

As x+— hp(x)/x is obviously decreasing, this is a subadditive function. The corresponding distribution
function F fulfills F(x) = exp ( — hr(1/x)) and therefore also has a kink with increasing slope. But this
implies that F & Sc.

We give now an example of a nonnegative distribution with F € S with F ¢ G. We consider the
following convex function ¢ : R — (0, 00):

L x<5,

R 10—x2
mm_{%’xzj

If X has a Cauchy distribution, then we get for the distribution F of ¢(X) that
1 1 arctan (25/x), x <35,
g =5——
2 0w arctan (10 — x), x > 5.
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Thus, we have g7(10) = 0.5 > 2 - gz(5) ~ 0.12 and thus g is not subadditive and hence F ¢ G.

Chen and Shneer (2024) claim in their Example 3 that there is an example of a discrete distribution
F € H. Unfortunately, this example is wrong, as the corresponding function 4 is not subadditive. Indeed
it is easy to see that any increasing subadditive function A with lim,_,, 4-(x) = 0 must be continuous.
This can be shown along the same lines as the proof of Theorem 1 in Matkowski and Swiatkowski
(1993). For increasing functions, the proof is indeed much simpler. Therefore, any distribution in H
also must be continuous. This also holds for distributions in G. The example of a discrete distribution
in G mentioned in Example 2.7 in Arab et al. (2024) has positive probability P(X = co) > 0, and this
is similar to the example that we consider in the previous section. It seems to remain an open problem,
whether there is a discrete distribution in D~ that assumes only finite values.

It also seems to be an open problem whether all stable distributions in D~ are super Cauchy
distributions.

For stable distributions with parameter o < 1 and 8 = 1, some numerical experiments seem to sup-
port this conjecture, but we have no idea how to prove it, as an explicit formula for the cdf is only known
for the case o« = 1/2, which is known as Levy distribution. So the question arises whether one can prove
that these positive infinite-mean stable distributions are convex transformations of a Cauchy distribution
for any a < 1 without having a closed form for the cdf?

A similar problem arises for stable distributions with parameter « =1 and 8 > 0. We know from
Theorem 2.5 that these distributions are also in D, but eventhough the parameter § is commonly
denoted as skewness parameter, we could not find a formal proof that an increase in 8 yields an increase
with respect to the stochastic order <y, for stable distributions. We also conjecture that this is true in
general.
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