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Abstract

A homogeneous isotropic infinite elastic plate contains a circular cavity
and a circular arc crack symmetrically situated about the x-axis. The cavity
and crack are concentric but are of different radii. A circular inhomogeneity
of radius slightly larger than that of the cavity is inserted into the cavity; thus
generating a system of stresses in the outer material as well as in the
inhomogeneity. The elastic field in the inhomogeneity and in the outer
material outside the inhomogeneity is evaluated in this paper.

1. Intreduction

A number of problems [1-7] have been solved in elasticity theory on the
stress distribution around a crack in an infinite flat plate subjected to either
extensional or flexural loading at infinity. Muskhelishvili [8] has given simple
method for solving two-dimensional circular arc crack problems. The problem
of an arc crack around the boundary of a circular elastic inclusion was
considered by A. H. England [9].

The study of inclusion problems was initiated by Frenkel [10], Mott and
Nabarro [11]. A systematic investigation has been done by Eshelby [12] and
by Jaswon and Bhargava [13] and others. The problem of the interaction
between a crack and inclusion has been considered by Atkinson [14] and the
effect of a circular inclusion on the stresses around a line crack in a sheet
under tension by Tamate [15]. R. D. and R. R. Bhargava [16] have extended
the method given by Tamate [15] to obtain the explicit solution to the
problem of elastic circular inclusion in an infinite plate containing two straight
cracks.
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In the present paper the problem of a circular misfit in an infinite plate
containing a circular are crack is considered. The elastic properties of the two
materials may differ from each other.

2. Statement of the problem

A homogeneous isotropic infinite elastic plate contains a circular cavity
of radius C and a concentric circular arc crack of radius a (a > C) which is
symmetrically situated about the x -axis. The crack subtends an angle 2« at its
centre, the origin. The edges of the crack are free from external traction. A
circular inhomogeneity of radius (C + ¢), (£ is of the order of the displace-
ments admissible in elasticity theory), is inserted into the cavity and welded at
the interface to avoid slipping. Because of the misfit, stresses will develop in
the inhomogeneity and surrounding material. The problem is to evaluate the
elastic field. The problem is considered as a plane strain problem and thus the
y-axis is in the plane of the section (see Fig.1).

As is well-known [8], the stress components P, (i,j = x, y) in cartesian
coordinates or (i, j = r, 8) in polar coordinates and displacement components

A%

Fig. 1. Configuration and coordinate system
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u, (i=x,y or i =r,0) are known if one can evaluate the complex potential
functions ¢(z) and ¢(z) which are related to stresses as follows:

P..+P,, =2[¢(z)+ ¢(2)],

P, —iP,, = ¢(2)+ ¢(z)+ 20 '(2) + ¥ (2), (1)
241 (e + ity ) = Kp(2) = ¢(2) = 2¢'(2) — ¥(2)
or
P, + P =2[6(2)+ ¢(2)],

P, +iPe = ¢(2)+ b(2)— 2'(2) — (2/2)¥(2) @

a JE S — -
2pg e (u, + iug)) = iz[K(2) — $(2) + 26°(2) + (2/2)8(2)
where bars are used to denote conjugate complex quantities and subscripts
following a comma stand for derivative with respect to the argument
following it; u is the shear modulus, K =3—-4¢ for plane strain and
K = (3-0)/(1 +0) for generalized plane stress, o being Poisson’s ratio.

If the stresses vanish at infinity, the functions ¢(z) and ¢(z) for large
values of z have the following forms:

$(2)=T+5+ -, )
W)=l @

where a.’s and b,’s are constants.
It is convenient to introduce a new function €}(z) by the relation

a0 =(L)-Lo (£)-%e(%) ©)

Zz z z z z

which near the origin is of the order unity. By (5)
_a’ a’ (a’\ a*,,
1 =%e@)-5a(L)-L o). ©)
Thus the equations in (2) may be written as

P, + Po =2[¢(2) + &(2)),
)

2

P, +iP, =¢(z)+Q<a?)+z'(
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a . g a’y sz 1
2;1,36[e (u,+tu,,)]—tzK¢(z)—Q<7)—-z(?——z-)¢l(z). ®)

For the present problem, two sets of functions, i.e. ¢, (z), ¥.(z), Q.(2)
and ¢.(z), Y. (2), Q. (2), are to be evaluated. The subscripts i stand for the
region of circular misfitting inhomogeneity and m to the rest of the region
containing the crack extending up to infinity.

3. Boundary conditions

The boundary conditions of the problem may be stated as follows:
(i) At infinity, '

én(2)=0(z7),

Un(2)= 07, ©)
hence near the origin,
Q.(z)=0(1). (10)
(ii) The rims of the crack L are free from tractions. Therefore

(P7+ iPl)si<ar-a = 0. (11)

This condition may be expressed in terms of ¢.(z) and Q,.(z) as
én()+ (1) =0, (12)
&A1)+ Qo (1) =0, (13)

where ¢ is the coordinate of a point on the cut L and superscripts (+)and (-)
are used to denote the boundary values of the functions as z tends to ¢ from
the left and right regions of the crack (see Fig.1). By adding and subtracting,
and using the obvious notation, equations (12) and (13) may be written as

[ () + Qn (D] + [bn (1) + Qo ()] =0, (14)
[ ()= QL (D)~ [bm (1) = L ()] = 0. (15)
(iii) On the common interface of the misfit and the outer material, the

stresses P,, P, are continuous and the discontinuity in displacement is as
prescribed. This implies

(P" + iPrB)m = (P,, + iPrG)l (16)
and

(U, + i)y — (U, 3 ity), = €. 17)
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From equations (14) and (15), which is the Hilbert problem, we can
construct the function ¢..(z), 2..(z) analytic in the entire region cut along L.
Taking into account the fact that ¢.(z) and Q..(z) could have poles of
various orders at the origin and still satisfy the conditions at infinity as well as
along the rims of the crack, ¢.(z), {}.(z) may be written as

q>m(z)=%"2; A-,.(-zq) +3 A, ( )

n=0

X(z){i; (£)' 23(5)}
-2 -5 (25 A2

n=2

1 < a\" <« z\"
~xmi 2 e-(2)+28(2) '}

Note that in the summation symbol in the first terms of the right sides of
®,.(z) and ..(z) in equation (18), A_, has been set equal to zero. This is
because Im (A _,) is directly proportional to the resultant external force on the
crack and internal boundary of the matrix. Note that the external force on the
crack is already taken to be zero. As regards the internal circular boundary of
the elastic plate (circular hole), the resultant force on it is proportional to
coefficient of Im(A_,) in (18), and this is clearly zero because the inclusion
does not give any resultant force on matrix. Re(A_,) is zero because of
single-valuedness of the displacements.* Also A,, A_,, B, and B_, are
unknown constants and X(z) denotes one of the branches of

o (3-e) ()

which is single-valued in the entire plane cut along L. We take that branch for
which X(z)—(z/a) for z - «. We now put

(18)

A=z ey (1 2,y =S P_onzi ~  (18a)

n=0
and write
P, = = pnsnp (nz0). (18b)

Using the expression for ¢,,(z) in (18), and the condition at infinity in (9), we
get

* The proof of this was given by the referee in a private communication to the first author
and is given in the Appendix.
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A, =— kE. p-«Buii, (nZ0),

S pBii=0 )
P-« D1 = U,

k=1

Also by the expression for £1,,(z) in (18) and the condition (10), we obtain the
following equations:

A= kZO Dk B_imy, (n2z2),
. (20)
2 Dk B—(k+l) =(.
k=0

The function ¢.(z) in (18) and the corresponding function .. (z) which
is derived from (6) may be expanded in the region 0 <|z|<a in Laurent
series, using (18a) and (18b) as follows:

1 < z\"
¢m(Z)=§an En(_a_) 1
d n (21)
=L z
lIIM(Z)_Zan Fn(a)
where
E_ =0,
E_.= 22,0 PcB_wsny, (nZ2), (22)
E.= kz Px Bk — ; P-xBai, (n20),
=0 =1
and
F_,=0,
F—,. = (n - I)E_(,._z)_ 2“2 D-« Bn+k—2, (n = 2),
=1
(23)

F, = (" + 1) ["Zl P-an+k+2_ ;-:o Pan+2—k]

+ ‘;) pkB——('“'n*'Z)_ 2 P« B_(n—x+2), (nz 0)
= i=

Reverting to the inclusion, it is observed that complex potentials ¢, (2)
and ¢, (z) are holomorphic in the region | z | = C. Hence by Taylor’s series
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6 (1)=32 G.(&)"

w15 m(3)

where the coefficients G, and H, are unknown and are to be determined by
the conditions along the bonded edge |z|= C
At this stage it is necessary to translate the conditions (16) and (17) in terms
of ¢(z) and ¢ (z). The condition (16) with the help of (2) may be written as
¢m (Cei9)+ d;m (Ceus)_ Ce—iod;:(Ce—is)_ e—2s8(zm (Ce—m)

= ¢ (Ce*) + & (Ce™) — Ce™ Bi(Ce™) — e §(Ce ™).

(24)

Similarly using (17), with help of (2) may be written as,

f—i{Kmd’"‘(Ce )= ¢n(Ce )+ Ce™ $(Ce™) + €7 1, (Ce ™)}

~{K.d(Ce®)— ¢ (Ce™™)+ Ce ™ p'(Ce ™)+ e > ¢ (Ce™™)} = 2ep
We now substitute the values of &n(2), Ym(z) from (21) and ¢:(z) and
¥, (z) from (24) into the above equations. Equating the coefficients of various

powers of e* on both sides; the following equations are obtained.

Eo+ Eo- (g) = Go+ Go, 25)

L(K Eo Eo)+‘&‘<_g,‘) F-2=4_£&i+K,~Go—Go

n n w2 (26)
&&(Q) e = (1) M E (ﬁ) =
#m a En #m (n + I)E—n C + “m F-(n+2) C K:Gm
(n=1,2,--+),
a n C n_ C n-2
(—5) E-,.—(n—l)(;) E..—(;) Foo= —(n-1)G, + Aoy
n n-2 (27)
a\" pmKn - (9)& (Q) Bip (-
(c) “ELtn-0)(5) 2B+ (E) R (-G + A
(n=2,3,---).

Eliminating G. and H,_, from equations (27),
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(Ll)“l C\*" C\>2
e () (6]

pKn
Hom
(n=23,---).
From (25) and (26), we get
H
v oy () ko(E)
Fo= g Bt (;C) - . f (Eo+Eo)(-§)
(—&'+K,—1)c (Ji FK -1
B ©
29
v C 2n+2
Fonany = (n+1)( )E_H—L———E«—‘) (n=1,2,---).
()-x Lo
I—Lm
Equations (25), (26) and (27) are solved for G. and H, as follows:
<M.Km)+1 ) 1—(“‘)
G =—“L—<§> E.+—tt(n +1)<£) E
" K +1 a " K +1 C "
()
n+2
AP/ P G 0
TR I (c) Fon=cark)? (30)
n+ C n n+
(n+])( ) F_(,,M,+<Z> —(n+2)< ) E e
(n=0,1,2,--).

Substituting equations (22), (23) to (28) and (29), we obtain the following
infinite set of linear equations for B, and B._..

E pkB_(kH):O,
k=0
() !
l ,‘-Lm (§>2n—2 y
(Lt wla) 1
Hm

CZ o _ _ et £
a’ ) ( z pan—k - 2 P—kBk+n>+ Z P—kBk—n - Z pkB—(k+n):|¢
k=1 k=1 k=0

=
z PkB—(k+n)=
k=0

[(n—l)(l—

(n=2,3,---) G
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M

P« Ek—l =0,

|
I

1

L @ w 2
3 puBo=3(2 b= 5 pabi ) -2 —— ()
k=0 k=1 : )C a

k=t <2ﬂ+K,—1
l"m
(&E_ﬂ)_K‘_(&)_H
1\ pm L \pm (AN IR
2 . a) [ &PP
2(4‘*—‘)+K.—1 k=0

- E p—kBk + z pkE—k - z P—kék ] >
k=1 k=0 k=1

L) - C2 i (32)
z .p_kBkﬂ. = (n + 1) ( 1 —'—2> Z pkB—(n+k)
=1 a k=0

K

1 <_‘) - K- C 2n+2 L _ fd -
() (5 085 )
(ﬁ)_{__K . k=0 k=1
Mm
(n=1,2,---).

Equations (31) and (32) are the infinite set of linear equations in which K,
Ko, s tmy Pk, Pi; (C/a) and ¢ are known. These sets determine the values of
unknown constants B, and B_,. After the determination of B, and B_,, the
coefficients A,, A_, are determined by (19) and (20). These values when
substituted in (18) determine the potential function ¢,.(z) and Q..(z); ¥.(2)
may be obtained from (6). The stresses in the matrix are determined by using
these values of ¢.(z), ¥m(z) in (18). Alternatively one may determine the
values of E,, E_. by substituting the above known values of B, and B_, in
(22). Substituting these values of B,, B_,, and E_, one may obtain F, and F_,
from (23). These values when substituted in (21) determine ¢.,(z), ¥.(z).
These will determine the stress field in the matrix.

As regards misfitting inhomogeneity, one may determine the values of G,
and H, from (30) by substituting the values of E,, E_,, F, and F_, as indicated
above. These values of G, and H, when substituted in (24) determine ¢:(z)
and i(z) which determine the stress and displacement field in the in-
homogeneity.

It is of some interest to note the stress intensity factor at the crack tips.
For this purpose we use the definition given by Sih, Paris and Erdogan {17]. In
this paper the stress intensity factor is defined by (K, — iK3). Using the above
definition, the stress-intensity factor for the present problem comes out to be
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- a ROLS ") _ QI Q) D) o
K, \/Sma[{Bo +,§. ((B,, B¢))sin na + (BY +B_,.)cosna)}cosz

- {Bf,"+ > ((B‘,."+ B")cosna — (B — B%)sin na)}sing].
n=1

- a SR %) ® _(BY_ RO\ a
K, \/sina[{B" +Z}<(B..+B_,,)cosna (B: B_..)smnaz)}cos2

+ {B(‘,"+ > <(BE,”—B‘.’,’.)sin na+ (BY+ B%)cos na)} sin%],
n=1

where the values of B,’s are to be obtained as stated above. The symbols B,
BY’ denote respectively the real and imaginary part of B.’s.

To obtain explicit values for some cases, one may solve numerically the
equations (31) and (32). For the purpose of illustration, two materials were
chosen, some kind of brass and of steel for which shear moduli 4re 3.66 X 100
gm/cm’® and 8.19 X 10 gm/cm? and Poisson’s ratio 0.327 and 0.310 respectively.
These figures have been taken from [18]. Two cases were considered when
2a = /18 and 7/9. Equations (31) and (32) were solved by the standard
iteration procedure. Values of B.’s were found successively. It turned out
that after 16 iterations, the values of 15 unknowns (B,, By, -, By
B_,, B_;, - -, B_s) were identical up to the Sth place of decimal. Moreover the
values of Bs, Bs, B_;, B_s were zero up to 5 places of decimals. It was decided
therefore that this will give sufficiently good results. Two checks are still
needed, one to find the value of P,, P, at the boundary of the crack, which
should be zero, and those of P, P, at the interface which should be
continuous and also that the discontinuity in displacement should be as
prescribed.

As regards the crack boundary, from equations (7)

(Pr+ iPl)i<ar=a= & () + Q7(2).

Substituting the values of ¢(t) and €(¢) etc. and retaining equal number of
terms, it may be directly seen, that ¢*(¢)+Q7(¢) is identically zero. As
regards the stress at r = a and || > a, the substitution of the values of B.’s
gave the values of P, and P, for matrix and inclusion side which differed only
in the fourth place. This was true for displacements also.

Graphs for stress intensity factor have been drawn in Figures 2 (i), 2 (ii), 2
(iii) for 3 cases namely when (i) the inhomogeneity is of brass, matrix of steel
(ii) inhomogeneity of steel and matrix of brass and (iii) when inhomogeneity
and matrix are both of steel. The radius of inhomogeneity is (1+ ) and the
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crack radii are changing. The full lines denote the stress intensity factor K,
and the broken lines K.

Note that we have taken £ to be positive, whence the stress intensity
factor came out to be negative. This indicates that the crack would close. In
fact the above analysis is valid only for negative values of e. This is also

confirmed on physical grounds.
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Appendix

The displacement components u, + iu, are related to complex potentials
¢(2), ¥(z) by the relations
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2p(ue +iu)= Ke(z)— z¢'(z2)— ¢(2)
where ¢'(z)=®(z) and ¢’'(z) = ¥(z). Substituting ®,.(z) and ¥, (z) for
®(z) and ¥(z) and putting the values of ®..(z) and ¥..(z) from {21), it is seen
that u, + iu, is single-valued only if
KE_—F.,=0. (A1)

Similarly the resultant traction X +iY on the circular boundary from A
to B is given by

x+iY=f (P, +iP,,)ds = — i[p(z)+ z0'(z) + ¥(2)]A

where | ]ﬁ denotes the increase undergone by the expression in the bracket as
the point z passes along the arc from A to B. Taking the closed circular
curve, if the resultant traction is zero,

E_l + F-] = 0 (A2)
From (A.1) and (A.2)
E_ =0, F.,=0. (A3)

Now if in (18), the term containing A_, is retained, equations (19) and
(20), would be

A, +§:: p-1Bi.i=0 and A_, - 2 Dx-ay=0
and then in (22),
E.,=A_ - 2}:: B gey= — A,
whence A_, =0.
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