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Abstract. This is a corrigendum to ‘An uncountable Furstenberg—Zimmer structure theory’
[Ergod. Th. & Dynam. Sys. 43(7) (2023), 2404-2436]. We report two issues in that
paper. First, Lemma A.5 and Proposition A.6 in the Appendix, which supported a
spectral analysis of conditional Hilbert—Schmidt operators, are incorrect. These results
were used in the proof of Lemma 4.4, which establishes part of the equivalences in
Theorem 4.1. We provide a correction for this issue here. While the proof strategy of
Lemma 4.4 remains valid, the details have been revised using known auxiliary results in the
non-commutative setting of tracial von Neumann algebras, replacing the faulty arguments
from the Appendix. Second, the proof of the implication (iii) = (iii)’ in Lemma 4.10 is
incorrect. We supply a new argument to address this. We also take this opportunity to
correct several minor issues that have come to our attention since the paper’s publication.
A fully revised version, including these corrections, as well as updated references and some
fixed typos, is now available on arXiv.

1. Introduction

We quote from [3] and adopt its notation without further comment. Both issues addressed
in this corrigendum arise in the proof of Theorem 4.1, which is divided into several lemmas
in [3, §4].

The main problematic part lies in Lemma A.5 and Proposition A.6 of the Appendix.
These results are modifications of [5, Lemma C.14 and Proposition C.15], respectively.
The issue arises in replacing L% (Y)-modules in the conditional L2-space from [5]
with L% (Y)-modules in the classical L2-space, and using the LZ-norm instead of the
L°-norm of the conditional norm when computing the operator norm of a conditional
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2 A. Jamneshan

Hilbert—Schmidt operator in Lemma A.S5. More precisely, the first inequality in the final
displayed equation at the end of the proof of Lemma A.5 is incorrect. We thank Henrik
Kreidler for bringing this oversight to our attention.

This error propagates to Proposition A.6, which was used in Lemma 4.4 to argue that
the range of a conditional Hilbert—Schmidt operator, viewed as an operator on L>(X), is the
closure of finitely generated L°(Y)-modules in L?(X). This conclusion can, however, be
obtained through a different route: using a criterion for when an L>°(Y)-module in L*(X) is
finitely generated, which we found in the non-commutative setting of tracial von Neumann
algebras in [1]. (In [4], Spaas and the author establish a non-commutative version of
Theorem 4.1 for inclusions of tracial von Neumann algebras. A similar issue as in the
proof of Lemma 4.4 was identified in that paper [4, Lemma 2.11 and Proposition 2.12] and
fixed using the non-commutative version of the same argument as here.)

This correction also necessitates a modification of assertion (i)’ in Theorem 4.1,
specifically by removing the L>-closedness condition on the L>°(Y)-modules in L*(X).
Details are provided in §2.

The second issue concerns the proof of the implication (iii) = (iii)’ in Lemma 4.10,
where it is claimed that if f € L2(X|Y) has a conditionally totally bounded orbit, then so
does f -1 Fllp2 <M for any M > 0, due to Proposition 3.4(ii). This claim is flawed on
multiple levels: first, Proposition 3.4(ii) does not justify such a conclusion; second, the
conclusion itself is incorrect; and third, even if these issues were absent, the argument

would still fall short, as the conditional total boundedness of the orbit of f - l||f||L2(le)5 M

would only hold in the larger space L?(X|Y), not in L?(X). However, a more careful

truncation argument does yield a correct proof of the implication (iii) = (iii)’. The details

are provided in §2.

Several minor issues have also come to our attention and are corrected below.

e The proof of the conditional triangle inequality in Proposition 3.4 relies on the
conditional Cauchy—Schwarz inequality, which was not explicitly mentioned in the
original paper.

o In the first step of the proof of the conditional Cauchy—Schwarz inequality (Proposition
3.4(iii)), there are minor errors: a missing square in the first displayed equation and an
incorrect definition of a in the second one. A corrected version of the full first step is
as follows.

First, suppose that f,geL?(X|Y) satisfy [ fll 20y 1€ll20x 7y
I/ —agllp2x)yy > Oforalla € LO(Y). Then, we have

0 < IIf +agliayyyy = 1 U2y + 448 2y
+a(f, &) 2oy + lal 1832y,
for all a € LO(Y). Setting a = c({f, & r2xvy/ 18l 2x)y)y), where ¢ € LO(Y)
satisfies [c| = 1 and ¢(f, &) 2(xjyy = ([ &) 12(x|y)|, and after some elementary

algebraic manipulations, we obtain the conditional Cauchy—Schwarz inequality
in this case.

e At the end of the proof of Proposition 3.7, the definition of the atoms of the partition
Po is incorrect. A corrected construction is as follows.
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An uncountable Furstenberg—Zimmer structure theory — Corrigendum 3

Let Fi ={ligillp2(xjyy > 0} for i =1,...,n. Form all finite intersections
EyNEy;N---N Ey,, where each E; is either F; or FY.
Accordingly, the definitions of P and the sets Fr must be adjusted.

e In the statements of properties (i) and (i)’ in Theorem 4.1, one must consider the
LO(Y)- or C-linear span (respectively) of the sets appearing therein. A corrected
statement of Theorem 4.1 is provided in §2.

e In Remark 3.5 on topos-theoretic aspects of Proposition 3.4, Proposition 3.4(iv)
and (v), as originally stated, do not describe the Sh(Y)-spectral theorem of
Sh(Y)-Hilbert—Schmidt operators.

e Due to the corrections in the proof of Lemma 4.4 and the adjustments in the statement
of Theorem 4.1, the beginning of the proof of Theorem 5.3 requires the following
modification: the family (M) must be chosen in the larger LO(Y)-module L%(X|Y).
Indeed, since we removed the L2-closedness condition on the L°°(Y)-modules in L2(X)
in Theorem 4.1, we cannot guarantee the existence of a conditional orthonormal basis
in such modules (cf. [3, Proposition 3.7] and Proposition 2.2 below). This change does
not affect the remainder of the proof.

2. Fixing the proofs of Lemmas 4.4 and 4.10 in the original paper

The following preliminary results are needed to achieve a conditional spectral decompo-
sition for conditional Hilbert—Schmidt operators. Due to our use of the Borel functional
calculus, we treat conditional Hilbert—Schmidt operators on the classical Hilbert space
L?(X) which we however view as an L% (Y)-module by multiplication.

Definition 2.1. (Conditional orthonormal basis) Let M be an L2?(X)-closed L*®(Y)-
submodule of L2(X). A subset M of M is said to be a conditional orthonormal basis
if the following properties are satisfied:

@ (f. 8 r2xyy) =0forall f,g e M;

) (f, flr2xyy) = 1g forsome E € Y forall f € M (where E may depend on f);
(i) M= @feM L>®(Y)f.

PROPOSITION 2.2. Any L?*(X)-closed L*®(Y)-submodule of L*(X) has a conditional
orthonormal basis.

Proof. This is a commutative special case of the existence of Pimsner—Popa orthonormal
basis in right modules over tracial von Neumann algebras, see [1, Proposition 8.4.11]. [

PROPOSITION 2.3. Let M be an L*(X)-closed L>®(Y)-submodule of L*(X), and let
K € L®(X xy X). Then, Kxy: M — L*(X) is a well-defined L*(Y)-linear classical
bounded operator. Moreover, it is conditionally Hilbert—Schmidt in the sense that for any
conditional orthonormal basis M of M,

2
Sup Z ”K *y f”LZ(le) < oo,
FCM finite feF

where the (essential) supremum of the measurable functions on the left-hand side exists by
completeness of Y (see [3, Remark 2.2]), and a priori is measurable with values in [0, co].
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4 A. Jamneshan

Proof. Suppose ||K||p~xxyx) = C for some constant C > 0. By inequality (8) in
property (v) of [3, Proposition 3.4],

K *y flliz(x) =_[Y 1K *y f“%}(X\Y) dv

< /y CUf By, A

_ 2 2
= CUf oy,

This proves the first claim.

As for the second claim, let M be a conditional orthonormal basis of M andlet F C M
be a finite subset of M. Applying Bessel’s inequality pointwise almost everywhere, we have

YK #y AP < IK G oy, F ) < €
feF

The claim follows from the monotone convergence theorem for conditional expectations
since the essential supremum is attained by a countable subfamily due to the countable
chain condition (see [3, Remark 2.2]) and since the family ) feM |K *y f ||i2 XY
parameterized by finite subsets of M is directed upwards. O

The following criterion helps to decide when an L2(X)-closed L*(Y)-submodule of
L%(X) is finitely generated.

PROPOSITION 2.4. Let M be an L*(X)-closed L™ (Y )-submodule of L>(X). Then, M is
finitely generated if and only if there is a constant C > 0 such that for every conditional

orthonormal basis M in M, it holds that sup g - prgnice ZfeF ||f||%2(X|Y) <C.

Proof. This is the special case of [1, Proposition 9.3.2 (i)] in the setting of commutative
tracial von Neumann algebras, once one observes that £z (1) as defined in that proposition

equals SUPzc u finite 2 feF ||f||i2(X|Y) by [1, Lemma 8.4.8] and the observations at the
beginning of [1, §9.3]. O]

We state the corrected version of Theorem 4.1 in the original paper.

THEOREM 2.5. Let X =(X,u,T) and Y =(Y,v,S) be PrbAlgr-systems and
w : X — )Y be a PrbAlgr-extension. Then, the following are equivalent.
(i) The conditional Hilbert space L2 (X|Y) is the sz(X|Y)-closure of the LO(Y)-linear
span of
(K xy f: K € HS(X|Y) T-invariant, f € L?(X|Y)}.

(ii)  The conditional Hilbert space 1 (X|Y) is the d;» (x|v)-closure of the union of all its
finitely generated and T -invariant L°(Y)-submodules.

(ili)  There exists a dense set G in L2 (X|Y) with respect to the metric dy 2 (x|y) Such that
for all f € G and every ¢ > 0, there is a finite set F in L2 (X|Y) such that for all
y el

min || (TY)* f — 2 <e.
gEfH( )= 8l2xy
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(i) The classical Hilbert space L*(X) is the L*-closure of the C-linear span of
(K xy f: K € L®(X xy X) T-invariant, f € L*(X)}.

(ii)  The classical Hilbert space L2(X) is the L%-closure of the union of all its
[-invariant and finitely generated L*°(Y)-submodules.

(iii)  There exists a dense set H in L*>(X) such that for all f € H and every ¢ > 0, there
is a finite set F in L>(X) such that for all y € T,

min |[(TY)* f — <.
gefll( )= 8l2xy

A PrbAlgr-morphism r fulfilling one (and therefore all) of the above six properties is
called a relatively compact PrbAlgp-extension.

The following assertion is [3, Lemma 4.4].
LEMMA 2.6. Assertion (i) implies assertion (ii) in Theorem 2.5.

Proof. Since the finite sum of I'-invariant and finitely generated L°°(Y)-submodules is a
[-invariant and finitely generated L (Y)-submodule, it suffices to show that the ranges of
K xy, where K € L*°(X xy X) is '-invariant, are contained in the closure of the union
of all I"-invariant and finitely generated L°°(Y)-submodules of L2(X).

Let K € L°(X xy X) be I'-invariant. By decomposing

K(x, y) — K(X»Y)‘;‘K(y’x) +1K(x’ )’)Z—IK()’,X)’

we may reduce to the case that K (x, y) = K(y, x), and then by Proposition 2.3, K *y:
[*(X) — L*(X) is a bounded self-adjoint operator. Additionally, by treating the positive
and negative spectrum separately, we can assume that K is a positive operator. For & > 0,
consider the spectral projection
e = 1o, Koy 1 (K*y).
By standard properties of spectral projections, we have
Pe o (K*y) = (Kxy) o Pe > €Ps, (1)

where the inequality means that

(Kxy Pof | Pef)r2xy Z €(Pef | Pef)r2x)

forall f € L2(X).

Since P, arises as a limit of polynomials in K *y in the strong operator topol-
ogy, P, is I'-equivariant. Additionally, P, is L°°(Y)-linear since L°°(Y)-linearity is
preserved when passing to strong operator limits. It follows that H, := P.(L3(X)) is a
I-invariant L>°(Y)-submodule of L*(X). Since P, is an orthogonal projection, H, is also
L2(X)-closed.

We now show that H, is finitely generated. By equation (1),

(Kxy f, e Z €0 Pleax
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6 A. Jamneshan

for all f € H.. We claim that

(K xy f, N2xyy = el Hlrexy) 2
foreach f € H,. Indeed, let E = {{(K *y f, f)2(x)yy) < €(fs f)r2x)v)}- Since He is an
L*>(Y)-module, we have g .= 1g f € H.. By equation (1),
0<(K=x*yg grxx) —elfs ey = /Y(K *y & &) r2xjy) — €(8: &) r2(xjy) dv

:/E<K *y f7 f)LZ(X\Y)_‘g(fs f>L2(X|Y) dv <0.

Thus, v(E) = 0, proving the claim.
By the conditional Cauchy—Schwarz inequality applied to equation (2), we have

2
||K *y f||X|Y : ||f||L2(X|Y) = SHf”LZ(le)

and this implies || 1l 2(x|y) < (1/&)IIK *y fllxy for f € H,. Using that Ky : L*(X) —
L%(X) is a conditional Hilbert—Schmidt operator (see Proposition 2.3), we find C > 0 such
that

D K wy flxy =€

feM

for every conditionally orthonormal basis M C L?(X). In particular, if M C #, is a
conditionally orthonormal basis of H,, then

1
D I Wy =5 D MK flky < —-

feM feM

Ko

Using Proposition 2.4, we obtain that the L°°(Y)-submodules #, are finitely generated.
If f € L*>(X), we obtain by the properties of spectral projections that

Kxy f= nli}go Pi/n(K xy f).

Therefore, the image of Ky is contained in the L2(X)-closure of the union of all
[-invariant and finitely generated L°°(Y)-submodules of L2(X), this concludes the
proof. O

The following assertion is [3, Lemma 4.10].
LEMMA 2.7. Assertion (iii) is equivalent to assertion (iii) in Theorem 2.5.

Proof. We show that assertion (iii) implies assertion (iii)’. By assumption, there is a dense
set G in L2 (X|Y) such that the orbit of every g € G has the conditional total boundedness
property in L2 (X|Y). We will construct a dense set H in L?(X) such that the orbit of every
f € H has the same conditional total boundedness property but within L?(X).

Lete > OandletO < 8 < 1.Let f € L>(X) andlet g € G be such that dp2 xjv) (f, §) <
8¢ /2. Then, the measure of B = {|| f — gll2(x|y) < 8/2} is greater than 1 — &/2. There is
a finite subset F of L2 (X|Y) such that forall y € T,
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)
min |[(TY)*g — h < —.
min IKT7) g = hllL2¢xyy 3

By the conditional triangle inequality, for all y € T,

min TYY*(f1g) —h 5.
he]—‘lu{O} I(TY)*(f1B) lz2x vy <

Suppose F has n elements. By monotone convergence, for each & € F, pick a measurable
subset Ay of Y such that v(Ap) > 1 —¢/2nand hly, € LZ(X). Let A = ﬂ:’zl Ap. Then,
V(A) > 1 — ¢/2. By the conditional triangle inequality,

By the completeness of the probability algebra Y and the countable chain condition
(cf. [3, Remark 2.2]), we have

A= J1rrw=J 1MW

yel neN

for some countable set {y,,} C I'. Using a trick of Furstenberg (cf. proof of [2, Theorem
6.13, C1 = C3]), by modifying the 114, (while keeping them in L%(X)), we reach that

~min  [[(TY)*(f18) — hll2x)yy <8 on A*,
heFU{0}

where F collects the modified 41 4, forall h € F. Since A* is I'-invariant, we obtain

omin  [[(T7)*(f1a) — hlas |l 2xy) <8
he FU{0}

globally and the measure of B N A* is at least 1 — ¢. By [3, Proposition 3.4(vii)], the
collection ‘H of f1lpna+ as constructed above starting with any f € L2(X ) is dense in
L2(X). O
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