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A CLASS OF QUASI-NONEXPANSIVE 
MULTI-VALUED MAPS 

BY 
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1. Introduction. Let (X, d) be a (nonempty) metric space. bc{X) will denote 
the family of all nonempty bounded closed subsets of X endowed with the Haus-
dorff metric D induced by d [2, pp. 205]. Le t /be a map of X into bc(X).fis non-
expansive at a point x in X if D(f(x),f{y))<d(xiy) for all y in X. f is quasi-
nonexpansive if the fixed point set Ff={x e X:x ef(x)} is nonempty and / is 
nonexpansive at each point in Ff. In this paper, we are interested in the following 
class of maps: / is Kannan if D(f(x),f(y))<%(d(x,f(x))+d(y,f(y))) for all x, y in 
X. (d(x, A)=inf{d(x,y):y eA}, A^X, xeX). It is easy to show that every 
Kannan map is nonexpansive at each of its fixed points (provided they exist). 
We refer to early history and results in this direction to [4] and [5]. In this paper, 
some fixed point theorems for the Kannan maps / are obtained by studying the 
nature of the function d(x,f(x)). Now let X be a weakly compact convex subset of 
a Banach space B a n d / b e a Kannan map of X into the family wcc(X) of all non
empty weakly compact convex subsets of X. If every /-invariant closed convex 
subset H of X is a convex body in itself (i.e. H has nonempty interior in the 
smallest flat which contains H), it is shown t h a t / h a s a fixed point. Hence (i) 
/ h a s a fixed point if each/(x) is a convex body. (ii)/has a fixed point if B is finite 
dimensional. When B is one-dimensional, (ii) was proved in [5] by a different 
method. 

2. Kannan maps in a metric space. First of all we note that if (X9 d) is a metric 
space, f:X-+bc(X) is a Kannan map, and a is a fixed point o f / then/(a) is the 
fixed point set o f / Indeed, if b is also a fixed point o f / then D(f(a),f{b))< 
J ( t / ( a , / ( « ) ) + ^ , / ® ) ) = 0 so that b ef(b)=f(a). On the other hand, if x ef(a), 
then d(x,f(x))<D(f(a),f(x))<%d(x,f(x)) so that d(x,f(x))=0 and hence x e/(x). 

THEOREM 1. Let (X,d) be a (nonempty) complete metric space and f:X->c(X) 
be a Kannan map, where c(X) is the family of all nonempty compact subsets of X. 
Ifmf{d(x,f(x)):x G X}=09 then f has a fixed point say a, and for any sequence {xn} 
in X with {d(xn,f(xn))} converges to 0, (a) a subsequence of {xn} converges to a 

fixed point off (b) each cluster point of {xn} is a fixed point off and (c) {f(xn)} 
converges to f(a). 
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Proof. Let {xn} be any sequence in X with {d(xn,f(xn))} converging to 0. 
(Such a sequence exists since inf{d(x,f(x)):x e X}=0.) Since/is Kannan {f(xn)} 
is Cauchy in (c(X), D). Since (X, d) is complete, it is well-known that (c(X), D) 
is complete. Thus {f(xn)} converges to some A in c(X). For each n, there exist 
xn i n / ( x j , ân in A such that d(xn, xn)=d(xn,f(xn)) and d(xn, ân)=d(xn, A). 
Since A is compact, a subsequence {aMn)} of {an} converges to some point a in 
A. Since for each n, d(xn, ân)<D(f(xn), A) which converges to 0, {xh(n)} converges 
to a. Since 

d(a,f(a)) = lim d(xMnhf(a)) 
n-+ao 

< lim M D(f(xMn)),f (a)) 

< lim inî(%d(xh{nhf(xMn)))+id(a,f(a))) 
n-*co 

= id(a,f(a))9 

we must have d(a,f(a))=0 so that aef(a). Since d(xnxn)=d(xn,f(xn))^09 

{xMn)} also converges to a. This proves (a). Since D(f(xMn), f{a))<\d{xMn), 
f(*Mn)))-*°> f(xMn))-*f(d). Thus A=f{d) and hence f(xn)-+f(a). This proves (c). 
Finally, if x is a cluster point of {xn}9 then x is also a cluster point of {ân} as 
d(xn9 xn)-+0 and rf(xn, ân)->0. Thus x e A=f(a) so that x is also a fixed point 
by the preceding remark. This proves (b). 

3. Kannan maps in a Banach space. Let (B, \\ ||) be a Banach space and d be 
the metric on B induced by the norm || || on B. For simplicity, B is assumed to be 
over the real field. 

THEOREM 2. Let Kbe a nonempty weakly compact subset of B and f be a Kannan 
map of K into the family wc(K) of all nonempty weakly compact subsets of K. 
Then (a) there exists x0 in K such that d(x0,f(x0))=mf{d(x,f(x)):xeK}, i.e. 
xh-*d(x,f(x)) attains its infimum, say r0, on K. (b) K0={x e K:d(x,f(x))=r0} is 
f-invariant. 

Proof, (a) For each r>0, let Kr={x e K:d(x,f(x))<r}. Since K is bounded, 
the set I={r>O:Kr7^0} is nonempty. For each r e / , let Hr be the weak closure 
wcl(f(Kr)) off(Kr)(= \JxeKrf(

x))' Then {Hr:r el} is a family of weakly compact 
subsets of K which has the finite intersection property and therefore has nonempty 
intersection. It remains to show that Hr^Kr for each r el. Let r el and x e Hr. 
Then there exists a net {xa}aer in f(Kr) which converges weakly to x. Thus for each 
a e T, xa ef(ya) for some ya in Kr and d(xa, za)=d(xa9f(x)) for some za inf(x) 
Since f(x) is weakly compact, by passing to a subnet, we may assume without 
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loss of generality that {za}a€r converges weakly to some point z in/(;t). Thus 

d(x,f{x)) <Ç d(x9 z) 

<C lim inf d(xa, za) 
a 

= ]iminfd(xa,f(x)) 
a 

<£ lim inf D(f(ya),f(x)) 
a 

£ lim inf Kd(yx,f(yJ)+d(x,f(x))) 
a 

^ lr+\d{xj(x)). 

Hence d(x,f(x))<r and therefore x eKr. Thus Hr^Kr for each r el. 
(b) From the proof of (a), Hr^KrQ. Thusf(Hr)<zf(Kr)c:Hw 

The following result follows easily from Theorem 2. 

THEOREM 3. Let Kbe a nonempty weakly compact subset ofB and f be a Kannan 
map of K into wc(K). Then the following are equivalent: (a) / has a fixed point; 
(b) inî{d(x9f(x)):x e l } = 0 ; (c) For each xeK, ifd(x,f(x))>0, then d(y,f(y))< 
d(x,f(x))for some y in K. 

Theorems 2 and 3 were obtained in [5] for the case when K and each f(x), 
x e K, are weakly compact convex subsets of B. 

For our next fixed point theorem, we need the following result which is of 
interest in itself. Let A be a nonempty subset of B. For each x in B, d(x, A) is 
called the modulus of x with respect to A ; thus ||x|| is the modulus of x with respect 
to {0}. 

THEOREM 4. (Maximum modulus principle). Let A be a nonempty subset of a real 
normedspace Xand Kbe a nonempty weakly compact convex subset ofX. Then the 
modulus function g : x\->d(x, K) on A does not attain its maximum value at the interior 
mt(A) of A unless it is identically zero on A. 

Proof. Suppose that g is not identically zero on A. Then r=sup{g(x) :x eA}>0. 
We need only to prove that g{y)<r for each y in mt(A). Suppose the contrary 
that there exists y in int(^4) such that g{y)=r. Since ^Tis weakly compact, d(y, c)=r 
for some c in K. Let Br(y)={x e B: \\x— y\\<r}. Since int(Br(y)) and ^Tare convex 
and int(i?r(j)) n K= 0, by Hahn-Banach separation theorem, there is a non-zero 
continuous linear functional/ on X such that sup{f(x):x e Br(y)}<inf{f(x): 
xeK). Since ceBr(y)nK, sup{f(x):xeBr(y)}=f(c)==mf{f(x):xeK}. As 
yemt(A), Bs(y)^A for some ô e (0, r). Let z=y+ô(y—c)jr. Then zeA and 
||j—z||=<5. We shall show that 

(1) d ( z , K ) > r + ^ | / ( y ) - / ( c ) | / | | / | | 
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Let beK. Then f(b)>r>f(z). Let X=(J{b)-f{c))HJ{b)-f{z)), P=ô[(r+Ô), 
u=Àz+(l—X)b, f=/3z+(l— (ï)u and w=v+y—a. It can be checked that 

(2) f(u)=m=m 
and 

(3) l / («)- /( t»l = {air) \f(y)-f(c)\ 

From (2), \\y—w||>r. Since b, z, w, v are collinear, 

||z-fc|| = | |z-i ; | | + ||t;-W | | + ||W-fc|| 

= \\y-w\\ + \\v-u\\ + \\u-b\\ 

>r+\f(v)-f(u)\l\\f\\ + \\u-b\\ 

= r+(*/r) | / ( y ) - / ( c ) | / | | / | | + ||ii-fc|| (by (3)) 

so that d(z,K)>r+m\f(y)-f(c)\l\\fl Since f(y)<f(c), r>d(z,K)>r+ 
(àjr)\f{y)—f(c)\l\\f\\>r, which is a contradiction. Therefore g(y)<r for each y 
in int04). 

Let A be a convex subset of a normed space. Then A is a convex body in itself 
if A has non-empty interior when it is considered as a topological subspace of the 
closure of the flat {^Li Uxi:Yi=i ^=1» */s a r e r e aU *» e ^4, « = 1 , 2, . . .} spanned 
b y ^ . 

Before we prove the next theorem, we need the following result whose proof 
can be found in [5, Theorem 5]. 

THEOREM. Let K be a nonempty weakly compact convex subset of a Banach 
space B and T be a Kannan map of ' K into wcc(K). Then 

(a) There exists x0 in Ksuch that d(x0, T(x0))<d(x, T(x))for all x in K, i.e. the 
map x\-*d{x, T(x)) on K attains its infimum r0. 

(b) The set A = {x e K:d(x, T(x))=r0} is T-invariant, i.e. T(A) = \JxeA T(x)^A. 
(c) A contains a nonempty T-invariant closed convex subset of K. 

THEOREM 5. Let K be a nonempty weakly compact convex subset of B and f 
be a Kannan map of K into wcc{K). Suppose that each f invariant closed convex 
subset of Kis a convex body in itself. Then f has a fixed point. 

Proof. By Zorn's Lemma and weak compactness of K, there exists a minimal 
nonempty closed convex subset H of K which is/-invariant. By Theorem 2 (or the 
above Theorem, part (a)), there exists x0 in H such that d(x0,f(x0))='mf{d(x, 

f(x)):xeH}. Let r=d(x0,f(x0)). Suppose r>0. By the above Theorem, part (c), 
H1={xeH:d(x,f(x))=r} contains a closed convex and /-invariant subset. 
Thus HX=H, by the minimality of if. By hypothesis, we may assume that H has 
nonempty interior. Note that the closed convex hull Co(f(H)) of f(H) is also 

/invariant, so that H=Co(f(H)). Let xux%eH. We shall first prove that 
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d(x1,f(x2))<r. Let s > 0 , then there exists z in Co(f(H)) such that H^—z||<e. 
Thus z = 2 J = i Uzi f o r s o m e zi mf(H) and tt in [0, 1] with ^ L i U=l. But then 
zi Ef(nù for some h{ e H, i= 1 , . . . , «. Now 

d(xi>/(x2)) < d(*i, z)+d(z,/(x2)) 

<£+d(hizi,f(x2)\ 

n 

4 = 1 

^ «+ i tMUKfiw+diXtonxj)) 
i = i 

= e+r . 

Since e > 0 is arbitrary, d{xx,f{x2))<r. Thus the modulus function x-+d{x,f{x2)) 
on /f attains its supremum at x2. By the maximum modulus principle, x2 is not 
in the interior of H. Since x2 in H is arbitrary, if has empty interior, which is a 
contradiction. Hence we must have r = 0 so that x0 is a fixed point of/ 

COROLLARY 1. Let Kbe a weakly compact convex body in B {whcih is necessarily 
reflexive) and f be a Kannan map of K into the family of all weakly compact convex 
bodies in B which are contained in K. Then f has a fixed point. 

Since every nonempty closed convex subset of a finite dimensional Banach 
space is a convex body in itself, we have the following. 

COROLLARY 2. If B is finite dimensional, K is a nonempty compact convex 
subset of B andf: K->cc(K) is a Kannan map, then f has a fixed point. 

If B is infinite dimensional, a bounded closed convex subset of B may not be 
a convex body in itself. In [3], the author made a stronger assertion that (*) "for 
any Banach space B, every closed convex set Kin Bis a. convex body in the closure 
of its linear span" [3, pp. 79 and pp. 93] and used this assertion to prove the 
important theorem for monotone operators. 

THEOREM. Let C be a closed convex subset of a reflexive Banach space X and 
T: C-^-X* a monotone hemicontinuous and coercive mapping. Then for each u0 in 
X*, there exists an x0 in C such that (T(x0)—u0)(x—XQ)>0,for all x in C 

F. E. Browder [1] proved the above theorem for the case when O e C . The fol
lowing counterexample to the above theorem can be found in [6]. 

EXAMPLE. Let X be the two-dimensional Euclidean space. Let C be the closed 
convex subset {(x,y) e X:x+y=l} of X. Let T be the map on C such that 
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T((x,y))=(x2, x2) for all (x, y) e C. Then T satisfies the hypothesis but not the con
clusion of the above theorem. 

It can be easily seen that (*) is true if we make the restriction that 0 e K and 
B is finite dimensional. In fact, every bounded closed convex subset K of a Banach 
space B is a convex body in itself if and only if B is finite dimensional. This fact 
limits the generality of Corollary 2 at the present stage. 
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