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ABSTRACT

Credibility weighting is helpful in many insurance applications where sparse
data crave information from other sources of data. In this paper we aim at
estimating a hazard curve using the nonparametric kernel method, where a
credibility weighting principle is used locally, so that areas of sparse data for one
subgroup can be alleviated by available information from other subgroups. The
credibility estimator is found through a Hilbert space projection formulation of
Buhlmann-Straub's credibility approach.

KEYWORDS AND PHRASES

Counting process theory, Kernel hazard estimation, Credibility, Buhlmann-
Straub model.

1. INTRODUCTION

Credibility weighting of hazard estimators is a natural approach in situations
where data is available on a number of different subgroups, but where there is
a problem of sparse data within some or perhaps all of the subgroups. Hardy &
Panjer (1998) considered a Buhlmann-Straub type of credibility estimator of the
hazard loss ratio for a company relative to a standard mortality table, allowing
them to predict the expected number of excess mortalities. In this paper we take
a slightly different approach. We aim at estimating the entire hazard curve using
the nonparametric kernel method. Credibility weighting is used locally for the
different time areas, so that sparse data for one subgroup in certain areas can be
alleviated by available information from other subgroups in those areas. We
also use the Buhlmann-Straub credibility approach, but we concentrate on the
particular interpretation of the Buhlmann-Straub method as a projection in a
relevant Hilbert space onto a linear subspace. The result is a locally weighted
credibility type estimator where the usual trade-off between within-subgroup
variability and between-subgroups variability decides the weighting between a
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local and a global hazard estimator. We use a slightly different version of the
kernel type estimator of Ramlau-Hansen (1983), namely the local constant
kernel estimator of Hjort (1992). The idea of using Bayesian estimation
techniques to include prior information is well known in nonparametric survival
analyses, see among others Hjort (1990). However, the natural and fairly simple
approach of credibility weighting of smooth hazard curves seems to be new. The
use of kernel smoothing in credibility estimation is not unknown, for example:
Young (1997, 1998) uses kernel smoothing of densities to estimate the shape of
the prior in a credibility model.

In §2 we outline the counting process formulation for the hazard model. In §3
we define the credibility estimator and in §4 we estimate the parameters and get
the empirical credibility estimator. In §5 we motivate the estimator using the
traditional set-up of the Buhlmann-Straub model. In §6 we apply the method to
different subgroups of disability and in §7 a simulation study illustrates the
effectiveness of the method. The proofs are deferred to the appendix.

2. A COUNTING PROCESS FORMULATION OF THE MODEL

We observe m individuals for k different subgroups and use the indexes
i= 1, ..., k and j=\, ..., «, for respectively the k subgroups and the n,
individuals in the fth subgroup. Let Ny count observed failures for the fth
individual in the fth subgroup in the time interval [0, T'}. We assume that Ny is a
one-dimensional counting process with respect to an increasing, right
continuous, complete filtration Tt, t e [0, T'], i.e. one that obeys les conditions
habituelles, see Andersen et al. (1992, p. 60).

We model the random intensity as

\y{t)=li{t)Y,){t)=6i(t)a{t)Yy{t)

where ^(t) — 0j(t)a(t). Here, Yy is a predictable process taking values in {0,1},
indicating (by the value 1) when the/th individual in the fth subgroup is under
risk, 6t(t) is the continuous risk parameter for the fth subgroup and a(») is a
deterministic unknown baseline hazard with no restriction on the functional
form apart from smoothness assumptions. We assume that the stochastic
processes 6\, ..., 6k defined on the time interval [0, T'\ are independent identically
distributed. We furthermore assume that conditional on 0\, ..., 9k we have the
following: the counting processes (Nu,Yn), •••, (Nknk, Yknk) are independent for
the m individuals and within the fth subgroup the counting processes
(Nn, Ya), ..., (Njn., Yin.) are identically distributed. We also assume that
E{0i{t)} = 1, Var{0i(t)} = a] and E{Yy(t)} = <5,(0 for / e [0, T'}.

3. THE CREDIBILITY ESTIMATOR

Our approach is first to define an estimator •ji(t) of 7,(?) = 6,(t)a(t) based on the
data from the fth subgroup. We then follow classical credibility theory and
define a Hilbert space projection of the stochastic variable 7,-(f) down at the
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linear space spanned by a constant and our observed candidate 7,(r) from the
fth subgroup. In Section 5 it is pointed out that the analouge to classical
credibility theory goes even further than the Hilbert projection interpretation of
this section, since an approach based on the jumps of each individual,
parallelling the original approach of Biihlmann & Straub (1970) that took its
starting point at the individual claims in each subgroup, leads to exactly the
same theory as considered in this section.

Let K be a probability density function symmetric about zero and let
Kh{») = b~x K{»/b) for any b > 0. Consider the nonparametric local constant
estimator in the fth subgroup, see Hjort (1992)

where f,-.(/) = £"ii Y,j{t) and Yy(t) = J Kb(t - s)Yij(s)ds is the smoothed
exposure.

For a fixed / e [0, T'\ we consider the Hilbert space projection of 7,(r) onto
the linear space {a, + b,^i(t)\a,,b, e R}. Based on this Hilbert space projection
we obtain the following expression for the optimal linear credibility estimator
minimizing £'{7,(0 - a, - btji(t)} , namely

where

ZlJ

In the appendix we derive the following equations

and

VARtfM} = {1 +oP{\)}[c2a{t){Yi.{t)YlWta
1{t)]

where Ci = /K2{u)du and where <?/>(l) is the little-o function related to the limit
b —> 0 and bnt —> oo (for all /).

Therefore, the optimal linear credibility estimator is approximately equal to

7i{t) = {\ - zut)a{t) + z^t)

where

C2a(t) + a2a2(t)YL(t)
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Notice that we have one less parameter than the traditional estimator in
Buhlmann & Straub (1970). This is due to the one-to-one relationship between
variance and mean for hazard estimators. To get a preliminary estimator of the
underlying credibility parameter #,(?) we divide the above credibility equality by
a{t). We get

4. THE EMPIRICAL CREDIBILITY ESTIMATOR

A possible estimator of the baseline hazard a is

J s ) *
Zw=l Ii\l) i=l

where

r , \ -i

Thus Y^i=\ WM = 1- Other possibilities of weighting exist.
While estimating the variance aj, then we employ that E{9i(t)} = 1 and that

7,(?) is an estimator of 7,-(?) = 9i(t)a(t) and therefore 7,-(/){d(f)}~' is an
estimator of 9j(t). One nice smooth estimator of aj is therefore

!=i

By substitution of a\ with a\ and a(?) with a(t) in the formula for z/, we can
estimate z,j( by

_
Zi.f — "

The empirical credibility estimator for the /'th subgroup is therefore

corresponding the following credibility estimator for the underlying ^ in the f th
subgroup:
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5. A MOTIVATION OF THE MODEL VIA THE TRADITIONAL
BUHLMANN-STRAUB SET-UP

Our credibility estimator does not only have the projection interpretation in
common with methodology, originally defined in Buhlmann & Straub (1970).
We can also motivate that the traditional set-up of Buhlmann-Straub models
apply to our case and indeed will lead to the same approach as we use above. We
give a short verification of this fact.

Define

. ,A JKh{t - s)dNy(s)

which is the nonparametric local constant estimator for the/th individual in the
/'th subgroup.

Calculations analog to the appendix with 7, and F,. replaced with jy and
Yy give

and

} = {1 +oP(l)}C2ei(t)a(t){Yy(t)y

For fixed t this is a special case of the Buhlmann-Straub model. The use of this
approach will lead to the same results as in Section 3 above.

6. AN APPLICATION TO DISABILITY INSURANCE

We consider a portfolio of disability insurance policies. We divide the portfolio
into four subgroups after sex and standard/substandard tables. The subgroups
correspond to a subset of data used in Codan for rating of disability insurance.
We have chosen not to reveal the details of these data sets for reasons of
confidentiality. However, the estimation performance of these subsets is very
similar to the estimation performance we have seen in a number of "in-house"
applications - therefore we consider this application to be representative of our
methodology. Figure 1 shows the four individual kernel hazard estimators for
the four subgroups without using any credibility estimation. It is seen that there
is big differences between the estimators and in particular a lot of fluctuation is
present. The thick line in Figure 1 is the baseline hazard for the four subgroups.
Note that this baseline hazard does not fluctuate too much. Figure 2 shows the
credibility weighted hazards of the four different subgroups. While the four
different credibility weighted hazards still are different, then it is noted that the
fluctuations are much less dominant. In particular it can be noted that the
hazard estimators look a lot more realistic in the age-group above 55 years
where data is sparse.
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FIGURE 1: The four estimated individual disability hazards (male: dotted, female: solid) and the baseline (thick).
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FIGURE 2: The four estimated credibility disability hazards (male: dotted, female: solid) and the baseline (thick).
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7. A SIMULATION STUDY

First we consider a model for simulating the stochastic processes #,(/). We take
the approach of letting

for t € [0, 1], where X, and Yj are independent uniformly distributed stochastic
variables with support [0.75, 1.25]. The condition E{8i(t)} = 1 is clearly fulfilled

and VAR{8i(t)} = a\ = — (1 - t)1 + t2 . For clarity we chose to use the same

bandwidth, namely 6 = 0.1 in all the simulated cases below. We use the
following four baseline hazard functions:

ai(t) = B(t, 4, 4),

a2(t) = B(t, 2, 2),

a3(t)= 0.6 *[B(t, 0.5, 0.5)+B(t, 7, 7)],

04(0 - 0-6 * [B(t, 0.5, 0.5) + B(t, 4, 2) + B(t, 2, 4)],

where B(t, 4, 4) is the value of the density of a beta distribution with parameters
(4, 4). These hazards were used in Nielsen (1998) to compare bias corrected
hazard estimators to traditional hazard estimators.

First we go through one particular simulation with the baseline hazard
function a\ and with 10 subgroups and 100 observations in each subgroup. The
graph of the correct hazard function a\ is shown on Figure 3 below and the ten
individual hazard functions we aim at estimating, the 7's, are given in Figure 4.
The individual risk credibility parameters, the 0's, are given in Figure 5.
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FIGURE 3: Beta(4, 4) baseline intensity, a\
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FIGURE 4: The ten individual hazards.
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Individual risk parameter

O.I 0.2 0.3 O.H O.S O.B 0.7 0.8 0.9

FIGURE 5: The ten individual risk parameters.

The kernel hazard estimator of the baseline hazard is given in Figure 6 and the
ten individual kernel hazard estimators are given in Figure 7 below. It is obvious
that the baseline hazard estimator is a lot less volatile than the ten individual
estimators. It can therefore be expected that the credibility weighted versions of
the ten individual estimators will do better with respect to volatility. This is
actually correct as can be seen in Figure 8, where we show the credibility
weighted versions of the ten individual hazard functions.
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FIGURE 6: Baseline kernel estimator for at study with 10 • 100 observations and b = 0.1.

Individual kernel intensity estimator

FIGURE 7: Individual kernel estimator for the ten subgroups (solid) and the estimated baseline hazard
(dotted). There are 100 observations in each subgroup and b = 0.1.
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Credibility kernel intensity estimator
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FIGURE 8: Credibility kernel estimator for the ten subgroups (solid) and the estimated baseline hazard
(dotted). There are 100 observations in each subgroup and b = 0.1.

In the simulation study we use a discrete approximation of the integrated square
error (ISE) performance measure

10

/ M
o L

i 2

- 0i(s)ag(s)\ ds, q=\, ..., 4

to compare the performance of the ten empirical credibility weighted estimators
with the corresponding performance measure

E/'[7'(*)-'
2ds, q=\, ..., 4

of the ten individual kernel hazard estimators. This approach is used to evaluate
the four different baseline hazards with the same credibility structure denned
above. We simulated 100 runs from 10 different subgroups with respectively 100
and 1000 observations in each subgroup. The averaged performance error is
given in Table 1 below.
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TABLE 1

THE AVERAGE OF THE INTEGRATED SQUARE ERROR (ISE) FOR THE INDIVIDUAL ESTIMATORS RESPECTIVELY THE
CREDIBILITY ESTIMATORS AND THE CORRESPONDING RATIO IN 8 DIFFERENT SIMULATION STUDIES

Oil a3 a4n, = 100, k = 10 at a2 a3 a4 n{ = 1000, * = 10 a .

Individual, 7, 116 123 300 502 Individual, 7, 12 13 134 133
Credibility,^,- 49 51 197 263 Credibility, 7" 9 9 129 119
ISE-ratio 0.42 0.42 0.66 0.52 ISE-ratio 0.74 0.73 0.96 0.90

It is interesting to notice that the improvement is consistent over the simulated
datasets. The improvement is greatest for a\ and «2 which have a fairly simple
shape compared with a^ and 04. The improvement is greatest for small datasets
(small w's) because when the «'s become large the credibility estimator and the
individual estimator are close to each other as the credibility to the individual
estimator grows. The results are also consistent over the individual simulation.
For example: for the baseline a\ and «, = 100, the improvement of the relative
error of performance of the credibility approach range from 50% and 70%
corresponding to an average improvement of 58%.
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APPENDIX

First we note that given 9,(t) the theoretical properties of 7,(/) is identical to
the properties of a standard local constant kernel hazard estimator, therefore
we get that

£{7/(O|0/(')} = 0/CKto = 0 + oP(l)}0,(t)a(t)

and

where

a*(t) = J Kbit - s)a{s)ds = {1 + oP(l)}a(t).
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See Hjort (1992) for more details on the local constant estimator. We can
therefore make the following calculations,

}] = {I + oP(l)}a(t)

CW{7/(0,7«(')} =
+ COV[E{li(t)\ei(t)},E{^(t)\0i(t)}}

= COV{0i(t)a{t),0l{t)a'(t)}

= {l+oP(l)}oja2(t)

}] + VAR[E{v(t)\Oi(t)}]

= £[{1 +

oP(\)}C2a(t){
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