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Abstract We show how to construct a topological groupoid directly from an inverse semigroup and
prove that it is isomorphic to the universal groupoid introduced by Paterson. We then turn to a certain
reduction of this groupoid. In the case of inverse semigroups arising from graphs (respectively, tilings),
we prove that this reduction is the graph groupoid introduced by Kumjian et al . (respectively, the tiling
groupoid of Kellendonk). We also study the open invariant sets in the unit space of this reduction in
terms of certain order ideals of the underlying inverse semigroup. This can be used to investigate the
ideal structure of the associated reduced C∗-algebra.
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1. Introduction

This article is concerned with the construction of topological groupoids from inverse
semigroups with applications to graphs and tilings. The motivation for our study comes
from two sources. The first is the work of Paterson [12,13] and Kellendonk [4,5] (see
also [6, 7]). Both Paterson and Kellendonk describe constructions assigning groupoids
to inverse semigroups. The relationship between their constructions is not clear and it
is our aim to present a unified view. The second starting point for this work is given
by investigations on graphs and their associated groupoids by Kumjian et al . [9]. They
study (among other topics) the ideal structure of C∗-algebras associated with graphs (see
also [2,3] for different approaches to these algebras). Here, it is our aim to present an
inverse-semigroup-based approach to this topic.

This paper is organized as follows. In § 2 we review several known facts on groupoids
and (the order of) inverse semigroups. In particular, we show that an inverse semigroup
Γ gives rise to two groupoids, one arising by restricting the multiplication and the other
consisting of minimal elements. In this section, we also introduce a new condition (L)
which, while strictly weaker, can replace E�-unitarity in our context. Section 3 contains
the basic constructions showing that the set of directed sets in an inverse semigroup mod-
ulo the obvious equivalence relation is again an inverse semigroup. By the considerations
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in § 2 this new semigroup then gives rise to the two groupoids Gu(Γ ) and Gm(Γ ). In § 4
we study certain aspects of Gu(Γ ) in some detail. In particular, we show that it is an
r-discrete ample groupoid. It is Hausdorff if Γ satisfies (L). Moreover, it is shown to be
isomorphic to the universal groupoid of Γ introduced by Paterson. Further features of
Gm(Γ ), including compactness features, are studied in §§ 5 and 6. In § 7 we investigate
the open invariant subsets of Gm(Γ ) and characterize them in terms of certain order
ideals of Γ . When combined with a theory of Renault, this allows one to characterize the
ideals in the reduced groupoid C�-algebra. Section 8 is devoted to applications to graphs.
We show how the material of the preceding sections can be used to recover some results
of Kumjian et al . Finally, in § 9, we recall the results in [4, 5] on tilings and provide
a study of ideal theory of the algebras C∗

red(Gm(Γ )) in this case. This underlines the
similarity between the tiling case and the graph case.

2. Preliminaries

In this section we recall basic facts concerning groupoids and inverse semigroups. For
further details and the proofs omitted below, we refer the reader to [10, 13, 15], for
example. We then introduce a new condition, (L), and we describe the two natural
groupoids that can be associated with any inverse semigroup.

A groupoid is a set G together with a partially defined associative multiplication ∗ and
an involution x �→ x−1 satisfying the following conditions:

(G1) (x−1)−1 = x;

(G2) if x ∗ y and y ∗ z exist, then x ∗ y ∗ z also exists;

(G3) x−1 ∗ x exists and if x ∗ y also exists, then x−1 ∗ x ∗ y = y;

(G4) x ∗ x−1 exists and if z ∗ x also exists, then z ∗ x ∗ x−1 = z.

Elements of the form xx−1 are called units of G and the set of all units of G is denoted
by G(0). Each groupoid comes with the maps r : G → G(0) and s : G → G(0) defined
by r(x) = xx−1 and s(x) = x−1x. A subset S of G is called a G-set if both r and s

are one-to-one on S. If G carries a topology making ∗ and −1 continuous, it is called
a topological groupoid. If the topology of G admits a basis of G-sets, then G is called
r-discrete. Here, a basis of a topology is a family of open sets such that every open set
can be written as a union of sets from this family.

A subset E of the units G(0) of a groupoid G is called invariant if for e ∈ E and
g ∈ G with e = g−1g the element gg−1 also belongs to E. If E is invariant, the (set
theoretic) reduction GE of G to E is the subgroupoid of G consisting of all elements
g ∈ G with g−1g ∈ E (which by invariance implies that gg−1 ∈ E as well). In the context
of topological groupoids, the invariant set E is further required to be closed in G(0). We
will then speak of the topological reduction GE .

Γ is called an inverse semigroup if Γ is a semigroup and for each x ∈ Γ there exists
a unique x−1 ∈ Γ , called the inverse of x with xx−1x = x and x−1xx−1 = x−1. The
map x �→ x−1 is an involution. We denote by Γ (0) the idempotents of Γ , i.e. the set
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of p with p = pp. Idempotents commute. On Γ we have the relation ≺, where x ≺ y,
whenever xy−1 = xx−1. If x ≺ y, then x is said to be a predecessor of y and y is said to
be a successor of x. Alternatively, x is said to be smaller than y. The relation ≺ is an
order, i.e. a reflexive, transitive relation such that x ≺ y and y ≺ x implies x = y. It is
compatible with multiplication and x ≺ y implies that x−1 ≺ y−1. A zero, denoted by
0, is a necessary unique element of Γ with 0x = x0 = 0 for all x ∈ Γ . Γ is said to be
an inverse semigroup with zero if it contains such an element. In the following we will
sometimes write conditions of the form 0 �= z ∈ Γ . This is meant to mean that z is not
zero if Γ has a zero and to mean a vacuous condition if Γ does not contain a zero.

An element x ∈ Γ is called minimal if x �= 0 and y ≺ x and y �= 0 implies y = x. The
set of minimal elements in Γ is denoted by Γmin. One easily obtains the following.

Proposition 2.1. For x ∈ Γ the following are equivalent:

(i) x is minimal;

(ii) x−1 is minimal;

(iii) x−1x is minimal;

(iv) xx−1 is minimal.

For x, y ∈ Γmin the following are equivalent:

(i) xy �= 0;

(ii) x−1x = yy−1;

(iii) xy ∈ Γmin.

Now, there is an immediate way of constructing two groupoids from Γ . The first
goes back to Ehresman (see, for example, [13, Proposition 1.0.1]). In this case, one just
considers Γ with its usual inversion and the multiplication defined by x ∗ y = xy if and
only if x−1x = yy−1. This yields a groupoid, which is denoted by G(Γ ) in the following.
By the previous proposition, the set of minimal elements of Γ is a subgroupoid of G(Γ )
with involution from Γ and multiplication defined whenever the product is not zero. It
will be denoted by M(Γ ). This construction gives M(Γ ) = G(Γ )Γ (0)∩Γmin

.
The order ≺ will in general not be a semi-lattice. However, one can still wonder about

the existence of a largest common predecessor of x and y given that there exists a common
predecessor. If such a largest common predecessor exists, it must be unique and will be
denoted by x ∧ y. As the existence of such largest predecessors will be very important to
us, we introduce the following definition.

Definition 2.2. An inverse semigroup is said to satisfy the lattice condition (L) if, for
any x, y ∈ Γ with a common predecessor not equal to zero, there exists a largest common
predecessor.
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There is a well-known criterion for the existence of largest common predecessors, which
we give next. Recall that an order ideal I in Γ is a set with {y : y ≺ x} ⊂ I for every
x ∈ I. An inverse order ideal is a set I in Γ with {y : x ≺ y} ⊂ I for every x ∈ I. An
inverse semigroup Γ is called E-unitary if Γ (0) is an inverse order ideal and E�-unitary
if Γ (0) \ {0} is an inverse order ideal. If Γ is such an inverse semigroup and x, y ∈ Γ have
a common predecessor z not equal to zero, then there exists a largest such z. It is given
by yx−1y = xy−1x.

Remark 2.3. The condition (L) is strictly weaker than E-unitarity and E�-unitarity.
This can be seen by considering a groupoid G with G �= G(0) and the inverse semigroup
S(G) of its G-sets. Then, S(G) satisfies (L) as it is closed under the usual intersection
of sets. However, as G �= G(0), there exist G-sets S, S′ with S ⊂ S′, S ⊂ G(0) and an S′

not contained in G(0). Then, S ≺ S′ as S ⊂ S′ but S′ /∈ S(G)0 as S′ is not contained in
G(0).

While E-unitarity and E�-unitarity have been used when studying topological prop-
erties of groupoids associated with inverse semigroups [5,13] (see also [11]), it turns out
that our considerations need only the weaker condition (L).

For arbitrary Γ and x, y ∈ Γ with a common successor z ∈ Γ and a common non-zero
predecessor, x ∧ y exists and equals xx−1yy−1x = xx−1yy−1y.

3. The basic construction

In this section we consider the set of directed subsets of Γ . This set is equipped with a
natural pre-order. Factoring out by the associated equivalence relation leads to an order
and in fact to an inverse semigroup with respect to the obvious multiplicative structure.
Lemma 3.1 is strongly related to the results in [4]. This is discussed at the end of § 6.

A subset A of Γ is called (downward) directed if, for any x, y ∈ A, there exists a z ∈ A

with z ≺ x, y. The set of directed subsets of Γ is denoted by F(Γ ).
On F(Γ ), we define the relation ≺ by A ≺ B if, for any b ∈ B, there exists an a ∈ A

with a ≺ b. Moreover, we define AB by AB ≡ {ab : a ∈ A, b ∈ B} and A−1 by
A−1 = {a−1 : a ∈ A}. The corresponding sets are indeed directed by the results in § 2.
Moreover, we set A ∼ B, whenever A ≺ B and B ≺ A. Then, ≺ is a pre-order and by
well-known results ∼ is then an equivalence relation on F(Γ ). We set O(Γ ) = F(Γ )/∼.
Representatives of X, Y ∈ O(Γ ) will be denoted by Ẋ and Ẏ . The class of A ∈ F(Γ ) will
be denoted by [A]. On O(Γ ), we define a multiplication by XY ≡ [ẊẎ ], where Ẋ and Ẏ

are arbitrary representatives of X and Y . It is easy to check that this is a well-defined
associative multiplication. Moreover, we define a map i : O(Γ ) → O(Γ ) by i(X) ≡ [Ẋ−1],
where again Ẋ is a representative of X and this is well defined. We note in passing that,
in an inverse semigroup Γ with a zero, [B] �= 0 holds for every directed set B with 0 /∈ B.

Theorem 3.1. The set O(Γ ) with multiplication and inversion X−1 ≡ i(X) is an
inverse semigroup. The relation X ≺ Y holds for X, Y ∈ O(Γ ) if Ẋ ≺ Ẏ holds for some
(all) representatives Ẋ of X and Ẏ of Y .
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Proof. We first show that each X ∈ O(Γ ) has a unique inverse given by i(X). Exis-
tence follows easily from

Ẋ = {xx−1x : x ∈ Ẋ} ∼ {x1x
−1
2 x3 : x1, x2, x3 ∈ Ẋ} = ẊẊ−1Ẋ.

To show uniqueness, let X and Y be given with representatives Ẋ and Ẏ and assume
that

(i) XY X = X, and

(ii) Y XY = Y .

By (i), we have
Ẋ−1 ∼ Ẋ−1ẊẊ−1 ∼ Ẋ−1ẊẎ ẊẊ−1 ≺ Ẏ ,

yielding i(X) ≺ Y . Similarly, by (ii), we arrive at Y ≺ i(X). Putting these together,
we obtain the desired uniqueness result. This shows that O(Γ ) is indeed an inverse
semigroup. Using this, it is not difficult to obtain the statement about the order. �

We now combine this construction with the results of § 2.

Definition 3.2. The groupoid Gu(Γ ) ≡ G(O(Γ )) is called the universal groupoid of
Γ . The groupoid Gm(Γ ) ≡ M(O(Γ )) is called the minimal groupoid of Γ .

The considerations of § 2 immediately yield Gm(Γ ) = Gu(Γ )O(Γ )(0)min
.

4. The groupoid Gu(Γ )

In this section we introduce a topology on Gu(Γ ), making it into a topological r-discrete
groupoid. We also show that Gu(Γ ) with this topology is isomorphic to the universal
groupoid introduced by Paterson in [12,13].

In the following we simply write x instead of [{x}] ∈ O(Γ ) for x ∈ Γ . In particular,
we write X ≺ x instead of X ≺ [{x}] for X ∈ O(Γ ). Note that we have X = xX−1X =
XX−1x for X ≺ x. This will be used several times in the following. For x ∈ Γ , we set
Ux ≡ {X ∈ Gu(Γ ) : X ≺ x}. For x, x1, . . . , xn ∈ Γ with x1, . . . , xn ≺ x, we set

Ux;x1,...,xn
≡ Ux ∩ U c

x1
∩ · · · ∩ U c

xn
.

Here, U c
x is the complement of Ux in O(Γ ). We will show that the family of these

Ux;x1,...,xn gives the basis of a topology. To do so, we need the following proposition.

Proposition 4.1. For X ∈ Gu(Γ ), x1, . . . , xn ≺ x and y1, . . . , ym ≺ y in Γ with
X ∈ Ux;x1,...,xn

∩ Uy;y1,...,ym , there exist z1, . . . , zk ≺ z with z ≺ x, y and

X ∈ Uz;z1,...,zk
⊂ Ux;x1,...,xn ∩ Uy;y1,...,ym .

Proof. Let pj and ql in Γ (0) be given such that xj = xpj and yl = yql, j = 1, . . . , n,
l = 1, . . . , m. By X ∈ Ux ∩ Uy, there exists z ∈ Γ with X ≺ z ≺ x, y. Thus, there exist
p, q ∈ Γ (0) with z = xp = yq = xpq = ypq. Of course, it suffices to show that

X ∈ Uz;zp1,...,zpn, zq1,...,zqm ⊂ Ux;x1,...,xn ∩ Uy;y1,...,ym .
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It is straightforward to show that X belongs to Uz;zp1,...,zpn,zq1,...,zqm
. Therefore, let us

now show that Y ∈ Uz;zp1,...,zpn, zq1,...,zqm also belongs to Ux;x1,...,xn ∩ Uy;y1,...,ym . By
Y ≺ z we have Y ≺ x and Y ≺ y. Thus, it remains to show that Y belongs neither to
Uxj nor to Uyl

for arbitrary j and l as above. Assume that Y ≺ xpj . By Y ≺ z, this gives
the contradiction

Y = Y Y −1Y ≺ xpjz
−1xpj = xpjz

−1zpj = xz−1zpj = zpj ,

where we have used z ≺ x twice. Similarly, we show that Y ≺ yql cannot hold. �

The proposition implies that the family T defined next is indeed a topology.

Definition 4.2. The topology T on Gu(Γ ) is the family of sets which are unions of
sets of the form Ux;x1,...,xn

.

Proposition 4.3. Gu(Γ ) is a topological groupoid with respect to T .

Proof. Continuity of inversion is obvious. To show that multiplication is continuous,
let Z = X ∗ Y ∈ Uz;z1,...,zn be given. Let pj , qj ∈ Γ (0) be given with zj = pjz = zqj

for j = 1, . . . , n. There exist x, y ∈ Γ with X ≺ x, Y ≺ y and xy ≺ z. As X ∗ Y

exists in Gu(Γ ), we have X−1X = Y Y −1 and we can assume without loss of generality
that x−1x = yy−1. It is now straightforward to show that X ∈ Ux;p1x,...,pnx and Y ∈
Uy,yq1,...,yqn

. Thus, it remains to show that for A ∈ Ux;p1x,...,pnx and B ∈ Uy,yq1,...,yqn
the

product A ∗ B belongs to Uz;z1,...,zn (if it exists). Clearly, A ∗ B belongs to Uxy ⊂ Uz.
Assume that A ∗ B ≺ zj for some j. Then, there exist a, b ∈ Γ with A ≺ a and B ≺ b

and ab ≺ zj . Again, as AB exists in Gu(Γ ), we can assume without loss of generality
that a−1a = bb−1. Moreover, we can assume without loss of generality that a ≺ x and
b ≺ y as A ∈ Ux and B ∈ Uy. This gives

a =≺ ax−1x = abb−1x−1x ≺ zjb
−1x−1x ≺ zjy

−1x−1x ≺ pjzz−1x ≺ pjx.

This gives a contradiction, as A does not belong to Upjx. �

Proposition 4.4.

(a) For arbitrary X �= Y ∈ Gu(Γ ), there exists z ≺ x ∈ Γ with X ∈ Ux;z and Y /∈ Ux;z.

(b) The set Gu(Γ )(0) is closed in Gu(Γ ).

Proof. (a) Consider first the case Y ≺ X (and X �= Y ). Let x ∈ Γ with X ≺ x be
given. Then, there exists an y ≺ x with Y ≺ y and not X ≺ y. This gives X ∈ Ux;y and
Y /∈ Ux;y. On the other hand, if Y ≺ X does not hold, then there exists an x ∈ Γ with
X ≺ x and not Y ≺ x and we infer that X ∈ Ux and Y /∈ Ux.

(b) It suffices to show that, for every converging net (Pi) in Gu(Γ )(0), the limit P

belongs to Gu(Γ )(0), i.e. it satisfies P = PP−1. But this is immediate from (a) and
continuity of multiplication. �
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Proposition 4.5. Let p1, . . . , pn ≺ p ∈ Γ (0) be given. Let x ∈ Γ with p ≺ x−1x be
given. Then Uxp;xp1,...,xpn = xUp;p1,...,pn .

Proof. This follows easily from X = xX−1X and the fact that X−1X ≺ q if and only
if xX−1X ≺ xq for q ≺ x−1x and X ≺ x. �

Proposition 4.6. Gu(Γ ) is r-discrete.

Proof. It suffices to show that the maps

s : Ux;x1,...,xn → Ux−1x;x−1
1 x1,...,x−1

n xn
, X �→ X−1X

and

r : Ux;x1,...,xn → Uxx−1;x1x−1
1 ,...,xnx−1

n
, X �→ XX−1

are homeomorphisms. We show only the statement about s. The statement about r

follows similarly. By Proposition 4.5, the map

s∗ : Ux−1x;x−1
1 x1,...,x−1

n xn
→ Ux;x1,...,xn , P �→ xP

is surjective. By
(xP )−1xP = Px−1xP = PP = P,

we have that s∗ is also injective. Moreover, we see that s and s∗ are inverse to each
other and s is therefore a bijection. By Proposition 4.3, the map s is continuous. Using
Propositions 4.1 and 4.5, one can also infer that s∗ is continuous. �

Proposition 4.7. For arbitrary x1, . . . , xn ≺ x ∈ Γ , the set Ux;x1,...,xn
is compact.

Proof. By Proposition 4.6, it suffices to consider Up;p1,...,pn
with p1, . . . , pn ≺ p ∈ Γ (0).

This, however, is just a reformulation of the well-known properties of the maximal ideal
space of the commutative Banach algebra l1(Γ (0)) (see also [13]). We include a short
sketch for completeness. Clearly, the map j : Gu(Γ )(0) → {0, 1}Γ (0)

with j(P )(q) = 1
if P ≺ q and j(P )(q) = 0 otherwise is injective (see also Lemma 4.10). Moreover, if
{0, 1} carries the discrete topology and {0, 1}Γ (0)

is given the product topology, then the
topology in Gu(Γ )(0) is easily seen to be the topology induced by this injection. Thus, it
remains to show that j(Gu(Γ )(0)) is closed in {0, 1}Γ (0)

. Therefore, assume that the net
(j(Pi)) converges to f ∈ {0, 1}Γ (0)

. Then, it is not difficult to see that {q ∈ Γ (0) : f(q) =
1} is a directed inverse order ideal and f = j(P ) with P = [{q ∈ Γ (0) : f(q) = 1}]. �

Proposition 4.8. The map U : Γ → S(Gu(Γ )), x �→ Ux is an injective homomorphism
of inverse semigroups.

Proof. By Proposition 4.6, the sets Ux are indeed Gu(Γ )-sets. Thus, U maps
into S(Gu(Γ )). Clearly, U preserves the involution. Thus, it only remains to show
that Uxy = UxUy. The inclusion ⊃ is obvious. Let now Z ∈ Uxy be given. By
Z ≺ xy, we have x−1Z ≺ y and Zy−1 ≺ x as well as Zy−1x−1 = ZZ−1. This implies
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that Z = ZZ−1Z = Zy−1x−1Z = XY with X ≡ Zy−1 and Y ≡ x−1Z. It remains to
show that X and Y are composable in the sense of the groupoid Gu(Γ ), i.e. that
X−1X = Y Y −1. But this follows from

X−1X = yZ−1Zy−1 = x−1Zy−1 = x−1ZZ−1x = Y Y −1,

where we have used Zy−1 ≺ x and x−1Z ≺ y. Injectivity is simple. �

We summarize our considerations in the following theorem.

Theorem 4.9. The groupoid Gu(Γ ) is a topological groupoid with basis of topology
given by the family of sets Ux;x1,...,xn

for arbitrary x1, . . . , xn ≺ x ∈ Γ . These sets are
compact Gu(Γ )-sets on which r and s are homeomorphisms. The map U : Γ → S(Gu(Γ ))
is an injective homomorphism of inverse semigroups.

Let us now consider the Hausdorff properties of Gu(Γ ). By the proof of Proposition 4.7,
its unit space is Hausdorff. However, in general Gu(Γ ) will not be Hausdorff. We will
show that, for Γ satisfying condition (L), there is a simple alternative description of the
topology of Gu(Γ ). This will then give the result that Gu(Γ ) is Hausdorff if Γ satisfies
(L) (cf. Corollary 4.11, below).

Consider the map j : Gu(Γ ) → {0, 1}Γ with j(X)(x) = 1 if X ≺ x and j(X)(x) = 0
otherwise. Let {0, 1} be equipped with the discrete topology and let {0, 1}Γ be given the
product topology. We have the following lemma.

Lemma 4.10. The map j is injective. If Γ satisfies (L), the topology induced on
Gu(Γ ) from {0, 1}Γ agrees with T .

Proof. It is not difficult to show that X = [{y : X ≺ y}], Thus, if X �= Y , there exists
without loss of generality an x ∈ Γ with X ≺ x but not Y ≺ x. This gives j(X)(x) = 1
and j(Y )(x) = 0 and injectivity follows.

To show that the induced topology agrees with T , we have to show that, for arbitrary
X ∈ Gu(Γ ) and x1, . . . , xn, y1, . . . , ym with X ∈ Ux1 ∩ · · · ∩ Uxn ∩ U c

y1
∩ · · · ∩ U c

ym
, there

exist z1, . . . , zk ≺ z with

X ∈ Uz;z1,...,zk
⊂ Ux1 ∩ · · · ∩ Uxn ∩ U c

y1
∩ · · · ∩ U c

ym
. (4.1)

By X ∈ Ux1 ∩ · · · ∩ Uxn , there exists an x ∈ Γ with X ≺ x ≺ x1, . . . , xn. By (L), we can
then set z ≡ x1 ∧ · · · ∧ xn. Clearly, we have X ∈ Uz ⊂ Ux1 ∩ · · · ∩ Uxn . Similarly, we can
define zj = z ∧ yj for every j with Uz ∩ Uyj �= ∅. Assume without loss of generality that
the set of these j is given by {1, . . . , k}. By construction, (4.1) holds. �

Corollary 4.11. If Γ satisfies (L), then Gu(Γ ) is Hausdorff.

Remark 4.12. In [13] it is shown that Gu(Γ ) is Hausdorff if Γ is E-unitary. As
E-unitary implies (L), Corollary 4.11 strengthens this result.
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We close this section with a discussion of the isomorphism between Gu(Γ ) and the
universal groupoid, Hu(Γ ), constructed by Paterson [12,13]. His construction proceeds
in three steps:

(i) a certain inverse semigroup Γ ′ containing Γ is shown to act on the space X of
semi-characters such that (X, Γ ′) is a localization;

(ii) by Paterson’s extension of Kumjian’s theory of localizations [8,13], there exists a
groupoid G(X, Γ ′) for this localization;

(iii) the groupoid Hu(Γ ) = G(X, Γ ′) can be expressed in terms of X and Γ only.

We refrain from discussing the theory of localizations here and just give the description
of Hu(Γ ) in terms of X and Γ according to [13, Theorem 4.3.1]. In our discussion we
will identify the space of semi-characters used in [13] with O(Γ )(0) (see the proof of
Proposition 4.7 above and discussion in [13, § 4.3]). Moreover, we will use the notation
introduced above. In particular, the action of Γ on X will be written accordingly. Using
these adjustments to our setting, the groupoid Hu(Γ ) can be described as follows: it
consists of equivalence classes [P, x], of pairs (P, x) with P ∈ O(Γ )(0), x ∈ Γ with P ≺
xx−1. Here, two pairs (P, x) and (P̃ , x̃) are identified if P = P̃ and there exists a p ∈ Γ

with P ≺ p and px = px̃. The involution is given by [P, x]∗ ≡ [x−1Px, x−1] and the
multiplication is given by [P, x] ∗ [x−1Px, y] ≡ [P, xy]. A basis of the topology is given
by sets of the form {[P, x] : P ∈ Up;p1,...,pn}.

Given these reformulations of Paterson’s construction, the proof of the following theo-
rem is a simple exercise.

Theorem 4.13. The map J : Gu(Γ ) → Hu(Γ ), J(X) ≡ [X−1X, x] with an arbitrary
x with X ≺ x, is an isomorphism of topological groupoids with inverse map K given by
K : Hu(Γ ) → Gu(Γ ), K([P, x]) ≡ Px.

5. The inverse semigroup Γ̃

In this section we introduce and investigate a certain quotient of Γ , which we call Γ̃ . The
relevance of this quotient will become apparent in the subsequent sections when we deal
with Gm(Γ ).

Definition 5.1. For n ∈ N and x, x1, . . . , xn ∈ Γ , we set x < (x1, . . . , xn) if for every
y ≺ x, y �= 0, there exist z ∈ Γ , z �= 0 and j ∈ {1, . . . , n} with z ≺ y, xj . If n = 1, we
write x < x1 instead of x < (x1).

While the relation < is not an order, it induces one, as investigated next. The relation
x ≷ y if and only if x < y and y < x can easily be seen to give an equivalence relation
on Γ . The quotient Γ̃ is then defined by Γ̃ ≡ Γ/≷. Let π : Γ → Γ̃ be the canonical
projection. Direct arguments then give the following.

Proposition 5.2. x < y implies x−1 < y−1 as well as xz < yz and zx < zy.
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Proposition 5.3. There exists a unique inverse semigroup structure on Γ̃ making π

into a homomorphism of inverse semigroups. The relation x < y holds for x, y ∈ Γ if and
only if π(x) ≺ π(y).

Proof. The uniqueness statement is obvious. Let us now show existence of the desired
semigroup structure. Using Proposition 5.2, we infer that the sets π(π−1(a)−1) and
π(π−1(a)π−1(b)) contain exactly one element. Thus, we can define a−1 and ba by
π(π−1(a)−1) and π(π−1(a)π−1(b)), respectively. Let us now show that the inverse is
unique. Let x, y ∈ Γ and a, b ∈ Γ̃ with a = π(x) and b = π(y) and let aba = a and bab = b

be given. By aba = a, we have x < xyx, implying that x−1 = x−1xx−1 < x−1xyxx−1 < y.
Similarly, we infer that y−1 < x, and y−1 ≷ x follows. Thus, Γ̃ is indeed an inverse semi-
group and π is a homomorphism of inverse semigroups.

It remains to prove the statement about the order. Let x, y ∈ Γ with x < y be
given. We have to show that π(x)π(x−1) = π(x)π(y)−1, i.e. xx−1 ≷ xy−1. By x < y and
Proposition 5.2, we infer that xx−1 < xy−1, xx−1 < yx−1. Thus, it remains to show that
xy−1 < xx−1. However, this follows from

xy−1 = xx−1xx−1xy−1 < xx−1yx−1xy−1 ≺ xx−1.

Conversely, assume π(x) ≺ π(y). This easily gives x < yx−1x ≺ y. �

The following proposition is our main tool in studying Γ̃ for Γ satisfying (L).

Proposition 5.4. Let Γ satisfy (L). If x, y, z ∈ Γ satisfy 0 �= z < x, y, then x ∧ y ∧ z

exists and is not equal to zero.

Proof. By z ≺ z and z < x, we derive from (L) that 0 �= z∧x exists. By 0 �= z∧x ≺ z

and z < y, we infer, again by (L), that 0 �= z ∧ x ∧ y exists. �

Proposition 5.5.

(a) If Γ satisfies (L), then Γ̃ also satisfies (L).

(b) Let Γ be an inverse semigroup with zero satisfying (L). Then Γ̃ = (Γ̃ )̃

Proof. (a) Let 0 �= c ≺ a, b ∈ Γ̃ be given. Choose x, y, z ∈ Γ with π(x) = a, π(y) = b

and π(z) = c. By Proposition 5.3, we then have 0 �= z < x, y. By Proposition 5.4, 0 �= x∧y

exists. By x ∧ y < x, y (even x ∧ y ≺ x, y) and Proposition 5.3, we then have π(x ∧ y) ≺
π(x), π(y). Moreover, a straightforward argument shows that z < x ∧ y holds, yielding
c = π(z) ≺ π(x ∧ y). Combining these estimates, we infer that π(x ∧ y) = π(x) ∧ π(y).

(b) It suffices to show that x < y whenever π(x) < π(y) for x, y ∈ Γ . So, we assume
that π(x) < π(y). Without loss of generality we can assume that 0 �= π(x). Let 0 �= z ≺ x

be given. Then we have π(z) ≺ π(x) and, by π(x) < π(y), there exists r ∈ Γ with 0 �=
π(r) ≺ π(z), π(y), π(x). This gives 0 �= r < z, y, x by Proposition 5.3. By Proposition 5.4,
we then infer that 0 �= z ∧ y ∧ x ∧ r and x < y follows. �

For later use we also note the following proposition.
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Proposition 5.6.

(a) The relation < is transitive, i.e. for x < (x1, . . . , xk) with xj < (xj,1, . . . , xj,n(j)),
j = 1, . . . , k, xj,l ∈ Γ suitable, the relation

x < (x1,1, . . . , x1,n(1), . . . , xk,1, . . . , xk,n(k))

holds.

(b) If p < (p1, . . . , pn) and p ≺ x−1x for suitable p, p1, . . . , pn ∈ Γ (0) and x ∈ Γ , then
xpx−1 < (xp1x

−1, . . . , xpnx−1).

Proof. Part (a) is straightforward. As for (b), let 0 �= q ≺ xpx−1 be given. By xpx−1 =
xx−1xpx−1xx−1, this implies that q = xx−1qxx−1, yielding x−1qx �= 0. Furthermore, we
have x−1qx ≺ x−1xpx−1x = p. Thus, there exist r ∈ Γ (0) \ {0} and j ∈ {1, . . . , n} with
r ≺ x−1qx and r ≺ pj . This implies that 0 �= xrx−1 ≺ xx−1qxx−1 ≺ q and xrx−1 ≺
xpjx

−1, completing the proof of (b). �

6. The groupoid Gm(Γ )

By the general theory presented in § 2, the groupoid Gm(Γ ) is a reduction in the set-
theoretical sense. Thus, it inherits the topology from Gu(Γ ) and is a topological r-discrete
groupoid. A basis of the topology is given by the sets

Vx;x1,...,xn ≡ Ux;x1,...,xn ∩ Gm(Γ )

for arbitrary x1, . . . , xn ≺ x ∈ Γ . In this section, we study compactness of the Vx;x1,...,xn ,
non-emptiness of Vx and the algebraic properties of the map x �→ Vx.

Proposition 6.1. If Γ contains a zero, then, for every Y ∈ O(Γ ), Y �= 0, there exists
an X ∈ O(Γ )min with X ≺ Y . In particular, Vx �= ∅ for every x �= 0.

Proof. Let Ẏ be a representative of Y . By Y �= 0, we have 0 /∈ Ẏ . Consider the family
of directed sets containing Ẏ but not containing 0. The usual inclusion gives a partial
order on this family. Application of Zorn’s lemma then gives a maximal element B in
this family. This element does not contain zero and, as Γ contains a zero, we see that
[B] �= 0. By construction, [B] is minimal and precedes Y . �

Proposition 6.2.

(a) Let Γ be an inverse semigroup with zero satisfying (L). The following are then
equivalent:

(i) x < (x1, . . . , xn);

(ii) Vx ⊂ Vx1 ∪ · · · ∪ Vxn
.

In particular, Vx = Vy if and only if x < y and y < x.

(b) For arbitrary Γ with zero (not necessarily satisfying (L)), the equivalence of (i) and
(ii) holds, whenever x, x1, . . . , xn all belong to Γ (0).
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Proof. (a) (i) =⇒ (a) (ii). Let X ∈ Vx be given. Then, A ≡ {y : y ≺ x, X ≺ y} is a
representative of X. Set Aj ≡ {y ∧ xj : y ∈ A such that 0 �= y ∧ xj exists}. By (i) and
(L), there exists a j with Aj ≺ A. This gives [Aj ] ≺ X. As Γ has a zero, we have [Aj ] �= 0
and, by the minimality of X, we infer that X = [Aj ]. As [Aj ] belongs to Vxj , statement
(ii) is proven.

(a) (ii) =⇒ (a) (i). Let y ≺ x, y �= 0, be given. As Γ has a zero, by Proposition 6.1
there exists a Y ∈ O(Γ )min with Y ≺ y. This implies that Y ∈ Vy ⊂ Vx. By (ii), we infer
that Y ∈ Vxj , i.e. Y ≺ xj for a suitable j. Thus, y and xj have a common predecessor
not equal to zero.

(b) This follows as existence of largest predecessors is always valid on Γ (0). �

We can now study compactness properties of the Vx, x ∈ Γ .

Proposition 6.3. The following are equivalent:

(i) for arbitrary x1, . . . , xn ≺ x ∈ Γ the set Vx;x1,...,xn is compact;

(ii) the set Gm(Γ )(0) is closed in Gu(Γ );

(iii) Gm(Γ ) is a topological reduction of Gu(Γ ).

Proof. The equivalence of (ii) and (iii) is immediate from the considerations of the
second section. The implication (ii) =⇒ (i) is immediate from Propositions 4.5 and 4.7.
Thus, it remains to show (i) =⇒ (ii). Let (Pi) be a net in Gm(Γ )(0) converging in Gu(Γ )
to P ∈ Gu(Γ ). By Proposition 4.4 (b), P belongs to Gu(Γ )(0). Thus, P belongs to Up

for a suitable p ∈ Γ (0). Then Pi belongs to Vp for large i. As Vp is compact, P = lim Pi

must also belong to Vp ⊂ Gm(Γ )(0). �

Let us now give a simple criterion, which can be checked for certain concrete semi-
groups, for example, those arising in the context of tilings and graphs. A function
R : Γ → I with I = [0,∞) or I = [0,∞] is called a radius function if it satisfies

R(x−1) = R(x), R(xy) � min{R(x), R(y)} and R(u) � R(v)

for all x, y, u, v ∈ Γ with u ≺ v. A radius function R on Γ gives rise to a radius function
on O(Γ ), again denoted by R(X) ≡ sup{R(x) : X ≺ x}. A radius function is called
admissible if R(X) = ∞ if and only if X ∈ O(Γ )min.

Proposition 6.4. If R is an admissible and continuous radius function on Gu(Γ ),
then Vx;x1,...,xn is compact for arbitrary x1, . . . , xn ≺ x ∈ Γ .

Proof. By Proposition 6.3, we must show that Gm(Γ )(0) is closed in Gu(Γ )(0). This
follows from the continuity of R as

Gm(Γ )(0) = Gu(Γ )(0) ∩ {X : R(X) = ∞}.

�
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Remark 6.5.

(a) Any radius function must be lower semicontinuous.

(b) The radius functions arising in the context of graphs or tilings are admissible and
have strong additional properties. These can be used to show that Gm(Γ ) can be
considered as a kind of metric completion of O(Γ ) (see [5] for the tiling case).

Let us give another condition for the closedness of Gm(Γ )(0) in Gu(Γ )(0). This condition
is local in that it can be checked by considering only Γ (and not O(Γ )).

Definition 6.6. The inverse semigroup Γ is said to satisfy the trapping condition (T)
if Γ contains a zero and, for every p, q ∈ Γ (0) with q ≺ p, there exist p1, . . . , pn ∈ Γ (0)

such that pj ≺ p, j = 1, . . . , n, p < (p1, . . . , pn, q) and, for every j ∈ {1, . . . , n}, either
pj ≺ q or pjq = 0.

Proposition 6.7. Let Γ satisfy (T). Then Gm(Γ )(0) is closed in Gu(Γ )(0).

Proof. Let (Pi) be a net in Gm(Γ )(0) converging in Gu(Γ ) to P . As Gu(Γ )(0) is closed
in Gu(Γ ), the element P belongs to Gu(Γ )(0). Next, we show that P is not zero. Assume
the contrary. As Γ contains a zero, this implies that P ∈ U0, yielding the contradiction
0 �= Pi ∈ U0 for large i.

Thus, it suffices to show that every Q �= 0, Q ≺ P , agrees with P . Let such a Q be
given and assume that P �= Q. Then there exist p, q ∈ Γ (0) with q ≺ p and Q ≺ q,
P ≺ p but not P ≺ q. Choose p1, . . . , pn according to (T) for q ≺ p. Then we have
Vp ⊂ Vp1 ∪ Vpn ∪ Vq by (T) and Proposition 6.2 (b). Then, it is not difficult to see that
there exists a subnet (Pk) of (Pi) also converging to P and (Pk) ⊂ Vpj

for a suitable j.
By Pk ∈ Vpj

⊂ Upj
and compactness of Upj

, we infer that P ∈ Upj
, i.e. P ≺ pj . There

are two cases.

Case 1 (pj ≺ q). In this case we arrive at the contradiction P ≺ pj ≺ q.

Case 2 (pjq = 0). We have Pq = Ppjq = P0 = 0, contradicting 0 �= Q = Qq ≺ Pq.
�

If Γ satisfies (L), the topology of Gm(Γ ) has a particularly nice basis.

Lemma 6.8. If Γ satisfies (L) and has a zero, then the family of sets Vx, x ∈ Γ , is a
basis of the topology of Gm(Γ ).

Proof. It suffices to show that for arbitrary X ∈ Gm(Γ ) and z1, . . . , zn ≺ z ∈ Γ

with X ∈ Vz;z1,...,zn , we have X ∈ Vx ⊂ Vz;z1,...,zn
for a suitable x. Assume the con-

trary. Thus, there exists X ∈ Gu(Γ ) such that, for every x with X ≺ x, the set
Vx ∩ (Vz1 ∪ · · · ∪ Vzn) is not empty. We must therefore have X = [Aj ] with a suitable
j for Aj ≡ {x : X ≺ x, Vx ∩ Vzj

�= ∅}. Assume without loss of generality that j = 1. By
(L), the minimum x ∧ z1 exists for arbitrary X ≺ x and is not zero. Moreover, the con-
struction gives [{x ∧ z1 : X ≺ x}] ≺ X and [{x ∧ z1 : X ≺ x}] is not zero, as Γ has a
zero. By minimality of X, this gives X = [{x ∧ z1 : x ∈ Ẋ}] and the contradiction X ≺ z1

follows. �
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Proposition 6.9. The map V : Γ → S(Gm(Γ )), x �→ Vx is a homomorphism of
inverse semigroups. If Γ satisfies (L) and contains a zero, V (Γ ) is canonically isomorphic
to Γ̃ by Vx �→ π(x).

Proof. The first statement can be proved using the same proof as Proposition 4.8.
The second statement then follows from Proposition 6.2. �

Remark 6.10. The proposition shows, in particular, that the map V on Γ is, unlike U ,
not necessary injective. Nevertheless, it is still possible to show that Gm(Γ ) is isomorphic
to Gm(V (Γ )), whenever Γ satisfies (L).

Recall now that the ample semigroup of a groupoid G is the inverse semigroup con-
sisting of all compact open G-sets. A groupoid is called ample if this semigroup is a basis
of the topology.

Theorem 6.11. Let Γ be a subsemigroup of the inverse semigroup of an ample Haus-
dorff groupoid G. Assume that Γ is closed under intersections (which implies (L)) and
that Γ is a basis of the topology of G. Then Gm(Γ ) � G.

Proof. This is the analogue of our setting to a result of [5]. Thus, we only briefly
sketch the idea. To each point g ∈ G we associate the set Ag, consisting of all x ∈ Γ

with g ∈ x. This set is directed, i.e. belongs to O(Γ ), as Γ is closed under intersections.
Using the fact that G is Hausdorff, one easily sees that [Ag] must be minimal, i.e. must
belong to Gm(Γ ). The map g �→ [Ag] is the desired isomorphism. �

The preceding considerations suggest the distinction of the class of inverse semigroups
defined next. It covers the graph case and the tiling case (see below).

Definition 6.12. The inverse semigroup Γ is said to satisfy condition (LC) if it
contains a zero and satisfies (L) and Gm(Γ )(0) is closed in Gu(Γ )(0).

The considerations of this section extend the corresponding considerations of [4,5] in
some ways. There, a topological groupoid Hm(Γ ) is constructed from an inverse semi-
group with zero by considering directed sequences. Its topology is generated by Vx, x ∈ Γ

(in our notation). Here, we make the relationship between Hm(Γ ) and Gu(Γ ) explicit.
More precisely, the groupoid Hm(Γ ) clearly agrees with Gm(Γ ) as a set, but the topology
might be different. Lemma 6.8 then yields that Gm(Γ ) and Hm(Γ ) agree as topological
groupoids if Γ satisfies (L). Moreover, we study whether Gm(Γ ) has a basis of compact
open sets for general Γ and provide criteria applying to both the tiling and the graph
cases.

7. Open invariant subsets of Gm(Γ )(0)

In this section we relate the open invariant subsets of Gm(Γ )(0) to certain order ideals
in Γ (0), and use this and results of [15] to study the ideals in C∗

red(Gm(Γ )).
We start with a discussion of invariance. Let X ∈ Gm(Γ ) be given. Let x ∈ Γ with X ≺

x be given. We then have X = XX−1X = Px = xQ with P = XX−1, Q = X−1X in
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Gm(Γ )(0). This shows that X−1X = x−1Px and XX−1 = xQx−1. These considerations
easily imply the following proposition.

Proposition 7.1.

(a) A subset E of Gm(Γ )(0) is invariant if and only if, for every P ∈ E and x ∈ Γ with
P ≺ xx−1, the element x−1Px belongs to E.

(b) Gm(Γ )P
P ≡ {X : XX−1 = X−1X = P} = {P} if and only if every x ∈ Γ with

x−1Px = P and P ≺ xx−1 satisfies P ≺ x.

Definition 7.2. An element P ∈ Gm(Γ )(0) is called aperiodic if Gm(Γ )P
P = {P}.

Using this definition and Proposition 7.1, we can reformulate the definition of (essen-
tially) principality for Gm(Γ ) given in [15] as follows: Gm(Γ ) is principal if and only if
every P ∈ Gm(Γ )(0) is aperiodic. Gm(Γ ) is essentially principal if and only if in every
closed invariant set F the set of aperiodic points is dense.

Definition 7.3. A subset I of Γ (0) is called <-closed if p ∈ Γ (0) belongs to I whenever
p < (p1, . . . , pn) for p1, . . . , pn ∈ I.

A subset I of Γ (0) is called invariant if xpx−1 belongs to I for every p ∈ I and x ∈ Γ

with p ≺ x−1x.

Note that a <-closed set is in particular an order ideal, as p ≺ q implies p < q. Invoking
Proposition 5.6, we can now easily infer the following two results.

Proposition 7.4.

(a) Let I be an arbitrary subset of Γ (0). Then

Cl(I) ≡ {p : p < (p1, . . . , pn) for suitable p1, . . . , pn ∈ I}

is the smallest <-closed subset of Γ (0) containing I.

(b) If I is an invariant order ideal in Γ (0), then Cl(I) is the smallest <-closed invariant
subset of Γ (0) containing I.

Proposition 7.5.

(a) The set of <-closed invariant subsets of Γ (0) with the usual inclusion as partial
order is a lattice with I ∨ J ≡ Cl(I ∪ J) and I ∧ J ≡ I ∩ J .

(b) The set of open invariant subsets of Gm(Γ )(0) with the usual inclusion as order is
a lattice with U ∨ V ≡ U ∪ V and U ∧ V ≡ U ∩ V .

Definition 7.6.

(a) The lattice in Proposition 7.5 (a) will be denoted by I(Γ ).

(b) The lattice in Proposition 7.5 (b) will be denoted by V(Γ ).
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Lemma 7.7. Let Γ satisfy (LC). For V in V(Γ ) the set Si(V ) ≡ {q ∈ Γ (0) : Vq ⊂ V }
belongs to I(Γ ). For I ∈ I(Γ ) the set Su(I) ≡

⋃
q∈I Vq belongs to V(Γ ). The maps

Su : I(Γ ) → V(Γ ), I �→ Su(I) and I : V(Γ ) → I(Γ ), U �→ Si(U) are lattice isomorphisms
which are inverse to each other.

Proof. It is easy (and does not use any assumptions on Γ ) to show that Su(I) belongs
to V(Γ ). Moreover, using (L), 0 ∈ Γ and Proposition 6.2, it is not difficult to see that
Si(V ) belongs to I(Γ ). Let us now show that Si and Su are inverse to each other, i.e. that
(i) Si(Su(I)) = I and (ii) Su(Si(V )) = V .

(i) By Si(Su(I)) = {q : Vq ⊂
⋃

p∈I Vp}, we have Si(Su(I)) ⊃ I. Conversely, let q with
Vq ⊂

⋃
p∈I Vp be given. By the compactness of Vq, we have Vq ⊂ Vp1 ∪ · · · ∪ Vpn

for suit-
able p1, . . . , pn ∈ I. By Proposition 6.2, this gives q < (p1, . . . , pn). As I is <-closed, we
infer that q ∈ I and the proof of (i) is finished.

(ii) Su(Si(V )) =
⋃

q∈Si(V ) Vq =
⋃

q:Vq⊂V Vq = V . Here, we have used in the last
equality that the Vx, x ∈ Γ , give a basis of the topology of Gm(Γ ) by (L).

Clearly, the maps Si and Su respect the order. Therefore, it remains to show that they
respect ∨ and ∧ as well. This will be shown next. In fact, Si(U ∧ V ) = Si(U) ∩ Si(V ) is
immediate and Su(I∧J) = Su(I)∩Su(J) follows easily, as p∧q = pq exists for p, q ∈ Γ (0).
Thus, it remains to show Su(I ∨J) = Su(I)∨Su(J) and Si(U ∨V ) = Si(U)∨Si(V ). We
have

Su(I ∨ J) ≡ Su(Cl(I ∪ J)) =
⋃

q∈Cl(I∪J)

Vq =
⋃
q∈I

Vq ∪
⋃
p∈J

Vp = Su(I) ∪ Su(J),

where we used Proposition 6.2 combined with Proposition 7.4 in the penultimate equality.
Also, as the Vq are compact, by Proposition 6.2 we have

Si(U ∨ V ) = {q : Vq ⊂ U ∪ V }
= {q : Vq ⊂ Vq1 ∪ · · · ∪ Vqn

∪ Vp1 · · ·Vpk
, Vpj

⊂ U, Vql
⊂ V }

= Cl({q : Vq ⊂ U} ∪ {q : Vq ⊂ V })

= Si(U) ∨ Si(V ).

This finishes the proof of the lemma. �

Let us now turn to the question of whether there actually exist non-trivial invariant
open subsets of Gm(Γ )(0).

Lemma 7.8. Let Γ satisfy (LC). Then the following are equivalent.

(i) There do not exist non-trivial <-closed invariant subsets of Γ (0).

(ii) For every p, q ∈ Γ (0), there exist x1, . . . , xn with x−1
j xj ≺ p, j = 1, . . . , n, and

q < (x1x
−1
1 , . . . , xnx−1

n ).

(iii) Gm(Γ ) is minimal, i.e. any non-empty invariant set in Gm(Γ )(0) is dense.

https://doi.org/10.1017/S0013091506000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000083


Construction of topological groupoids from inverse semigroups 403

Proof. It is well known that an r-discrete topological groupoid G is minimal if and
only if there do not exist any non-trivial invariant open subsets of G(0). Thus, the equiv-
alence of (iii) and (i) is immediate from Lemma 7.7.

It remains to show the equivalence of (i) and (ii). Obviously, (i) is equivalent to the
statement that any non-empty <-closed invariant subset of Γ (0) contains every unit. This
means that for every p ∈ Γ (0), p �= 0, the set

Ip ≡ Cl({xrx−1 : r ≺ p, r ≺ x−1x})

contains every q ∈ Γ (0). This is the case if and only if, for every q ∈ Γ (0), there exist
y1, . . . , yn and r1, . . . , rn ∈ Γ (0) with rj ≺ y−1

j yj , p and q < (y1r1y
−1
1 , . . . , ynrny−1

n ). This
is equivalent to (ii) with xj ≡ yjrj , (respectively, rj = x−1

j xj , and yj = xj). �

In our setting, these reductions of Gm(Γ ) to open invariant sets can be described
directly in terms of certain subsemigroups of Γ . Note that, for each invariant I ⊂ Γ (0),
the set ΓI ≡ {x : xx−1 ∈ I} = {x : x−1x ∈ I} with multiplication and involution from Γ

is an inverse subsemigroup of Γ .

Proposition 7.9. Let Γ be an inverse semigroup with zero satisfying (L). Let I

be an invariant order ideal in Γ (0). Then V (I) ≡
⋃

q∈I Vq is an invariant open subset
of Gm(Γ )(0). The canonical embedding j : ΓI → Γ , x �→ x, induces an isomorphism
J : Gm(ΓI) → Gm(Γ )V (I), X �→ [{j(y) : X ≺ y}] of topological groupoids.

Proof. As in the proof of Lemma 7.7 we infer that V (I) is open and invariant. Direct
calculations show that J : Gm(ΓI) → Gm(Γ ) and P : Gm(Γ )V (I) → Gm(ΓI), X �→
[{x ∈ ΓI : X ≺ x}] are continuous groupoid homomorphism which are inverse to each
other. �

This proposition allows one to identify C∗
red(Gm(ΓI)) with C∗

red(Gm(Γ )V (I)), which
in turn can canonically be considered as an ideal in C∗

red(Gm(Γ )) by the results of [15]
mentioned at the beginning of this section. Using this identification and denoting the
lattice of ideals of C∗

red(Γ ) by I(C∗
red(Γ )) we obtain the following.

Theorem 7.10. Let Γ satisfy (LC). Assume that Gm(Γ ) is essentially principal. Then
the map J : I(Γ ) → I(C∗

red(Γ )), J(I) ≡ C∗
red(Gm(ΓI)) ⊂ C∗

red(Gm(Γ )) is a bijection of
lattices. In particular, C∗

red(Gm(Γ )) is simple if and only if, for every p, q ∈ Γ (0), there
exist x1, . . . , xn with x−1

j xj ≺ p, j = 1, . . . , n, and q < (x1x
−1
1 , . . . , xnx−1

n ).

Proof. The first statement follows from Lemma 7.7 and the results of [15, Chapter II,
§ 4] (see also [16, Corollary 4.9]). The second statement follows from the first statement
and Lemma 7.8. �

8. Application to graphs

In this section we present an inverse-semigroup-based approach to the groupoid G(g)
associated with a graph g in [9]. This will provide semigroup-based proofs for some
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results of [9] concerning the structure of the open invariant subsets of G(g)(0) (see [14]
for a recent extension to a non-locally-finite situation).

Let g = (E, V, f, i) be a directed graph [9] with the set of edges E and set of vertices
V and the range and source map f, i : E → V . We assume that f is onto and that i−1(v)
is not empty for each v ∈ V . Moreover, we assume that the graph g is row finite, i.e. that
i−1(v) ⊂ E is finite for all v ∈ V .

A path α of length |α| = n ∈ N is a sequence α = (α1, . . . , αn) of edges α1, . . . , αn

in E with i(αj+1) = f(αj), j = 1, . . . , n − 1. For such an α we set i(α) ≡ i(α1) and
f(α) ≡ f(αk). A path of length 0 is just a vertex and will also be called a degenerate
path. For such a path v, we set f(v) ≡ v and i(v) ≡ v. The set of all paths of finite length
is denoted by F (g). The set of all infinite paths α = (α1, . . . ) is denoted by P (g). The
concatenation αµ of two finite paths α and µ with f(α) = i(µ) is defined in the obvious
way. By a slight abuse of language we write α ≺ β if β = αµ.

Let the set Γ ≡ Γ (g) be given by Γ ≡ {(α, β) ∈ F (g) × F (g) : r(α) = r(β)} ∪ {0} and
define a multiplication on Γ by

(α, β)(γ, δ) ≡

⎧⎪⎨⎪⎩
(αµ, δ) if γ = βµ,

(α, δµ) if β = γµ,

0 otherwise.

Then Γ is indeed an inverse semigroup, where the inverse of (α, β) is given by (α, β)−1 ≡
(β, α) (see also [1, 14]). Thus, Γ gives rise to a groupoid Gm(Γ ). Now, the function
R : Γ → [0,∞) given by

R(α, β) ≡
{

0, α|α| �= β|β|,

sup{j ∈ N0 : α|α|−i = β|β|−i, i = 0, . . . , j}, otherwise

can easily be seen to be a radius function in the sense of § 6. It is admissible and continu-
ous. Thus, Gm(Γ ) is a groupoid with a basis consisting of compact sets. We refrain from
giving details, but briefly sketch the connection between Gm(Γ ) and the graph groupoids
which were introduced in [9]: direct arguments show that the relation (γ, δ) ≺ (α, β) holds
if and only if there exists a (possibly degenerate) µ ∈ F (g) with γ = αµ and δ = βµ. This
immediately shows that for x, y ∈ Γ with a common predecessor either x ≺ y or y ≺ x

holds. Thus, for every X ∈ O(Γ ), we can find (α, β) ∈ Γ , I = [0, a] ⊂ Z, a ∈ N ∪ {∞},
and edges en, n ∈ I, such that {(αe1 · · · en, βe1 · · · en) : n ∈ I} is a representative of
X. Putting this together, we see that minimal elements in O(Γ ) can be identified with
double paths of infinite length which agree from a certain point onwards. But this is
exactly the way the graph groupoid in [9] is constructed.

This allows us to apply the theory of the preceding sections to the study of graph
groupoids. In particular, we can rephrase the ideal theory of [9] (namely, the characteri-
zation of open invariant subsets of G(g)(0)) in terms of inverse semigroups using § 7. This
is done next. Following [9], for vertices v, w ∈ V we write v � w if there exists a path in
P from v to w, and call a subset H of V hereditary if v ∈ H and v � w implies w ∈ H
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and call it saturated if r(e) ∈ H, for all e ∈ E with s(e) = v, implies v ∈ H. Direct
arguments then yield that the map

I �→ {r(p) : p ∈ I}

is a lattice isomorphism between the invariant <-closed ideals in Γ (0) and the hereditary
saturated subsets of V . The inverse is given by H �→ {p ∈ Γ (0) : r(p) ∈ H}.

9. Application to tilings

In this section, we briefly discuss inverse semigroups associated with tilings introduced
by Kellendonk [4,5] (see [6,7] for recent work on this) and the general theory developed
above to describe the ideal structure of C∗

red(Gm(Γ )) for Γ . While this is essentially
known, it serves as a good example for our theory.

A tiling in R
d is a (countable) cover T of R

d by compact sets which are homeomorphic
to the unit ball in R

d and which overlap at most at their boundaries. The elements of
T are called tiles. A pattern P in T is a finite subset of T . For patterns P and tilings T

and x ∈ R
d, we define P + x and T + x in the obvious way. The set of all patterns which

belong to T + x for some x ∈ R
d will be denoted by P (T ). All patterns will be assumed

to be patterns in P (T ) if not stated otherwise.
A doubly pointed pattern (a, P, b) (over T ) consists of a pattern P ∈ P (T ) together

with two tiles a, b ∈ P . We say that (a, P, b) is contained in (c, Q, d), written as (a, P, b) ⊂
(c, Q, d), if a = c, b = d and P ⊂ Q. On the set of doubly pointed patterns over T we
introduce an equivalence relation by defining (a, P, b) ∼ (c, Q, d) if and only if there exists
an r ∈ R

d such that c = a + r, d = b + r and Q = P + r. The class of (a, P, b) will be
denoted by (a, P, b). Obviously, the relation ⊂ can be extended to these classes. Similarly,
one can introduce an equivalence relation on the set of all patterns in P (T ). Denote the
class of the pattern P up to translation by P̄ and the set of all classes of patterns in
P (T ) by P (T ). Following [4,13], we will assume two finite type conditions, namely that
the diameters of the tiles a bounded and that the set {P̄ ∈ P (T ) : diam(

⋃
t∈P t) � R} is

finite for every R.
Following [4], one can make Γ ≡ {(a, P, b); P ∈ P (T ), a, b ∈ P} ∪ {0} into an inverse

semigroup with zero such that the relation ≺ coincides with the relation ⊂ defined above.
Let T = T (T ) be the set of all tilings S of R

d with P (S) ⊂ P (T ). Then, Γ yields a
groupoid Gm(Γ ) with unit space T . The groupoid itself equals the groupoid G(T ) defined
in [4]. Γ admits a complete radius function defined by R((a, P, b)) ≡ [dist(∂P, {a, b})]
with ∂ denoting the boundary.

Let us now study the open invariant sets in Gm(Γ ). A subset S of P (T ) is called
saturated if P̄ ∈ P (T ) and Q̄ ∈ S with Q̄ ⊂ P̄ implies P̄ ∈ S. A subset S of P (T ) is
called hereditary if P̄ belongs to S, whenever there exist P̄1, . . . , P̄n in S satisfying the
condition that, for every pattern Q with R(Q) sufficiently large and Q ⊃ P , there exists
j ∈ {1, . . . , n} with Q ⊃ Pj . Then it is easy to see that the map

I �→ {P̄ : (a, P, b) ∈ I}
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is a lattice isomorphism between the invariant <-closed subsets of Γ (0) and the saturated
hereditary subsets of P (T ). It remains to study principality of Gm(Γ ). Recall that a tiling
S is called periodic if there exists an x ∈ R

d with S + x = S. Now, T is called aperiodic
if it does not contain a periodic tiling.

Theorem 9.1. Gm(Γ ) is principal if and only if T is aperiodic.

Proof. Gm(Γ ) is principal if every P in Gm(Γ )(0) is aperiodic in the sense of § 7. But
this can easily be seen to be equivalent to T being aperiodic. �
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