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Abstract

The goal of this note is to show that in the case of ‘transversal intersections’ the ‘true
local terms’ appearing in the Lefschetz trace formula are equal to the ‘naive local terms’.
To prove the result, we extend the strategy used in our previous work, where the case
of contracting correspondences is treated. Our new ingredients are the observation of
Verdier that specialization of an étale sheaf to the normal cone is monodromic and
the assertion that local terms are ‘constant in families’. As an application, we get a
generalization of the Deligne–Lusztig trace formula.

Introduction

Let f : X → X be a morphism of schemes of finite type over an algebraically closed field k, let
� be a prime number different from the characteristic of k, and let F ∈ Db

c(X, Q�) be equipped
with a morphism u : f∗F → F . Then for every fixed point x ∈ Fix(f) ⊆ X, one can consider the
restriction ux : Fx → Fx. Hence, one can consider its trace Tr(ux) ∈ Q�, called the ‘naive local
term’ of u at x.

On the other hand, if x ∈ Fix(f) ⊆ X is an isolated fixed point, one can also consider the
‘true local term’ LTx(u) ∈ Q�, appearing in the Lefschetz–Verdier trace formula, so the natural
question is when these two locals terms are equal.

Motivated by work of many people, including Illusie [SGA5], Pink [Pin92], and
Fujiwara [Fuj97], it was shown in [Var07] that this is the case when f is ‘contracting near
x’, by which we mean that the induced map of normal cones Nx(f) : Nx(X)→ Nx(X) maps
Nx(X) to the zero section. In particular, this happens when the induced map of Zariski tangent
spaces dx(f) : Tx(X)→ Tx(X) is zero.

A natural question is whether the equality LTx(u) = Tr(ux) holds for a more general class of
morphisms. For example, Deligne asked whether the equality holds when x is the only fixed point
of dx(f) : Tx(X)→ Tx(X), or, equivalently, when the linear map dx(f)− Id : Tx(X)→ Tx(X) is
invertible. Note that when X is smooth at x, this condition is equivalent to the fact that the
graph of f intersects transversally with the diagonal at x.

The main result of this note gives an affirmative answer to Deligne’s question. Moreover, in
order to get an equality LTx(u) = Tr(ux) it suffices to assume a weaker condition that x is the
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only fixed point of Nx(f) : Nx(X)→ Nx(X) (see Corollary 4.11). In particular, we show this in
the case when f is an automorphism of X of finite order, prime to the characteristic of k, or,
more generally, a ‘semisimple’ automorphism (see Corollary 5.6).

Actually, as in [Var07], we show a more general result (see Theorem 4.10) in which a mor-
phism f is replaced by a correspondence, and a fixed point x is replaced by a c-invariant closed
subscheme Z ⊆ X. Moreover, instead of showing the equality of local terms we show a more
general ‘local’ assertion that in some cases the so-called ‘trace maps’ commute with restrictions.
Namely, we show it in the case when c has ‘no almost fixed points in the punctured tubular
neighborhood of Z’ (see Definition 4.4).

As an easy application, we prove a generalization of the Deligne–Lusztig trace formula (see
Theorem 5.9).

To prove our result, we follow the strategy of [Var07]. First, using additivity of traces, we
reduce to the case when Fx � 0. In this case, Tr(ux) = 0, thus we have to show that LTx(u) = 0.
Next, using specialization to the normal cone, we reduce to the case when f : X → X is replaced
by Nx(f) : Nx(X)→ Nx(X) and F by its specialization spx(F). In other words, we can assume
that X is a cone with vertex x, and f is Gm-equivariant.

In the contracting case, treated in [Var07], the argument stops there. Indeed, after passing
to normal cones we can assume that f is the constant map with image x. In this case, our
assumption Fx � 0 implies that f∗F � 0, thus u = 0, hence LTx(u) = 0.

In general, by a theorem of Verdier [Ver83], we can assume that F is monodromic. As it is
enough to show an analogous assertion for sheaves with finite coefficients, we can thus assume
that F is Gm-equivariant with respect to the action (t, y) �→ tn(y) for some n.

As f is homotopic to the constant map with image x (via the homotopy ft(y) := tnf(y)) it
suffices to show that local terms are ‘constant in families’. We deduce the latter assertion from
the fact that local terms commute with nearby cycles.

The paper is organized as follows. In § 1 we introduce correspondences, trace maps, and local
terms. In § 2 we define relative correspondences and formulate Proposition 2.5 asserting that in
some cases trace maps are ‘constant in families’. In § 3 we study a particular case of relative
correspondences, obtained from schemes with an action of an algebraic monoid (A1, ·). In § 4 we
formulate our main result (Theorem 4.10), asserting that in some cases trace maps commute with
restrictions to closed subschemes. We also deduce an affirmative answer to Deligne’s question,
discussed earlier. In § 5 we apply the results of § 4 to the case of an automorphism and deduce a
generalization of the Deligne–Lusztig trace formula. Finally, we prove Theorem 4.10 in § 6 and
prove Proposition 2.5 in § 7.

Notation

For a scheme X, we denote by Xred the corresponding reduced scheme. For a morphism of
schemes f : Y → X and a closed subscheme Z ⊆ X, we denote by f−1(Z) ⊆ Y the schematic
inverse image of Z.

Throughout most of the paper, all schemes will be of finite type over a fixed algebraically
closed field k. The only exception is § 7, where all schemes will be of finite type over a spectrum
of a discrete valuation ring over k with residue field k.

We fix a prime �, invertible in k, and a commutative ring with identity Λ, which is either
finite and is annihilated by some power of �, or a finite extension of Z� or Q�.

To each scheme X as above, we associate a category Db
ctf(X, Λ) of ‘complexes of finite

tor-dimension with constructible cohomology’ (see [SGA41
2 , Rapport 4.6] when Λ is finite and
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[Del80, §§ 1.1.2–3] in other cases). This category is known to be stable under the six operations
f∗, f !, f∗, f!,⊗, and RHom (see [SGA41

2 , Théorème finitude 1.7]).
For each scheme X as above, we denote by πX : X → pt := Spec k the structure morphism, by

ΛX ∈ Db
ctf(X, Λ) the constant sheaf with fiber Λ, and by KX = π!

X(Λpt) the dualizing complex
of X. We also write RΓ(X, ·) (respectively, RΓc(X, ·)) instead of πX∗ (respectively, πX!).

For an embedding i : Y ↪→ X and F ∈ Db
ctf(X, Λ), we often write F|Y instead of i∗F .

We freely use various base change morphisms (see, for example, [SGA4, Exposé XVII, § 2.1.3
and Exposé XVIII, §§ 3.1.12.3, 3.1.13.2, 3.1.14.2]), which we denote by BC.

1. Correspondences and trace maps

1.1 Correspondences
(a) By a correspondence, we mean a morphism of schemes of the form c = (cl, cr) : C → X ×X,

which can be also viewed as a diagram X
cl←− C

cr−→ X.
(b) Let c : C → X ×X and b : B → Y × Y be correspondences. By a morphism from c to b, we

mean a pair of morphisms [f ] = (f, g), making the following diagram commutative.

(1.1)

(c) A correspondence c : C → X ×X gives rise to a Cartesian diagram

where Δ : X → X ×X is the diagonal map. We call Fix(c) the scheme of fixed points of c.
(d) We call a morphism [f ] from part (b) Cartesian, if the right inner square of diagram (1.1)

is Cartesian.

1.2 Restriction of correspondences
Let c : C → X ×X be a correspondence, let W ⊆ C be an open subscheme, and let Z ⊆ X be
a locally closed subscheme.

(a) We denote by c|W : W → X ×X the restriction of c.
(b) Let c|Z : c−1(Z × Z)→ Z × Z be the restriction of c. By definition, the inclusion maps

Z ↪→ X and c−1(Z × Z) ↪→ C define a morphism c|Z → c of correspondences.
(c) We say that a subscheme Z is (schematically) c-invariant, if c−1

r (Z) ⊆ c−1
l (Z). This hap-

pens if and only if we have c−1(Z × Z) = c−1
r (Z) or, equivalently, the natural morphism of

correspondences c|Z → c from part (b) is Cartesian.

Remark 1.3. Our conventions slightly differ from those of [Var07, § 1.5.6]. For example, we do
not assume that a subscheme Z is closed, our notion of c-invariance is stronger than that of
[Var07, § 1.5.1], and when the subscheme Z is c-invariant, then the restriction c|Z in the sense
of [Var07] is the correspondence c−1(Z × Z)red → Z × Z.

1.4 Cohomological correspondences
Let c : C → X ×X be a correspondence, and let F ∈ Db

ctf(X, Λ).
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(a) By c-morphism or a cohomological correspondence lifting c, we mean an element of

Homc(F ,F) := Hom(c∗lF , c!
rF) � Hom(cr!c

∗
lF ,F).

(b) Let [f ] : c→ b be a Cartesian morphism of correspondences (see § 1.1(d)). Then every
b-morphism u : b∗lF → b!

rF gives rise to a c-morphism [f ]∗(u) : c∗l (f
∗F)→ c!

r(f
∗F) defined

as a composition

c∗l (f
∗F) � g∗(b∗lF) u−→ g∗(b!

rF) BC−→ c!
r(f

∗F),

where the base change morphism BC exists, because [f ] is Cartesian.
(c) As in [Var07, § 1.1.9], for an open subset W ⊆ C, every c-morphism u gives rise to a

c|W -morphism u|W : (c∗lF)|W → (c!
rF)|W .

(d) It follows from part (b) and § 1.2(c) that for a c-invariant subscheme Z ⊆ X, every
c-morphism u gives rise to a c|Z-morphism u|Z (compare [Var07, § 1.5.6(a)]).

1.5 Trace maps and local terms
Fix a correspondence c : C → X ×X.

(a) As in [Var07, § 1.2.2], to every F ∈ Db
ctf(X, Λ) we associate the trace map

T rc : Homc(F ,F)→ H0(Fix(c), KFix(c)).

(b) For an open subset β of Fix(c),1 we denote by

T rβ : Homc(F ,F)→ H0(β, Kβ)

the composition of T rc and the restriction map H0(Fix(c), KFix(c))→ H0(β, Kβ).
(c) If, in addition, β is proper over k, we denote by

LTβ : Homc(F ,F)→ Λ

the composition of T rβ and the integration map πβ! : H0(β, Kβ)→ Λ.
(d) In the case when β is a connected component of Fix(c),2 which is proper over k, LTβ(u) is

usually called the (true) local term of u at β.

2. Relative correspondences

Notation 2.1. Let S be a scheme over k.
By a relative correspondence over S, we mean a morphism c = (cl, cr) : C → X ×S X of

schemes over S, or, equivalently, a correspondence c = (cl, cr) : C → X ×X such that cl and cr

are morphisms over S.

(a) For a correspondence c as above and a morphism g : S′ → S of schemes over k, one can
form a relative correspondence g∗(c) := c×S S′ over S′. Moreover, it follows from § 1.4(b)
that every c-morphism u ∈ Homc(F ,F) gives rise to the g∗(c)-morphism

g∗(u) ∈ Homg∗(c)(g
∗F , g∗F),

where g∗F ∈ Db
ctf(X ×S S′, Λ) denotes the ∗-pullback of F .

(b) For a geometric point s of S, we denote by is : {s} → S the canonical map, and set cs :=
i∗s(c). Then, by part (a), every c-morphism u ∈ Homc(F ,F) gives rise to a cs-morphism

1 by which we mean that β ⊆ Fix(c) is a locally closed subscheme such that βred ⊆ Fix(c)red is open.
2 That is, β is a closed connected subscheme of Fix(c) such that βred ⊆ Fix(c)red is open.
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us := i∗s(u) ∈ Homcs(Fs,Fs). Thus, we can form the trace map

T rcs(us) ∈ H0(Fix(cs), KFix(cs)).

Remark 2.2. In other words, a relative correspondence c over S gives rise to a family of correspon-
dences cs : Cs → Xs ×Xs, parameterized by a collection of geometric points s of S. Moreover,
every c-morphism u gives rise to a family of cs-morphisms us ∈ Homcs(Fs,Fs), thus a family of
trace maps T rcs(us) ∈ H0(Fix(cs), KFix(cs

)).
Proposition 2.5, whose proof is given in § 7, asserts that in some cases the assignment s �→

T rcs(us) is ‘constant’.

Notation 2.3. We say that a morphism f : X → S is a topologically constant family, if the reduced
scheme Xred is isomorphic to a product Y × Sred over Sred.

Claim 2.4. Assume that f : X → S is a topologically constant family, and that S is connected.
Then for every two geometric points s, t of S, we have a canonical identification

RΓ(Xs, KXs) � RΓ(Xt, KXt), hence H0(Xs, KXs) � H0(Xt, KXt).

Proof. Set KX/S := f !(ΛS) ∈ Db
ctf(X, Λ) and F := f∗(KX/S) ∈ Db

ctf(S, Λ). Our assumption on f
implies that for every geometric point s of S, the base change morphisms

Fs = RΓ(s,Fs)→ RΓ(Xs, i
∗
s(KX/S))→ RΓ(Xs, KXs)

are isomorphisms. Furthermore, the assumption also implies that F is constant, that is, isomor-
phic to a pullback of an object in Db

ctf(pt, Λ). Then, for every specialization arrow α : t→ s, the
specialization map α∗ : Fs → Ft (see [SGA4, Exposé VIII, § 7]) is an isomorphism (because F
is locally constant), and does not depend on the specialization arrow α (only on s and t). Thus,
the assertion follows from the assumption that S is connected. �

Proposition 2.5. Let c : C → X ×X be a relative correspondence over S such that S is
connected, and that Fix(c)→ S is a topologically constant family.

Then, for every c-morphism u ∈ Homc(F ,F) such that F is universally locally acyclic (ULA)
over S, the assignment s �→ T rcs(us) is ‘constant’, that is, for every two geometric points s, t of
S, the identification

H0(Xs, KXs) � H0(Xt, KXt)

from Claim 2.4 identifies T rcs(us) with T rct(ut).
In particular, we have T rcs(us) = 0 if and only if T rct(ut) = 0.

3. An (A1, ·)-equivariant case

3.1 Construction
Fix a scheme S over k and a morphism μ : X × S → X.

(a) A correspondence c : C → X ×X gives rise to the correspondence

cS = cμ
S : CS → XS ×S XS

over S, where CS := C × S and XS := X × S, while cSl, cSr : C × S → X × S are given by

cSr := cr × IdS and cSl := (μ, prS) ◦ (cl × IdS),

that is, cSl(y, s) = (μ(cl(y), s), s) and cSr(y, s) = (cr(y), s) for all y ∈ C and s ∈ S.
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(b) For every geometric point s of S, we get an endomorphism μs := μ(−, s) : Xs → Xs. Then
cs := i∗s(cS) is the correspondence

cs = (μs ◦ cl, cr) : Cs → Xs ×Xs.

In particular, for every s ∈ S(k) we get a correspondence cs : C → X ×X.
(c) Suppose we are given an object F ∈ Db

ctf(X, Λ), a c-morphism u ∈ Homc(F ,F) and a
morphism v : μ∗F → FS in Db

ctf(XS , Λ), where we set

FS := F � ΛS ∈ Db
ctf(XS , Λ).

To this data we associate a cS-morphism uS ∈ HomcS (FS ,FS), defined as a composition

c∗Sl(FS) � (cl × IdS)∗(μ∗F) v→ (cl × IdS)∗(FS) � (c∗lF) � ΛS
u→ (c!

rF) � ΛS � c!
Sr(FS).

(d) For every geometric point s of S, morphism v restricts to a morphism vs = i∗s(v) : μ∗
sF → F ,

and the cs-morphism us := i∗s(uS) : c∗l μ
∗
sF → c!

rF decomposes as

us : c∗l μ
∗
sF

vs−→ c∗lF
u−→ c!

rF .

Remarks 3.2. For a morphism μ : X × S → X and a closed point a ∈ S, we set Sa := S � {a},
and μa := μ|X×Sa : X × Sa → X. Let F ∈ Db

ctf(X, Λ) be such that μ∗
aF � 0.

(a) Every morphism va : (μa)∗F → FSa uniquely extends to a morphism v : μ∗F → FS :
Indeed, let j : X × Sa ↪→ X × S and i : X × {a} ↪→ X × S be the inclusions. Using dis-

tinguished triangle j!j
∗μ∗F → μ∗F → i∗i∗μ∗F and the assumption that i∗μ∗F � μ∗

aF � 0,
we conclude that the map j!j

∗μ∗F → μ∗F is an isomorphism. Therefore, the restriction
map

j∗ : Hom(μ∗F ,FS)→ Hom(j∗μ∗F , j∗FS) � Hom(j!j
∗μ∗F ,FS)

is an isomorphism, as claimed.
(b) Our assumption μ∗

aF � 0 implies that Homca(F ,F) = Hom(c∗l μ
∗
aF , c!

rF) � 0.

3.3 Equivariant case
Let S be an algebraic monoid, acting on X, and let μ : X × S → X be the action map.

(a) We say that an object F ∈ Db
ctf(X, Λ) is weakly S-equivariant, if we are given a morphism v :

μ∗F → FS such that v1 : F = μ∗
1F → F is the identity map. In particular, the construction

of § 3.1 applies, so to every c-morphism u ∈ Homc(F ,F) we associate a cS-morphism uS ∈
HomcS (FS ,FS).

(b) In the situation of part (a), the correspondence c1 equals c, and the assumption on v1 implies
that the c-morphism u1 equals u.

3.4 Basic example
(a) Let X be a scheme, equipped with an action μ : X × A1 → X of the algebraic monoid

(A1, ·), let μ0 : X → X be the induced (idempotent) endomorphism, and let Z = ZX ⊆ X
be the scheme of μ0-fixed points, also called the zero section. Then ZX ⊆ X is a locally
closed subscheme, whereas μ0 : X → X factors as X → ZX ↪→ X, thus inducing a projection
prX : X → ZX , whose restriction to ZX is the identity.

(b) The correspondence X �→ (ZX ⊆ X
prX−→ ZX) is functorial. Namely, every (A1, ·)-equivariant

morphism f : X ′ → X induced a morphism Zf : ZX′ → ZX between zero sections, and we
have an equality Zf ◦ prX′ = prX ◦f of morphisms X ′ → ZX .
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(c) Let c : C → X ×X be any correspondence. Then the construction of § 3.1 gives rise to a
relative correspondence cA1 : CA1 → CA1 × CA1 over A1, hence a family of correspondences
ct : C → X ×X, parameterized by t ∈ A1(k).

(d) For every t ∈ A1(k), the zero section Z ⊆ X is μt-invariant, and the induced map μt|Z is the
identity. Therefore, we have an inclusion Fix(c|Z) ⊆ Fix(ct|Z) of schemes of fixed points.

(e) For every t ∈ Gm(k), we have an equality Fix(ct|Z) = Fix(c|Z). Indeed, one inclusion was
shown in part (d), whereas the opposite inclusion follows from the first together with identity
(ct)t−1 = c.

(f) As μ0 factors through Z ⊆ X, we have an equality Fix(c0|Z) = Fix(c0). Moreover, if Z is
c-invariant, we have an equality Fix(c0|Z) = Fix(c|Z). Indeed, one inclusion was shown in
part (d), whereas the opposite follows from the inclusion

Fix(c0|Z) ⊆ c−1
r (Z) = c−1(Z × Z).

3.5 Twisted action
Assume that we are in the situation of § 3.4. For every n ∈ N, we can consider the n-twisted
action μ(n) : X × A1 → X of (A1, ·) on X given by formula μ(n)(x, t) = μ(x, tn). It gives rise to
the family of correspondences c

μ(n)
t : C → X ×X such that c

μ(n)
t = ctn . Clearly, μ(n) restricts to

an n-twisted action of Gm on X.

Proposition 3.6. Let X be an (A1, ·)-equivariant scheme, and let c : C → X ×X be a
correspondence such that:

• a subscheme Z = ZX ⊆ X is closed and c-invariant;
• we have Fix(c) � Fix(c|Z) = ∅;
• the set {t ∈ A1(k) | Fix(cμ

t ) � Fix(cμ
t |Z) �= ∅} is finite.

Then for every weakly Gm-equivariant object F ∈ Db
ctf(X, Λ) (see § 3.3(a)) with respect to

the n-twisted action (see § 3.5) such that F|Z = 0 and every c-morphism u ∈ Homc(F ,F), we
have T rc(u) = 0.

Proof. Consider the n-twisted action μ(n) : X × A1 → X, and let μ(n)0 : X ×Gm → X be the
induced n-twisted action of Gm. The weakly Gm-equivariant structure on F gives rise to the
morphism v0 : (μ(n)0)∗F → FGm (see § 3.3(a)).

Next, because μ(n)0 = μ0 : X → X factors through Z, whereas F|Z = 0, we conclude that
(μ(n)0)∗F � 0. Therefore, morphism v0 extends uniquely to the morphism v : μ(n)∗F → FA1

(see § 3.2(a)). Thus, by construction § 3.1(c), our c-morphism u gives rise to the c
μ(n)
A1 -morphism

uA1 ∈ Hom
c
μ(n)

A1

(FA1 ,FA1) such that u1 = u (see § 3.3(b)).

Note that because u0 ∈ Homc0(F ,F) = 0 (see § 3.2(b)), we have T rc0(u0) = 0. We would like
to apply Proposition 2.5 to deduce that T rc(u) = T rc1(u1) = 0.

Consider the set
T := {t ∈ A1(k) | Fix(cμ

tn) � Fix(cμ
tn |Z) �= ∅}.

Then 0 /∈ T (by § 3.4(f)), and our assumption says that T is finite, and 1 /∈ T . Then the
complement S := A1 � T ⊆ A1 is an open subscheme, and 0, 1 ∈ S. Let c

μ(n)
S be the restric-

tion of c
μ(n)
A1 to S, and it suffices to show that Fix(cμ(n)

S )→ S is a topologically constant family,
thus Proposition 2.5 applies.

We claim that we have the equality

Fix(cμ(n)
S )red = Fix(cμ(n)

S |Z×S)red = Fix(c|Z)red × S
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of locally closed subschemes of C × S. For this it suffices to show that for every t ∈ S(k) we have
equalities

Fix(ctn)red = Fix(ctn |Z)red = Fix(c|Z)red.

The left equality follows from the identity Fix(cμ
tn) � Fix(cμ

tn |Z) = ∅ used to define S. As Z is
c-invariant, the right equality follows from §§ 3.4(e) and (f). �

3.7 Equivariant correspondences
Let c : C → X ×X be an (A1, ·)-equivariant correspondence, by which we mean that both C
and X are equipped with an action of a monoid (A1, ·), and both projections cl, cr : C → X are
(A1, ·)-equivariant.

(a) Note that the subscheme of fixed points Fix(c) ⊆ C is (A1, ·)-invariant, correspondence
c induces a correspondence Zc : ZC → ZX × ZX between zero sections, and we have an
equality Fix(Zc) = ZFix(c) of locally closed subschemes of C.

(b) By § 3.1(a), correspondence c gives rise to a relative correspondence cA1 : CA1 → XA1 ×XA1

over A1. Let the monoid (A1, ·) act on XA1 and CA1 by the product of its actions on X and
C and the trivial action on A1. Then cA1 is an (A1, ·)-equivariant correspondence, and the
induced correspondence Zc

A1 between zero sections is the product of Zc (see part (a)) and
IdA1 : A1 → A1 × A1.

(c) Using part (b), for every t ∈ A1(k), we get an (A1, ·)-equivariant correspondence ct : C →
X ×X, which satisfy Zct = Zc and ZFix(ct) = Fix(Zc) (use part (a)).

3.8 Cones
Recall (see § 3.4(a)) that for every (A1, ·)-equivariant scheme X, there is a natural projection
prX : X → ZX .

(a) We say that X is a cone, if the projection prX : X → Z is affine. In concrete terms this
means that X � Spec(A), where A =

⊕∞
n=0An is a graded quasi-coherent OZ-algebra,

whereA0 = OZ , and eachAn is a coherentOZ-module. In this case, the zero section ZX ⊆ X
is automatically closed.

(b) In the situation of part (a), the open subscheme X � ZX ⊆ X is Gm-invariant, and the
quotient (X � ZX)/Gm is isomorphic to Proj(A) over ZX , hence is proper over ZX .

(c) Note that if c : C → X ×X is an (A1, ·)-equivariant correspondence such that C and X are
cones, then Fix(c) is a cone as well (compare § 3.7(a)).

Our next goal is to show that in some cases the finiteness assumption in Proposition 3.6 is
automatic.

Lemma 3.9. Let c : C → X ×X be an (A1, ·)-equivariant correspondence over k such that:

• X is a cone with zero section Z;
• C is a cone with zero section c−1

r (Z);
• Fix(c|Z) is proper over k.

Then the set {t ∈ A1(k) | Fix(ct) � Fix(ct|Z) �= ∅} is finite.

Proof. We let cA1 be as in § 3.7(b), and set

Fix(cA1)′ := Fix(cA1) � Fix(cA1 |Z
A1 ) ⊆ Fix(cA1).

We have to show that the image of the projection π : Fix(cA1)′ → A1 is a finite set.
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Note that the fiber of Fix(cA1)′ over 0 ∈ A1 is Fix(c0) � Fix(c0|Z) = ∅ (by § 3.4(f)). It thus
suffices to show that the image of π is closed. By § 3.8(c), we conclude that Fix(cA1) is a cone,
whereas using §§ 3.7(a) and (b) we conclude that

ZFix(c
A1 ) = Fix(cA1 |Z

A1 ) = Fix(c|Z)× A1.

It now follows from § 3.8(b) that the open subscheme Fix(cA1)′ ⊆ Fix(cA1) is Gm-invariant, and
that π factors through the quotient Fix(cA1)′/Gm, which is proper over Fix(c|Z)× A1. As Fix(c|Z)
is proper over k by assumption, the projection π : Fix(cA1)′/Gm → A1 is therefore proper. Hence,
the image of π is closed, completing the proof. �

4. Main result

4.1 Normal cones
Compare [Var07, § 1.4.1 and Lemma 1.4.3].

(a) Recall that to a pair (X, Z), where X is a scheme and Z ⊆ X a closed subscheme, one asso-
ciates the normal cone NZ(X) defined to be NZ(X) = Spec(

⊕∞
n=0(IZ)n/(IZ)n+1), where

IZ ⊆ OX is the sheaf of ideals of Z. By definition, NZ(X) is a cone in the sense of § 3.8,
and Z ⊆ NZ(X) is the zero section.

(b) The assignment (X, Z) �→ (NZ(X), Z) is functorial. Namely, every morphism f : X ′ → X
such that Z ′ ⊆ f−1(Z) gives rise to an (A1, ·)-equivariant morphism NZ′(X ′)→ NZ(X),
whose induced morphism between zero sections is f |Z′ : Z ′ → Z.

(c) By part (b), every morphism f : X ′ → X induces a morphism

NZ(f) : Nf−1(Z)(X
′)→ NZ(X),

lifting f |Z : f−1(Z)→ Z. Moreover, the induced map Nf−1(Z)(X ′)→ NZ(X)×Z f−1(Z) is
a closed embedding, and we have an equality NZ(f)−1(Z) = f−1(Z) ⊆ Nf−1(Z)(X ′).

The following standard assertion will be important later.

Lemma 4.2. Assume that NZ(X) is set-theoretically supported on the zero section, that is,
NZ(X)red = Zred. Then Zred ⊆ Xred is open.

Proof. As the assertion is local on X, we can assume that X is affine. Moreover, replacing X by
Xred, we can assume that X is reduced. Then our assumption implies that there exists n such
that In

Z = In+1
Z . Using the Nakayama lemma, we conclude that the localization of In

Z at every
x ∈ Z is zero. Thus, the localization of IZ at every point z ∈ Z is zero, which implies that Z ⊆ X
is open, as claimed. �

4.3 Application to correspondences
(a) Let c : C → X ×X be a correspondence, and Z ⊆ X a closed subscheme. Then, by § 4.1,

correspondence c gives rise to an (A1, ·)-equivariant correspondence

NZ(c) : Nc−1(Z×Z)(C)→ NZ(X)×NZ(X)

such that the induced correspondence between zero sections is c|Z : c−1(Z × Z)→ Z × Z.
(b) Combining §§ 3.8(c) and 3.7(a), we get that Fix(NZ(c)) is a cone with zero section Fix(c|Z).

Moreover, NFix(c|Z)(Fix(c)) is closed subscheme of Fix(NZ(c)) (see [Var07, Corollary 1.4.5]).
(c) By § 3.7(b), for every t ∈ A1(k) we get a correspondence

NZ(c)t : Nc−1(Z×Z)(C)→ NZ(X)×NZ(X).

Moreover, every Fix(NZ(c)t) is a cone with zero section Fix(c|Z) (use §§ 3.8(c) and 3.7(c)).
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Definition 4.4. Let c : C → X ×X be a correspondence, and let Z ⊆ X be a closed subscheme.

(a) We say that c has no fixed points in the punctured tubular neighborhood of Z, if
correspondence NZ(c) satisfies Fix(NZ(c)) � Fix(c|Z) = ∅.

(b) We say that c has no almost fixed points in the punctured tubular neighborhood of Z, if
Fix(NZ(c)) � Fix(c|Z) = ∅, and the set {t ∈ A1(k) | Fix(NZ(c)t) � Fix(c|Z) �= ∅} is finite.

Remarks 4.5.

(a) The difference Nc−1(Z×Z)(C) � c−1(Z × Z) can be thought as the punctured tubular
neighborhood of c−1(Z × Z) ⊆ C. Therefore, our condition 4.4(a) means that any point
y ∈ Nc−1(Z×Z)(C) � c−1(Z × Z) is not a fixed point of NZ(c), that is,

NZ(c)l(y) �= NZ(c)r(y).

(b) Condition 4.4(b) means that there exists an open neighbourhood U of 1 ∈ A1 such that for
every y ∈ Nc−1(Z×Z)(C) � c−1(Z × Z) we have μt(NZ(c)l(y)) �= NZ(c)r(y) for every t ∈ U .
In other words, y is not an almost fixed point of NZ(c).

4.6 The case of a morphism
Let f : X → X be a morphism, and let x ∈ Fix(f) be a fixed point. We take c be the graph
Grf = (f, IdX) of f , and set Z := {x}.
(a) Then Nx(X) := NZ(X) is a closed conical subset of the tangent space Tx(X), the mor-

phism Nx(f) : Nx(X)→ Nx(X) is (A1, ·)-equivariant, thus Fix(Nx(c)) = Fix(Nx(f)) is a
conical subset of Nx(X) ⊆ Tx(X). Hence, Grf has no fixed points in the punctured tubular
neighborhood of x if and only if set-theoretically we have FixNx(f) = {x}.

(b) Let Tx(f) : Tx(X)→ Tx(X) be the differential of f at x. Then FixTx(f) = {x} if and only
if the linear map Tx(f)− Id : Tx(X)→ Tx(X) is invertible, that is, Grf intersects with ΔX

at x transversally in the strongest possible sense. In this case, Grf has no fixed points in
the punctured tubular neighborhood of x (by part (a)).

(c) Assume now that X is smooth at x. Then, by parts (a) and (b), Grf has no fixed points
in the punctured tubular neighborhood of x if and only if Grf intersects with ΔX at x
transversally.

Though the next result is not needed for what follows, it shows that our setting generalizes
that studied in [Var07].

Lemma 4.7. Assume that c is contracting near Z in the neighborhood of fixed points in the sense
of [Var07, § 2.1.1(c)]. Then c has no almost fixed points in the punctured tubular neighborhood
of Z. Moreover, the subset of A1(k), defined in Definition 4.4(b), is empty.

Proof. Choose an open neighborhood W ⊆ C of Fix(c) such that c|W is contracting near Z (see
[Var07, § 2.1.1(b)]). Then Fix(c|W ) = Fix(c), hence we can replace c by c|W , thus assuming that
c is contracting near Z. In this case, the set-theoretic image of the morphism

NZ(c)l : Nc−1(Z×Z)(C)→ NZ(X)

lies in the zero section. Therefore, for every t ∈ A1(k) the set-theoretic image of the map
Fix(NZ(c)t)→ NZ(X) lies in the zero section, implying the assertion. �

By Lemma 4.7, the following result is a generalization of [Var07, Theorem 2.1.3(a)].

Lemma 4.8. Let c : C → X ×X be a correspondence, which has no fixed points in the punctured
tubular neighborhood of Z ⊆ X. Then the closed subscheme Fix(c|Z)red ⊆ Fix(c)red is open.
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Proof. Using § 4.3(b), we have inclusions

Fix(c|Z)red ⊆ NFix(c|Z)(Fix(c))red ⊆ Fix(NZ(c))red,

whereas our assumption implies an equality Fix(c|Z)red = Fix(NZ(c))red. Therefore, we have an
equality Fix(c|Z)red = NFix(c|Z)(Fix(c))red, from which our assertion follows by Lemma 4.2. �

Notation 4.9. Let c : C → X ×X be a correspondence, which has no fixed points in the punc-
tured tubular neighborhood of Z ⊆ X. Then, by Lemma 4.8, Fix(c|Z) ⊆ Fix(c) is an open subset,
thus (see § 1.5(b)) to every c-morphism u ∈ Homc(F, F ) one can associate an element

T rFix(c|Z)(u) ∈ H0(Fix(c|Z), KFix(c|Z)).

Now we are ready to formulate the main result of this note, which by Lemma 4.7 generalizes
[Var07, Theorem 2.1.3(b)].

Theorem 4.10. Let c : C → X ×X be a correspondence, and let Z ⊆ X be a c-invariant closed
subscheme such that c has no fixed points in the punctured tubular neighborhood of Z.

(a) Assume that c has no almost fixed points in the punctured tubular neighborhood of Z.
Then for every c-morphism u ∈ Homc(F ,F), we have an equality

T rFix(c|Z)(u) = T rc|Z (u|Z) ∈ H0(Fix(c|Z), KFix(c|Z)).

(b) Every connected component β of Fix(c|Z), which is proper over k, is also a connected
component of Fix(c). Moreover, for every c-morphism u ∈ Homc(F ,F), we have equalities

T rβ(u) = T rβ(u|Z) ∈ H0(Fix(β), KFix(β)) and LTβ(u) = LTβ(u|Z) ∈ Λ.

As an application, we now deduce the result, stated in the introduction.

Corollary 4.11. Let f : X → X be a morphism, and let x ∈ Fix(f) be a fixed point such that
the induced map of normal cones Nx(f) : Nx(X)→ Nx(X) has no non-zero fixed points. Then:

(a) point x is an isolated fixed point of f ;
(b) for every morphism u : f∗F → F with F ∈ Db

ctf(X, Λ), we have LTx(u) = Tr(ux). In
particular, if F = Λ and u is the identity, then LTx(u) = 1.

Proof. As it was observed in § 4.6(a), our assumption implies that {x} ⊆ X is a closed
Grf -invariant subscheme, and correspondence Grf has no fixed points in the punctured tubular
neighborhood of {x}. Therefore part (a) follows from Lemma 4.8, while the first assertion of
part (b) is an immediate corollary of Theorem 4.10. The second assertion of part (b) now follows
from the obvious observation that Tr(ux) = 1. �

5. The case of group actions

Lemma 5.1. Let D be a reduced diagonalizable algebraic group acting on a scheme X such that
either D is finite or X is separated, and let Z ⊆ X be a D-invariant closed subscheme.

Then D acts on the normal cone NZ(X), and the induced morphism NZD(XD)→ NZ(X)D

on D-fixed points is an isomorphism.

Proof. By the functoriality of the normal cone (see § 4.1(b)), D acts on the normal cone NZ(X),
so it remains to show that the map NZD(XD)→ NZ(X)D is an isomorphism.

Assume first that D is finite. Then every z ∈ ZD has a D-invariant open affine neighbourhood
U ⊆ X. Thus, replacing X by U and Z by Z ∩ U , we can assume that X and Z are affine.
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Then we have to show that the map

k[NZ(X)]D ∼= k[NZ(X)D]→ k[NZD(XD)] (5.1)

is an isomorphism.
As the group D is diagonalizable, its order is prime to the characteristic of k. Thus, the functor

of coinvariants M �→MD is exact on k[D]-modules, hence the isomorphism k[X]D
∼→ k[XD]

induces an isomorphism between ((IZ)n)D ⊆ k[X]D and (IZD)n ⊆ k[XD] for every n. From this
the fact that the map (5.1) is an isomorphism follows.

To show the case for a general D, note that the set of torsion elements Dtor ⊆ D is Zariski
dense. As X is separated, whereas X, Z and NZ(X) are Noetherian, therefore there exists a finite
subgroup D′ ⊆ D such that XD = XD′

and similarly for Z and NZ(X). Hence, the assertion for
D follows from that for D′, shown previously. �
Corollary 5.2. Let D and X be as in Lemma 5.1, let g ∈ D, and let Z ⊆ X be a g-invariant
closed subscheme. Then g induces an endomorphism of the normal cone NZ(X), and the induced
morphism NZg(Xg)→ NZ(X)g between g-fixed points is an isomorphism.

Proof. Let D′ := 〈g〉 ⊆ D be the Zariski closure of the cyclic group 〈g〉 ⊆ D. Then D′ is a diag-
onalizable group, and we have an equality Xg = XD′

and similarly for Zg and NZ(X)g. Thus,
the assertion follows from Lemma 5.1 for D′. �
Example 5.3. Let g : X → X be an automorphism of finite order, which is prime to the charac-
teristic of k. Then the cyclic group 〈g〉 ⊆ Aut(X) is a diagonalizable group, thus Corollary 5.2
applies in this case. Thus, for every g-invariant closed subscheme Z ⊆ X, the natural morphism
NZg(Xg)→ NZ(X)g is an isomorphism.

As a consequence, we get a class of examples, when the condition of Definition 4.4(a) is
satisfied.

Corollary 5.4. Let G be a linear algebraic group acting on a scheme X.

(a) Let g ∈ G, let 〈g〉 be the Zariski closure of the cyclic group generated by g, let s ∈ 〈g〉 be
a semisimple element such that either s is of finite order or X is separated, and let Z ⊆ X
be an s-invariant closed subscheme such that (X � Z)s = ∅. Then g has no fixed points in
the punctured tubular neighborhood of Z.

(b) Let g ∈ G be semisimple such that either g is of finite order or X is separated, and let Z ⊆ X
be a g-invariant closed subscheme such that (X � Z)g = ∅. Then g has no fixed points in
the punctured tubular neighborhood of Z.

Proof. (a) We have to show that NZ(X)g � Z = ∅. By assumption, we have NZ(X)g ⊆ NZ(X)s.
Therefore, it suffices to show that NZ(X)s � Z = NZ(X)s � Zs = ∅. As s is semisimple, we
conclude from Corollary 5.2 that NZ(X)s = NZs(Xs). Since (Xs)red = (Zs)red, by assumption,
we conclude that NZs(Xs)red = (Zs)red, implying the assertion.

(b) Part (b) is a particular case of part (a). �
Example 5.5. An important particular case of Corollary 5.4(a) is when s = gs is the semisimple
part of g, that is, g = gsgu is the Jordan decomposition.

The following result gives a version of Corollary 4.11, whose assumptions are easier to check.

Corollary 5.6. Let G, X, and g be as in Corollary 5.4(b), and let x ∈ Xg be an iso-
lated fixed point of g. Then the induced map of normal cones g : Nx(X)→ Nx(X) has
no non-zero fixed points. Therefore, for every morphism u : g∗F → F with F ∈ Db

ctf(X, Λ),
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we have an equality

LTx(u) = Tr(ux).

Proof. The first assertion follows from Corollary 5.4(b), whereas the second follows from
Corollary 4.11(b). �

5.7 An application
Corollary 5.6 is used in the work of Hansen, Kaletha, and Weinstein (see [HKW22,
Proposition 5.6.2]).

As a further application, we get a slight generalization of the Deligne–Lusztig trace formula.

Notation 5.8. To every proper endomorphism f : X → X and a morphism u : f∗F → F with
F ∈ Db

ctf(X, Λ), one associates an endomorphism RΓc(u) : RΓc(X,F)→ RΓc(X,F) (compare
[Var07, § 1.1.7]).

Moreover, for an f -invariant closed subscheme Z ⊆ X, we set U := X � Z and form endo-
morphisms RΓc(u|Z) : RΓc(Z,F|Z)→ RΓc(Z,F|Z) and RΓc(u|U ) : RΓc(U,F|U )→ RΓc(U,F|U )
(compare § 1.4(d)).

Theorem 5.9. Let G be a linear algebraic group acting on a separated scheme X, let g ∈ G be
such that X has a g-equivariant compactification, and let s ∈ 〈g〉 be a semisimple element.

Then Xs ⊆ X is a closed g-invariant subscheme, and for every morphism u : g∗F → F with
F ∈ Db

ctf(X, Λ), we have an equality of traces Tr(RΓc(u)) = Tr(RΓc(u|Xs)) (see § 5.8).

Proof. Using the equality

Tr(RΓc(u)) = Tr(RΓc(u|Xs)) + Tr(RΓc(u|X�Xs)),

it remains to show that Tr(RΓc(u|X�Xs)) = 0. Thus, replacing X by X � Xs and u by u|X�Xs ,
we may assume that Xs = ∅, and we have to show that Tr(RΓc(u)) = 0.

Choose a g-equivariant compactification X of X, and set Z := (X � X)red. Let j : X ↪→ X
be the open inclusion, and set F := j!F ∈ Db

c(X, Q�). As X ⊆ X is g-invariant, our morphism u
extends to a morphism u = j!(u) : g∗F → F , and we have an equality Tr(RΓc(u)) = Tr(RΓc(u))
(compare [Var07, § 1.1.7]). Thus, because X is proper, the Lefschetz–Verdier trace formula says
that

Tr(RΓc(u)) = Tr(RΓc(u)) =
∑

β∈π0(X
g
)

LTβ(u),

so it suffices to show that each local term LTβ(u) vanishes.
As Xg ⊆ Xs = ∅, we have (Xg)red = (Zg)red. Thus, every β is a connected component of Zg.

In addition, g has no fixed points in the punctured neighborhood of Z (by Corollary 5.4(a)).
Therefore, by Theorem 4.10, we have an equality LTβ(u) = LTβ(u|Z). However, the latter
expression vanishes, because F|Z = 0, therefore u|Z = 0. This completes the proof. �

Corollary 5.10. Let X be a scheme over k, let g : X → X be an automorphism of finite order,
and let s be a power of g such that s is of order prime to the characteristic of k. Then for every
morphism u : g∗F → F with F ∈ Db

ctf(X, Λ), we have an equality of traces

Tr(RΓc(u)) = Tr(RΓc(u|Xs)).
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Proof. Note that because g is an automorphism of finite order, X has a g-invariant open dense
affine subscheme U . Using additivity of traces

Tr(RΓc(u)) = Tr(RΓc(u|U )) + Tr(RΓc(u|X�U ))

and Noetherian induction on X, we can therefore assume that X is affine. Then X has a
g-equivariant compactification, so the assertion follows from Theorem 5.9. �

Example 5.11. Applying Corollary 5.10 in the case when F = Q� and u is the identity, we recover
the identity

Tr(g, RΓc(X, Q�)) = Tr(g, RΓc(Xs, Q�)),

proven in [DL76, Theorem 3.2].

6. Proof of Theorem 4.10

6.1 Deformation to the normal cone
See [Var07, § 1.4.1 and Lemma 1.4.3]. Let R = k[t](t) be the localization of k[t] at (t), set D :=
Spec R, and let η and s be the generic and the special points of D, respectively.

(a) Let X be a scheme over k, and let Z ⊆ X be a closed subscheme. Recall [Var07, § 1.4.1]
that to these data one can associate a scheme X̃Z over XD := X ×D, whose generic fiber
(that is, fiber over η ∈ D) is Xη := X × η, and special fiber is the normal cone NZ(X).

(b) We have a canonical closed embedding ZD ↪→ X̃Z , whose generic fiber is the embedding
Zη ↪→ Xη, and special fiber is Z ↪→ NZ(X).

(c) The assignment (X, Z) �→ X̃Z is functorial, that is, for every morphism f : (X ′, Z ′)→ (X, Z)
there exists a unique morphism X̃ ′

Z′ → X̃Z lifting fD (see [Var07, Lemma 1.4.3]). In
particular, f gives rise to a canonical morphism NZ′(X ′)→ NZ(X) from § 4.1(b).

(d) Let c : C → X ×X be a correspondence, and let Z ⊆ X be a closed subscheme. Then, by
part (c), one gets the correspondence c̃Z : C̃c−1(Z×Z) → X̃Z × X̃Z over D, whose generic
fiber is cη, and special fiber is the correspondence

NZ(c) : Nc−1(Z×Z)(C)→ NZ(X)×NZ(X)

from § 4.3(a).
(e) By part (b), we have a canonical closed embedding Fix(c|Z)D ↪→ Fix(c̃Z) over D, whose

generic fiber is the embedding Fix(c|Z)η ↪→ Fix(c)η, and special fiber is Fix(c|Z) ↪→
Fix(NZ(c)).

6.2 Specialization to the normal cone
Assume that we are in the situation of § 6.1.

(a) As in [Var07, § 1.3.2], we have a canonical functor sp
X̃Z

: Db
ctf(X, Λ)→ Db

ctf(NZ(X), Λ).
Moreover, for every object F ∈ Db

ctf(X, Λ), we have a canonical morphism

spc̃Z
: Homc(F ,F)→ HomNZ(c)(spX̃Z

(F), sp
X̃Z

(F)).

(b) As in [Var07, § 1.3.3(b)], we have a canonical specialization map

spFix(c̃Z) : H0(Fix(c), KFix(c))→ H0(Fix(NZ(c)), KFix(NZ(c))),

which is an isomorphism when Fix(c̃Z)→ D is a topologically constant family.
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(c) Applying [Var07, Proposition 1.3.5] in this case, we conclude that for every F ∈ Db
ctf(X, Λ),

the following diagram is commutative.

(6.1)

Now we are ready to prove Theorem 4.10, mostly repeating the argument of [Var07,
Theorem 2.1.3(b)].

6.3 Proof of Theorem 4.10(a)
Step 1. We may assume that Fix(c)red = Fix(c|Z)red.

Proof. By Lemma 4.8, there exists an open subscheme W ⊆ C such that

W ∩ Fix(c)red = Fix(c|Z)red.

Replacing c by c|W and u by u|W , we can assume that Fix(c)red = Fix(c|Z)red. �

Step 2. We may assume that F|Z � 0, and it suffices to show that in this case T rc(u) = 0.

Proof. Set U := X � Z, and let i : Z ↪→ X and j : U ↪→ X be the embeddings. As Z is
c-invariant, one can associate to u two c-morphisms

[iZ ]!(u|Z) ∈ Homc(i!(F|Z), i!(F|Z)) and [jU ]!(u|U ) ∈ Homc(j!(F|U ), j!(F|U ))

(see [Var07, § 1.5.9]). Then, by the additivity of the trace map [Var07, Proposition 1.5.10], we
conclude that

T rc(u) = T rc([iZ ]!(u|Z)) + T rc([jU ]!(u|U )).

Moreover, using the assumption Fix(c|Z)red = Fix(c)red and the commutativity of the trace map
with closed embeddings [Var07, Proposition 1.2.5], we conclude that

T rc([iZ ]!(u|Z)) = T rc|Z (u|Z).

Thus, it remains to show that T rc([jU ]!(u|U )) = 0. For this we can replace F by j!(F|U ) and u
by [jU ]!(u|U ). In this case, F|Z � 0, and it remains to show that T rc(u) = 0 as claimed. �

Step 3: specialization to the normal cone. By the commutative diagram (6.1), we have an equality

T rNZ(c)(spc̃Z
(u)) = spFix(c̃Z)(T rc(u)).

Thus, to show the vanishing of T rc(u), it suffices to show that:

(i) the map spFix(c̃Z) is an isomorphism;
(ii) we have T rNZ(c)(spc̃Z

(u)) = 0.

Step 4: proof of Step 3(i). By § 6.2(b), it suffices to show that the closed embedding
Fix(c|Z)D,red ↪→ Fix(c̃Z)red (see § 6.1(b)) is an isomorphism. Moreover, we can check separately
the corresponding assertions for the generic and the special fibers.
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For generic fibers, the assertions follows from our assumption Fix(c)red = Fix(c|Z)red (see
Step 1), whereas the assertion for special fibers Fix(c|Z)red = Fix(NZ(c))red follows from our
assumption that c has no fixed points in the punctured tubular neighborhood of Z.

Step 5: proof of Step 3(ii). By a standard reduction, one can assume that Λ is finite. We are
going to deduce the assertion from Proposition 3.6 applied to the correspondence NZ(c) and a
weakly Gm-equivariant sp

X̃Z
(F) ∈ Dctf(NZ(X), Λ).

Note that the zero section Z ⊆ NZ(X) is closed (by § 4.1(a)). Next, because Z is c-invariant,
we have c−1(Z × Z) = c−1

r (Z). Therefore, it follows from § 4.1(c) that Z ⊆ NZ(X) is NZ(c)-
invariant, and the correspondence NZ(c)t|Z is identified with ZNZ(c) = c|Z .

As c has no almost fixed points in the punctured tubular neighborhood of Z, we conclude that
NZ(c) satisfies the assumptions of Proposition 3.6. Thus, it remains to show that sp

X̃Z
(F)|Z � 0

and that sp
X̃Z

(F) is weakly Gm-equivariant with respect to the n-twisted action for some n.
Both assertions follow from results of Verdier [Ver83]. Namely, the vanishing assertion follows

from isomorphism sp
X̃Z

(F)|Z � F|Z (see [Ver83, §8, (SP5)] or [Var07, Proposition 1.4.2]) and our
assumption F|Z � 0 (see Step 2). The equivariance assertion follows from the fact that sp

X̃Z
(F)

is monodromic (see [Ver83, §8, (SP1)]), because Λ is finite (use [Ver83, Proposition 5.1]).

6.4 Proof of Theorem 4.10(b)
The first assertion follows from Lemma 4.8. To show the second, choose an open subscheme W ⊆
C such that W ∩ Fix(c)red = βred. Replacing c by c|W , we can assume that βred = Fix(c)red =
Fix(c|Z)red, thus Fix(c|Z) is proper over k.

As it was already observed in Step 5 of § 6.3, the correspondence NZ(c)|Z is identified with
c|Z . Thus Fix(NZ(c)|Z) = Fix(c|Z) is proper over k. It now follows from Lemma 3.9 that the
finiteness condition in Definition 4.4(b) is satisfied automatically, therefore c has no almost fixed
points in the tubular neighborhood of Z (see § 4.5(c)). Now the equality LTβ(u) = LTβ(u|Z)
follows from obvious equalities T rβ(u) = T rFix(c|Z)(u), T rβ(u|Z) = Trc|Z (u|Z) and part (a).

7. Proof of Proposition 2.5

We are going to deduce the result from the assertion that trace maps commute with nearby
cycles.

7.1 Set up
Let D be a spectrum of a discrete valuation ring over k with residue field k, and let f : X → D
be a morphism of schemes of finite type.

(a) Let η, η, and s be the generic, the geometrically generic, and the special point of D, respec-
tively. We denote by Xη, Xη, and Xs the generic, the geometric generic, and the special
fiber of X, respectively, and let iη : Xη → X, iη : Xη → X, is : Xs → X, and πη : Xη → Xη

be the canonical morphisms.
(b) For every object F ∈ D(X, Λ), we set Fη := i∗η(F), Fη := i∗η(F), and Fs := i∗s(F). For every

object Fη ∈ D(Xη, Λ), we set Fη := π∗
η(Fη).

(c) Let Ψ = ΨX : Db
ctf(Xη, Λ)→ Db

ctf(Xs, Λ) be the nearby cycle functor. By definition, it is
defined by the formula ΨX(Fη) := i∗siη∗(Fη).

(d) Consider functor ΨX := i∗s ◦ iη∗ : D(Xη, Λ)→ D(Xs, Λ). Then we have an equality
ΨX(Fη) = ΨX(Fη) for all Fη ∈ Db

ctf(Xη, Λ).
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7.2 ULA sheaves
Assume that we are in the situation of § 7.1.

(a) We have a canonical isomorphism ΨX ◦ i∗η � i∗s ◦ iη∗ ◦ i∗η of functors Db
ctf(X, Λ)→

Db
ctf(Xs, Λ). In particular, the unit map Id→ iη∗ ◦ i∗η induces a morphism of functors

i∗s → ΨX ◦ i∗η = ΨX ◦ i∗η.
(b) Note that if F ∈ Db

ctf(X, Λ) is ULA over D, then the induced morphism

Fs = i∗s(F)→ (ΨX ◦ i∗η)(F) = ΨX(Fη) = ΨX(Fη)

is an isomorphism. In particular, we have a canonical isomorphism Λs � ΨD(Λη).

7.3 Construction
Assume that we are in the situation of § 7.1.

(a) For every Fη ∈ D(Xη, Λ), consider composition

RΓ(Xη,Fη) � RΓ(X, iη∗(Fη))
i∗s−→ RΓ(Xs, i

∗
siη∗(Fη)) = RΓ(Xs, ΨX(Fη)).

(b) Consider canonical morphism ΨX(KXη)→ KXs , defined as a composition

ΨX(KXη) = ΨX(f !
η(Λη))

BC−→ f !
s(ΨD(Λη)) � f !

s(Λs) = KXs .

(c) Denote by SpX the composition

RΓ(Xη, KXη)
(a)−→ RΓ(Xs, ΨX(KXη))

(b)−→ RΓ(Xs, KXs).

(d) Using the observation KXη � π∗
η(KXη), we denote by SpX the composition

RΓ(Xη, KXη)
π∗

η−→ RΓ(Xη, KXη)
SpX−→ RΓ(Xs, KXs).

Lemma 7.4. Assume that f : X → D is a topologically constant family (see § 2.3). Then the
specialization map SpX : RΓ(Xη, KXη)→ RΓ(Xs, KXs) of § 7.3(c) coincides with the canonical
identification of Claim 2.4.

Proof. Though the assertion follows by straightforward unwinding the definitions, we sketch the
argument for the convenience of the reader.

As in the proof of Claim 2.4, we set KX/D := f !(ΛD) and F := f∗(KX/D). Consider the
diagram

(7.1)

where:

• maps denoted by BC∗ are induced by the (base change) isomorphisms Fη
∼→ fη∗((KX/D)η),

Fs
∼→ fs∗((KX/D)s) and base change morphisms; whereas

• maps denoted by BC∗ are induced by the (base change) isomorphisms (KX/D)η
∼→ KXη and

(KX/D)s
∼→ KXs .
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We claim that the diagram (7.1) is commutative. As the top left, the top right, and the
bottom left inner squares are commutative by functoriality, it remain to show the commutativity
of the right bottom inner square. In other words, it suffices to show the commutativity of the
following diagram.

Moreover, using identity KX/D = f !(ΛD), it suffices to show the commutativity of the following
diagram, which is standard.

By the commutativity of (7.1), it remains to show that the top arrow

Fη = RΓ(η,Fη)→ RΓ(s, ΨD(Fη)) � RΓ(s,Fs) = Fs

of (7.1) equals the inverse of the specialization map

Fs = RΓ(s,Fs) � RΓ(D,F)
i∗η−→ RΓ(η,Fη) = Fη.

But this follows from the commutativity of the following diagram.

�

7.5 Specialization of cohomological correspondences
Let c : C → X ×X be a correspondence over D, let cη : Cη → Xη ×Xη, cη : Cη → Xη ×Xη, and
cs : Cs → Xs ×Xs be the generic, the geometric generic, and the special fibers of c, respectively.
Fix Fη ∈ Db

ctf(Xη, Λ).

(a) Using the fact that the projection πη : η → η is pro-étale, we have the following commutative
diagram.

(b) Consider the map

Ψc : Homcη(Fη,Fη)→ Homcs(ΨX(Fη), ΨX(Fη)),

which sends morphism uη : c∗ηl(Fη)→ c!
ηr(Fη) to the composition

c∗sl(ΨX(Fη))
BC−→ ΨC(c∗ηl(Fη))

ΨC(uη)−→ ΨC(c!
ηr(Fη))

BC−→ c!
sr(ΨX(Fη)).
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Proposition 7.6. In the situation § 7.5, the following diagram is commutative.

Proof. The assertion and its proof is a small modification [Var07, Proposition 1.3.5].
Alternatively, the assertion can be deduced from the general criterion of [Var07, § 4]. Namely,
repeating the argument of [Var07, § 4.1.4(b)] word-by-word, one shows that the nearby cycle
functors Ψ· together with base change morphisms define a compactifiable cohomological mor-
phism in the sense of [Var07, § 4.1.3]. Therefore, the assertion follows from (a small modification
of) [Var07, Corollary 4.3.2]. �

Lemma 7.7. Let c : C → X ×X be a correspondence over D. Then for every F ∈ Db
ctf(X, Λ)

and u ∈ Homc(F ,F), the following diagram is commutative.

Proof. The assertion is a rather straightforward diagram chase. Indeed, it suffices to show the
commutativity of the following diagram.

(7.2)

We claim that all inner squares of (7.2) are commutative. Namely, the middle inner square is
commutative by functoriality, whereas the commutativity of the left and the right inner squares
follows by formulas Ψ· = i∗s ◦ iη∗ and definitions of the base change morphisms. �

Now we are ready to show Proposition 2.5.

7.8 Proof of Proposition 2.5
Without loss of generality, we can assume that s is a specialization of t of codimension one. Then
there exists a spectrum of a discrete valuation ring D and a morphism f : D → S whose image
contains s and t. Taking base change with respect to f we can assume that S = D, t = η is the
geometric generic point, whereas s is the special point.

Then we have equalities

T rcs(us) = T rcs(Ψc(uη)) = SpFix(c)(T rcη(uη))

= SpFix(c)(π
∗
η(T rcη(uη))) = SpFix(c)(T rcη(uη)),

where:

• the first equality follows from the fact that the isomorphism Fs → ΨX(Fη) from § 7.2(b)
identifies us with Ψc(uη) (by Lemma 7.7);

• the second equality follows from the commutative diagram of Proposition 7.6;
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• the third equality follows from definition of SpX in § 7.3(d);
• the last equality follows from the commutative diagram of § 7.5(a).

Now the assertion follows from Lemma 7.4.
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