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Abstract

In the paper King [8], a new class of source solutions was derived for the nonlinear
diffusion equation for diffusivities of the form D(c) = Docf /(I — vc)m+2. Here we extend
this method for the nonlinear diffusion and convection equation

to obtain mass-conserving source solutions for a nonlinear conductivity function K(c) =
Koc

m+2/(l — vc)m+l. In particular we consider the cases m = - 1 , 0 , and 1, where
fully analytical solutions are available. Furthermore we provide source solutions for the
exponential forms of the diffusivity and conductivity as given by D{c) = D0c~2e~"/c and
K(c) = Koce-'c.

1. Introduction

A variety of transport processes can be described by the one-dimensional conservation
law

where c (c > 0) and F are the mass and flux densities respectively, t is time and z is
a spatial variable. Consider the specific form of F given by

^ + K(c), (1.1b)
dz
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where Die) is a concentration-dependent diffusivity and K(c) a concentration-de-
pendent convective velocity. This form of F gives rise to the diffusion-convection
equation which, in the past, has been applied to many areas; for example, porous media
flow [12], dopant diffusion in semi-conductors [8] and the movement of a thin liquid
film under gravity [5]. For applications to porous media flow in soils, the convective
term K{c), known as the conductivity, arises due to the influence of gravity on the
flow. The soil surface is usually taken as z = 0 with z > 0 being in the downward
direction. A consideration of flow in the upward direction can be obtained from (1.1)
by replacing K(c) with — K (c) so that z = 0 could then represent either the position
of the water table or an impervious layer. Thus solutions will be given for K(c) both
positive and negative to represent flow in either direction of interest.

In this paper, we consider the conservative redistribution (by diffusion and convec-
tion) of an initial quantity of material Q (0 < Q < oo) in the semi-infinite half-plane
z > 0, with a zero flux condition at the origin. This problem is described by (1.1),
together with the boundary conditions

a . . . ,_, =0, z = 0 , (1.2a)
dz
c-+0, z -» oo, (1.2b)

along with the conservation requirement

Q= I"ciz,t)dz. (1.3)

Obviously a realistic mathematical description of redistribution needs to include the
effects of hysteresis in both D(c) and K(c). However this is presently available only
through numerical methods as demonstrated by Watson and Sardana [20]. If we were
to consider the example of nonhysteretic redistribution of water applied at the soil
surface where the boundary wetting curve of the hysteresis loop was used to determine
D and K , then the effect of ignoring hysteresis is to allow water to drain from the
soil surface too quickly. Thus the primary effect of hysteresis in practice is to retard
redistribution and to retain water for greater time periods near the soil surface.

It has been found that soils studied in the laboratory tend to have larger hysteretic
loops than field soils (Watson et al. [19]) and that coarse grained soils as opposed to
fine grained soils have marked hysteresis. Therefore the usefulness and applicability
of the new solutions presented here will come from modelling the redistribution of
water in fine grained field soils. Additional nonhysteretic redistribution solutions
can be found for finite domains in Sander et al. [16] , and semi-infinite domains in
Warrick et al. [18] and Broadbridge and Rogers [1], all of which consider arbitrary
initial conditions.

https://doi.org/10.1017/S033427000000919X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000919X


30 G. C. Sander, R. D. Braddock, I. F. Cunning, J. Norbury, S. W. Weeks [3]

It is well known that the diffusion equation (with K = 0 in (1.1)) admits similarity
solutions for arbitrary D(c) and analytic solutions are available for some classes
of functional forms of D(c); for example, see [6] and [8]. In [8] a new set of
exact source solutions were constructed for D(c) = Doc

m/(I — vc)m+2 and D(c) =
Doc~2exp(—n/c) with v an arbitrary parameter and n, Do positive, by inverting
the previously known solutions for D{c) = Doc

m and Doe~"c through a reciprocal
Backlund transformation.

Lisle and Parlange [10] have conducted a symmetry analysis of (1.1) with K ~ 0
and arbitrary D. They found that under the Boltzmann variable c = / (£) , % — xlt 1/2>
the resulting ordinary differential equation admits point symmetries if and only if
D(c) is of the form

1
 T « p / . . , . * ? . . . . 04)

a2c
for a0, a], a2 and b constants with at least one of a0, a\, a2 positive. They show that
the power law, exponential and Fujita [4] diffusivities are just special cases of (1.4).
The diffusivities of King [8] are also simplifications of (1.4).

Hogarth et al. [7] have shown that (1.1) and (1.2) admit similarity solutions when
both D{c) and K (c) have a general power law dependence on c. For simple linear and
quadratic power law functions for D and K, the resulting ordinary differential equation
of [7] can be integrated to obtain closed-form solutions ([13]). In two independent
studies by Edwards [2] and Yung et al. [21] a full group classification of (1.1) was
performed to determine all functions D and K for which (1.1) admits symmetries.
The similarity solutions of Hogarth et al. [7] are of course included in their analysis.
Interestingly, while all possible diffusivities found by [2] and [21] were included in
(1.4), there does not appear to be a comparable single encompassing formula for all
the corresponding conductivities.

In this paper, we apply King's method to the symmetry reductions of [2] in order
to generate a new class of highly nonlinear source solutions which include the effects
of both diffusion and convection. In particular we only concentrate on those cases
of D and K for which the reduced ordinary differential equation presented in Table
3 of Edwards [2] are straightforward to integrate. These cases were predominantly
covered in Philip [13].

2. Backlund transformation for the diffusion-convection equation

Following [9], the conservation equation (1.1) is transformed to the reciprocally
associated conservation equation

https://doi.org/10.1017/S033427000000919X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000919X


[4] Nonlinear source solutions 31

by using the reciprocal Backlund transformation

3C v dc
IT = n
dx (1 — vc

v

( 2 - 2 a )

dt' (1 - vc)2 Idt ' l-vc

dx = {\- vc)dz -v\D-£--K\dt (2.2c)

and

t' = t. (2.2d)

In (2.2) we have

d = T T ^ — , (2.3a)
(1 )

and

K\c') = vc'K i*—^] , (2.3c)
V > )

vc>

with v being a translation constant. For a more detailed account of this transformation,
see either [14] or [15], The relationship between z and x is given by

x = / (1 - vc)dl. (2.4)

Applying (2.2) and (2.3a) to the boundary conditions (1.2) results in

-D'(c')— + K'(d) = 0, x = 0, (2.5a)
v ' dx

d -> 1, x - • oo. (2.5b)

By introducing the new dependent variable

u = d - 1 (2.6)

in (2.3) and (2.5), we obtain the invariant transformed problem
— = — I £>*(«)— - A:*(M) I, (2.7a)
dt dt \ dx I
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with the

where t'

G. C. Sander, R. D. Braddock, I. F. Cunning, J. Norbury, S. W. Weeks

boundary conditions

-D*(u)^ + K*(u) =
dx
u -> 0, x

has been replaced by t and

D*(u)-a+u)-2D{

K*(u)-v(l + u)K{

0, x = 0,

- > CX3,

< M \

^(1+M)/ '
( u \

[5]

(2.7b)

(2.7c)

(2.7d)

(2.7e)
\v(l+u)

The relationships between the original variables and the transformed variables are
now given by

c= " . , (2.8a)
v(l +u)

z= f (1 + U)dx. (2.8b)
Jo

From (1.3) and (2.8) the conservation condition for the transformed problem is

Q* = f udx, (2.9)
Jo

where Q* = vQ.
Thus, given a solution u = g(x, t) to the transformed problem (2.7) and (2.9), the

solution to (1.1) and (1.3) is given parametrically through

c(x,t)= *(*'° (2.10a)
v(l+g(x,t))

z(x,t)=x+ I g(x,t)dx. (2.10b)

Therefore we can generate a new solution to c(z, t) for a different class of function
D{c) and K(c) by inverting M(JC, 0 through (2.10). The functions D(c) and K(c)
corresponding to the new solution are found from inverting (2.7d) and (2.7e) as

(1 — vc)

In Section 3, we present the known analytical solutions to u (x, t) for the transformed
problem where the D*(u) and K*(u) have a power law dependence on u. In Section
4, we show how to invert the solution through (2.10) to find c(z, t), while Section 5
considers the extension to the case where D and K have an exponential dependence
on c.
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3. Similarity solution for a diffusion-convection equation

In a recent paper [13] a similarity solution was obtained for the initial value
boundary value problem

subject to

-aum— +pum+2 = 0, x = 0,
dx
u -> 0, x -> oo,

u(x,0) = 2Q*S(.x),

where a, ft and m are constants. This solution is of the form

u = (a-lp2t)-l/m+2f(ir), f = (a-m-lpm)l/m+2xri/m+2,

where fty) is given by

df 2 1 ,_m

dxj/ m + 2

/ = a, V = 0

(3.1b)

(3.1c)

(3. Id)

(3.2)

(3.3a)

(3.3b)

and a is a constant related to the total amount Q* of diffusing substance. When
m = —1,0 or 1, (3.3) can be integrated analytically and each of these cases is now
treated separately. Since we are interested only in analytical solutions in this paper,
other values of m are not considered as (3.3) must then be integrated numerically.

Case 1, m = —1. This case was not considered by [13] although the solution to
(3.3) is easily found as

fW) = 2a/(af2-2aijr + 2), f = x/^t), (3.4)

and thus the solution to (3.1) is

u = ap-2rlfx/(f5t). (3.5)

Case 2, m = 0. This has the solution

^ " . " ' r i l ' • = *)«= (3.6)
1 — a*Jn erfXrfr/2)

and
u = a/(/J2O1/2/(VO. (3.7)
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Case 3, m = 1. For this case, the solution is

(3.8)

where A,(T/O, A(VO> A'^x/r) and /̂(VO are the Airy functions and their derivatives,
and S = T(2/3)/ T(l/3). The solution to (3.1) is

u = j (a/t52ty'3fblr), 0 < tfr < tfy,
|0, ir>irf,

where tyf, defined from the condition f(rfrf) = 0, is the smallest root of

We note that (3.9) has compact support, with the edge of the support (X(t)) given by
X =

4. Results

To construct the new solution to (1.1) and (1.2) for c(z, t) and the corresponding
D(c) and K(c), we now invert the solutions of Section 3 through (2.10) and (2.11).
Care must, however, be taken for t near zero if the solution is to be uniquely defined
and c(z, t) is to be always positive.

4.1. Forms of D(c) and K(c) The forms of D(c) and K(c) are found by equating
aum with D*(u) and £wm+2 with K*{u) in (2.7). Thus, from (2.11), we have D(c) =
avmcm(l - vc)-m~2 and K(c) = £i/n+1cm+2(l - vc)-"1'1. Choosing the particular
forms

D(c) = Doc
m(\ - vc)-""2, (4.1a)

K(c) = K0c
m+2(l - vcym-\ (4.1b)

where Do and Ko are constants, we have

a = Dov-m, p = Kov-m-\ (4.2)

and so from (3.2)

v / W , / K% \1/(m+2)( Km
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While Do is a positive constant, Ko may be negative or positive so that the convective
term may retard or enhance the flow. In the rest of the analysis, we set Do to unity
without loss of generality.

4.2. Behaviour of solutions for t near zero The appropriate initial condition for
(1.1) with boundary condition (1.2) and D(c) and K(c) given by (4.1), is determined
by inverting the transformations (2.8) or (2.10) on the delta function in (3. Id) and
the requirement that z = z(x, t) be a single-valued function of x for all t. This
uniqueness requirement, along with the positivity condition on c, imposes conditions
on the solution c(z, t) for t near zero depending on whether u(x, t) is positive or
negative.

(i) M > 0 Substituting u = 2Q*.8(x) into (2.8) shows that x = 0 is mapped to the
interval 0 < z < vQ with c = 1/v over this range. From the positivity condition on
c, we see that u > 0 is equivalent to v > 0. For x > 0, z = x + vQ with c = 0, the
required initial distribution for c(z, 0) is thus given by the step-function distribution

[ l / v , 0z<VQ,

[0 z>vQ.

The uniqueness requirement on z(x, t) implies that dz/dx > 0 or from (2.8b), that
1 + u > 0. For u(x, t) > 0 this always holds and then (2.8a) shows c > 0.

(ii) u < 0 When u is less than zero, the uniqueness condition for z(x,t) is still
determined by 1 + u > 0 or, combining with (4.3),

1 + v(K^tyl/(m+2)f(ir) > 0. (4.5)

We note from (2.8a) that if u < 0 and 1 + u > 0, then for c > 0 the parameter v must
be negative. Consequently v < 0 is equivalent to u < 0. Therefore, when u or v is
less than zero, it is clear from (4.5) that the source solution will apply only for t > t*,
with t * given by

t* = K-2{-Vfmm)m+\ (4.6)

where /max is the value of /(V0 having maximum modulus in the solution domain.
The required initial condition is then given by c(z, t*) which can be mapped back to
c(z*, 0) by defining a new time t — t*.
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4.3. Solutions

Case 1, m = - 1 From (4.1), (4.2) and (4.3), we have

D(c) = — - i -, K(c) = KQc, (4.7a)
c(l — vc)

a = v, p = K0 and (4.7b)

( 4 - 7 c )

Thus from (2.10), (3.4) and (4.7c), the solution to (1.1) and (1.2) with D(c) and
K (c) given by (4.7a) is

z(x, , ) = * + — In ^——^ -r—_ -r-z - (4.8b)

where w = Vl — 2a~l.
From (2.9), we obtain the relationship between Q and a as

e=T^-ln(|^). (4.9)
Kow \1+WJ

The physical requirement that 0 < Q < oo leads to restrictions on the values that
Ko and a can take. Since w > 0, we have from (4.8) and (4.9) that Ko < 0 and a > 2.
Considering the initial condition, we note first that from (3.4) and (4.7c) with Ko < 0,
we must have \// < 0 and consequently (3.4) shows /(V0 > 0 since f'(ijr) > 0 for
—oo < yf/ < 0. The maximum value of /(V0 then occurs at i/r = 0 and is given by
/max = a. Thus for

(i) v > 0, (4.5) is satisfied for t > 0 and the initial distribution is given by (4.4);
(ii) v < 0, (4.5) is satisfied when t > t*, where t* = —av/K2, and the initial

distribution is given by c(z, t*) in (4.8).

Case 2, m = 0 Here we have from (4.1) - (4.3) that

D(c) = 1/(1 - vc)2, K(c) = K0c
2/(l - vc), (4.10a)

a = 1, 0 = K0/v (4.10b)

and

f=x/ti/2. (4.10c)
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Thus from (2.10), (3.6) and (4.10c), the solution to (1.1) and (1.2), with D(c) and
K(c) given by (4.10a), is

c(x, t) = == = , (4.11a)
'KVi K^ai(/(2Vi)) + vexp(-*2/(40)

z(x, t) = x-^- ln[l - av^erf(jc/(2VO)], (4.11b)
Ao

and

Q = ~ ln[l-a>/jr]. (4.12)
A 0

From (4.12), it is evident that relevant solutions exist for the two parameter ranges

(a) 0 < a < \/y/n, Ko > 0,
(b) a < 0, Ao < 0,
with the corresponding solution domain for \jt being 0 < V < oo. For both parameter
ranges (a) and (b) when v > 0 (or u > 0), the initial distribution is given by (4.4). If
v < 0, then we need to treat (a) and (b) separately as follows.

v < 0: When a > 0 as in (a), then (3.3) shows /(V0 > 0 for 0 < x/r < oo. Hence
/max is the value of /(i/0 at the stationary point \j/*, where from (3.3a), V* is the root
of

/ ( V 0 ~ ^ / 2 = 0 (4.13)

with /(V0 given by (3.6). The initial distribution is now found from (4.11) as c(z, t*)
with t* = (vfmm/K0)

2. When a < 0 as in (b), then (3.3) shows that /(V0 < 0 while
/'(V0 > 0 for 0 < f < oo, so that /max = a and t* = {va/KQf.

Graphs of the solution c(z, t) are shown in Figures 1 and 2. In Figure 1, A'o > 0
and the gravity convection term enhances the flow. This is seen through the maximum
value for c occurring at values of z > 0 with the position of this peak increasing as t
increases. In Figure 2, A'o < 0 and hence the gravity convection term retards the flow
and the peak value of c now occurs at z = 0. We note also in Figure 2 that dc/dz < 0
for all z > 0 as in the case where only diffusion is controlling the flow.

Case 3, m = 1 In this case, (4.1) to (4.3) give

D(c) = Doc/(1 - vc)\ K(c) = Koc
3/(l-vc)2, (4.14a)

and
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4.0 -,

3.0 -

O2.0 -

0.0
0.0 1.0

FIGURE 1. Solution (4.11) for m = 0, Ko = 1, a = 1/2 and |u| = 1. Solid lines give solutions for
v = 1 at times 2t'/2 = (a) 0, (b) 0.25, (c) 1.0and(d) 3.0. Dashed lines give solutions for v = - 1 at times
It1/2 = (e) 2.0, (f) 2.25, (g) 3.0 and (h) 5.0.

Hence c(x, t) and z(x, t) are now given by

c{x,t) = —

z(x,t) =x-

(4.15a)

(4.15b)

where
31/6
— -(S-a)Bi(3-l/iir)\ (4.15c)

and f(ir) is defined by (3.8). The source strength Q and the constant a are related by

(4.16)

with ij/f found from (3.10). Relevant solutions again exist for the two regions

(a) Ko > 0, 0 < a < S, 0 < yjr < ir},
(b) Ko < 0, 0 < a < 00, ff < f < 0.

Note that for KQ < 0, if < 0 and then 1/7 is defined as the smallest negative root of
(3.10). Finally, for v > 0, the initial distribution is defined by (4.4), while for v < 0 it
is given by c(z, t*) with t* = Ko2(-vfmax)\ where /max = f(f*) and ty* is the root
of

- y/3 = 0. (4.17)

In (4.17) /( t /0 is given by (3.8) and in (b) above, where x}r <0, /max = a. Figures 3
and 4 show the solutions for c(z, t) for Ko > 0 and Ko < 0 respectively.
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"o.'o • 0.5 ' ' i .o ' '1.5 ' '2.0 ' '2.5 ' '3.0 ' 3.5 ' 4.0 ' '4.5 ' 'i.o' 5.5 ' 'e.'6.0

FIGURE 2. Solution (4.11) for m = 0, Ko = -1, a = - 1 /2 and | u | = 1. Labelling and times are the
same as those used in Figure 1.

5. Extension for exponential diffusivities and conductivities

It is well known that the source solution for the nonlinear diffusion equation with an
exponential diffusivity D = e~nc is the limiting solution of the power law diffusivity
D = cm as m —*• 00 . In this section, we seek an extension of this solution for (1.1)
and (1.2). In Section 2, the variable c was first translated to 1 — vc before applying
the Backlund transformation. Here we apply the transformation without translating c
or specifically ([14])

3c'

a!
1 3c

dt' ~ C2\_ dt c \ dz

dx = cdz

t =t,

c' = 1/c,

= 1 c'dx, or x = I cdz,
Jo Jo

(5.1a)

(5.1b)

(5.1c)

(5. Id)

(5.2a)

(5.2b)
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5.0 -i

[13]

4.0 -

3.0 -

2.0 -

t.O

0.0

• , ( e )

. / A—L_

J V

\

\

-

^ )

V -

(c)
N

\

(d)

0.0 1.0 2.0 3.0 4.0
z

5.0 6.0 7.0

FIGURE 3. Solution (4.15) for m = I, Ko = I, a = 1/2 and \v\ = 1. Solid lines give solutions for
v = 1 at times 2/1/3 = (a)0, (b)0.25, (c) 1.0 and (d) 3.0. Dashed lines give solutions for v = - 1 at times
2t1'3 = (e) 2.0, (f) 2.25, (g) 3.0 and (h) 5.0.

to transform (1.1) and (1.2) to

and

dx
d -*• oo

D ' =

K' =

'.' = 0, J

a s x —•

c2D(c),

-K(c)/c.

c =

Q,

o,

(5.3a)

(5.3b)

(5.3c)

(5.4a)

(5.4b)

In the absence of the conductivity term, we know that (5.3) has a solution for D'(c') =
e~nc', n > 0 ([8]). On letting the conductivity also be an exponential of the form
K'{d) = — Koe~bc' and taking a new variable

(5.3) becomes

du

u — e

d2u
h/n

du

— - nKou
b/n =0, x = 0,

dx
u = 0, x = Q.

(5.5)

(5.6a)

(5.6b)
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o.o

FIGURE 4. Solution (4.15) for m - 1, Ko = - 1 , a = 1/2 and |
same as those used in Figure 3.

3.0 3.5

1. Labelling and times are the

It is straightforward to show that (5.6) has a separable solution in the case b = n of
the form u(x, t) = f(x).g(t), which leads to

ii(JC, 0 = 4" [0 + e*) ~ 0 + eQ)e-e(Q~x)], (5.7)

where e = nK0. Hence from (5.2), (5.4) and (5.5), the solution of (1.1) and (1.2) for

1 .

D(c) = -e-^,

K(c) = Koce-n/c,
is given by

c(x,t) = -

i r
z(x, t) = — / ln[«(i,

n Jo
t)]dx,

(5.8a)

(5.8b)

(5.9a)

(5.9b)

with u(x, t) defined by (5.7).
Edwards [2] has given a similarity reduction to (5.3a) for exponential D' and K'

for b ^ n, however it is only for b = n that the resulting ordinary differential equation
integrates analytically and satisfies the boundary conditions (5.3b,c).

It is not immediately obvious that the D and K of (5.8) have any physical applica-
tion. For soil water flow both D and K are monotonically increasing functions of c for
0 < c < 1 (c = 1 implying a saturated soil) with d2D/dc2 and d2K/dc2 positive. For
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n positive K{c) satisfies these conditions automatically, however D(c) -*• 0 as c -> 0
and c -> oo with the maximum occurring at c = n/2. In addition d2D/dc2 = 0 at
two values of c given by c = n(l/2 ± 1/VI2). Thus D(c) as defined by (5.8a) has
direct application to soil water flow provided 0 < c < 1 and n > 1/(1/2 - l / \ / l2) .

When c is the soil moisture content, the capillary potential h {h < 0) is related to
c through

dh
D(c) = K(c) — . (5.10)

dc

Using D and K from (5.8) and integrating with the condition c = \ h = he results in
a soil moisture characteristic curve defined as

( 5 - n )

where he is the air entry potential. We note that (5.11) is a particular form of the van
Genuchten [17] c{h) model

where A., r and 5 are fitting parameters. This model has been consistently and reliably
used to model c(h) curves for many soil types (Fayer and Simmons, [3]).

For (5.9) to be a valid solution, then 0 < u(x, t) < 1, a condition which is again
equivalent to a one-to-one mapping between x and z- Therefore, from (5.7)

t>-i[{\ + ex) - (1 + eQ)e-*Q-x)], (5.13)

which requires the following two cases to be considered.

(i) e > 0 or Ko > 0 The right-hand side of (5.13) is a concave function of*
downwards with its maximum occurring at

xm = Q-Un(l+eQ). (5.14)

Thus from (5.13), our solution applies for t > t* where

(5.15)

with the initial distribution c(z) given by c(x, t*) and z(x, t*) in (5.9).
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(ii) £ < 0 or Ko < 0 For 0 < x < Q, the maximum of the right-hand side of
(5.13) occurs at xm = 0 so that t* is given by

1
(5.16)

We note that here the special case of Q = — 1/e allows c(z, t) to be found
implicitly from (5.7) and (5.9) as

Z = ^{e[ l+ ln ( r /G 2 ) ] -^ - / c ( l + " ) } , (5.17)

with t* = Q2 from (5.16). Thus the initial profile is given by c(z, Q2) or

(5.18)

Finally, we note that the solutions for cases (i) and (ii) above have compact support
as D(c) given by (5.8) is Dini continuous at c = 0 (Peletier [11] ). For £ -»• 0
(nonlinear diffusion only), (5.7) and (5.9) reduce to (3.3) and (3.4) of King [8], while
both (5.15) and (5.16) reduce to the required t* = Q2/2. In Figure 5, solution profiles
are shown for Q = 1, £ = 1 (solid lines) and £ = — 1 ((5.14), dashed lines) at various
times. The peak values for c again occur at z > 0 when £ > 0 (Ko > 0) and at z = 0
for £ < 0.

1.0 i

0.0 0.5

FIGURE 5. Solution curves for (5.7) and (5.9) with Q = 1, n = 1 and |e| = 1. Solid lines give
solutions for e = 1 at times — ln[/~'(l - 2e~')] = (a) 1.25, (b) 2 and (c) 4. Dashed lines give solutions
for e = - 1 at times ln(f) = (d) 1.25, (e) 2 and (f) 4.
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6. Conclusion

In conclusion, we have presented a new range of mass-conserving source solutions
to the nonlinear diffusion convection equation. These solutions extend the previous
work which applied to nonlinear diffusion only. In particular, we provide solutions
for the power law diffusivities and conductivities

(1 - vc)m+2

for m = — 1, 0 and 1, plus the exponential law diffusivity and conductivity for positive

n
D{c) = ^ V n / C and K{c) = Koce~n/C.

c
We also noted in the introduction that the flow equation under the change of variable

z — — z with KQ > 0 is equivalent to the variable change Ko = —Ko with z > 0.
Consequently the two semi-infinite domain solutions for Ko > 0 (KQ) and Ko < 0
(Kg ) can be joined to form a solution for the infinite domain —oo < z < oo .
Denote c+(z, t) and c~(z, t) as the solutions for KQ and KQ respectively such that
KQ = —KQ . Then if c+ and c~ also have the same values of m, v and \a\ they can
be joined at z = 0. This is possible for the power law D(c) and K{c) when m = 0
provided 0 < \a\ < l/^/n and when m = l i f 0 < a < 5 where there are solutions
for c+ and c~. No infinite domain solutions exist for/n — — 1, since c+ does not exist.
For exponential D(c) and K{c) we require (apart from KQ = —KQ ) that c+ and c~
have the same n and g only. The source strength for the infinite domain solution is
simply the sum of the individual source strengths for c+ and c~.
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