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Abstract. We prove a result on equilibrium measures for potentials with summable
variation on arbitrary subshifts over a countable amenable group. For finite configurations
v and w, if v is always replaceable by w, we obtain a bound on the measure of v
depending on the measure of w and a cocycle induced by the potential. We then use
this result to show that under this replaceability condition, we can obtain bounds on
the Lebesgue–Radon–Nikodym derivative d(μφ ◦ ξ)/dμφ for certain holonomies ξ that
generate the homoclinic (Gibbs) relation. As corollaries, we obtain extensions of results
by Meyerovitch [Gibbs and equilibrium measures for some families of subshifts. Ergod.
Th. & Dynam. Sys. 33(3) (2013), 934–953], and García-Ramos and Pavlov [Extender sets
and measures of maximal entropy for subshifts. J. Lond. Math. Soc. (2) 100(3) (2019),
1013–1033] to the countable amenable group subshift setting. Our methods rely on the
exact tiling result for countable amenable groups by Downarowicz, Huczek, and Zhang
[Tilings of amenable groups. J. Reine Angew. Math. 2019(747) (2019), 277–298] and an
adapted proof technique from García-Ramos and Pavlov.
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1. Introduction
This paper is concerned with equilibrium states on subshifts over a countable amenable
group. In particular, for an arbitrary subshift, given an equilibrium state μ for a potential
with summable variation, we prove Gibbs-like bounds on the measures of finite config-
urations under a replicability condition. We use this result to prove a novel conformal
Gibbs-like bound on the Lebesgue–Radon–Nikodym (LRN) derivative d(μ ◦ ξ)/dμ for a
certain class of Borel isomorphisms ξ . Our results generalize results of Meyerovitch [17]
and García-Ramos and Pavlov [11] and correct an error in the latter paper.

Let X ⊂ AG be a subshift (that is, a closed and shift-invariant subset) over a countable
amenable group G with a finite alphabet A. The dynamics of the system will be induced
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2 C. E. Hedges

by the left-translation map {σg}g∈G where X is required to be compact and σ -invariant.
A potential is a continuous, real valued function φ : X → R. Equilibrium states are
σ -invariant Borel probability measures maximizing the pressure of μ with respect to
φ: Pφ(μ) = h(μ) + ∫

φ dμ, where h(μ) is the classical Kolmogorov–Sinai entropy of
μ. Although we make no further assumptions on our subshift, we will require that the
potential under consideration have summable variation, which will be defined in §3.2.

There is an extensive history in statistical physics and dynamical systems relating the
global property of being an equilibrium state to local properties depending on the potential.
Thermodynamic formalism, at its core, concerns itself with relating these global and
local phenomena. Foundational results in this area were obtained by Dobrushin in [9],
and Lanford and Ruelle in [15], who considered well-behaved Zd -subshifts coupled with
a sufficiently regular potential. In this setting, they were able to show that an invariant
measure is an equilibrium state if and only if it can be locally characterized by the Gibbs
property.

We say a measure μ is Gibbs for φ if it satisfies a conditional probability condition. For
a finite F � G, we define the F-language of X, LF (X) = {w ∈ AF : there exists x ∈ X :
xF = w}, to be the set of all F-shape configurations that are legal in X. For w ∈ LF (X),
we can define the extender set of w as in [14, 20], EX(w) = {η ∈ AFc

: wη ∈ X}, to be the
collection of all background configurations for w such that wη ∈ X. We say that μ is Gibbs
for φ if for any configuration w ∈ LF (X), and almost every background configuration
η ∈ EX(w), we have

μ(w||η) = exp(φ(wη))∑
v∈LF (X) exp(φ(vη)) · 1X(vη)

.

The Dobrušin theorem and Lanford–Ruelle theorem relating Gibbs measures and
equilibrium states have been extended to the countable amenable group subshift setting
in [18, 23], where it was shown that for sufficiently regular subshifts and potentials with
summable variation, an invariant measure is an equilibrium state if and only if it is Gibbs
for the potential.

In the case where φ = 0, equilibrium states correspond to measures of maximal entropy
(MMEs). Parry showed in [22] that for Z-subshifts of finite type, the MME is unique
(and, in fact, by application of the Lanford–Ruelle theorem, it is Gibbs for φ = 0). In [4],
Bowen showed that for an expansive Z-action on a compact metric space satisfying the
specification property and a potential with summable variation, there exists a unique
equilibrium state. However, in the Zd setting with d ≥ 2, Burton and Steif in [6] were
able to construct strongly irreducible subshifts of finite type with non-unique MMEs.
Additionally, in the Z setting, there are trivial examples of subshifts with positive entropy
and a unique MME such that the MME is not Gibbs for φ = 0. Take, for example, the
product of a full shift with the orbit closure of the point 0∞10∞, whose unique MME is
the product of the unique MME on the full shift with δ0∞ .

While neither uniqueness nor the Gibbs property may be attainable for MMEs for a
general subshift, García-Ramos and Pavlov proved in [11] that for arbitrary Zd -subshifts,
and any MME, one can obtain bounds on the measures of finite configurations under
a replaceability condition. For a subshift X ⊂ AZ

d
and w, v ∈ LF (X), we say v is
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Bounds for equilibrium states on amenable group subshifts 3

replaceable by w if EX(v) ⊂ EX(w). García-Ramos and Pavlov showed that for any MME
μ on a Zd -subshift, if v is replaceable by w, then μ([v]) ≤ μ([w]).

The context considered in this paper will combine that of Meyerovitch in [17] and
of García-Ramos and Pavlov in [11]. We make no assumptions on the subshift under
consideration, and we require that the potential φ ∈ SV (X) has summable variation. Our
results make use of a class of Borel isomorphisms: for finite configurations v, w ∈ LF (X),
define ξv,w pointwise to swap v and w in the F location whenever legal in X. Note here that
we do not require ξv,w to be continuous and, in general, it is not (see §2.2 for a precise
definition and further discussion). Our first result can now be stated.

THEOREM 1.1. Let G be a countable amenable group and X be a G-subshift. Let
φ ∈ SV (X), μφ an equilibrium state for φ, F � G and v, w ∈ LF (X). If EX(v) ⊂
EX(w), then

μφ([v]) ≤ μφ([w]) · sup
x∈[v]

exp
( ∑

g∈G

φ(σg(x)) − φ(σg(ξv,w(x)))

)
.

We note here that this inequality holds whenever the conclusion of the Lanford–Ruelle
theorem also holds (Theorem 2.10 below), or even more generally when the conclusion of
Theorem 1.3 holds (as noted in Observation 4.4). In particular, the equation immediately
holds for all subshifts of finite type and potentials with summable variation, the novelty
here is that we require no assumptions on the structure of the subshift X. It is in this general
case where we must discuss extender sets, as in [11].

In general, this supremum may be hard to compute. However, an immediate corollary
in the locally constant case allows us to easily compute this bound when v and w agree on
a sufficient boundary. First, for finite H � G, we call φ an H-potential when if xH = yH ,
then φ(x) = φ(y). In particular, this means for any v ∈ LF (X) with H ⊂ F , we can write
φ(v) unambiguously to mean φ(x) for any x ∈ X such that xF = v since for all x, y ∈ X

with xF = yF = v, φ(x) = φ(y). We also denote H± = H ∪ H−1.

COROLLARY 1.2. Let H , F � G, v, w ∈ LF (X), and φ be an H-potential. Suppose that
EX(v) ⊂ EX(w) and for all g ∈ FcH± ∩ F , vg = wg . Then, for any equilibrium state μφ

for φ,

μφ([v]) ≤ μφ([w]) · exp
( ∑

g∈F\FcH−1

φ(σg(v)) − φ(σg(ξv,w(w)))

)
.

As another immediate corollary, by letting φ = 0, we extend [11, Theorem 4.4] by
García-Ramos and Pavlov to arbitrary countable amenable groups. Although the theorem
in [11] is stated for countable, finitely generated, torsion-free, amenable groups, due to
an unfortunate error, their proof technique only applies immediately to the case where
G = Zd . The error is the false assertion that for any torsion-free, finitely generated,
countable amenable group G = 〈g1, . . . , gk〉, the subgroup generated by 〈gn

1 , . . . , gn
k 〉

has finite index in G. This is known to be false and can be shown not to hold in a variety
of examples, including the Lamplighter group.
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4 C. E. Hedges

In addition to the classical definition of Gibbs in the sense of Dobrušin, Lanford, and
Ruelle, another fruitful approach has been to consider a measure that is conformal Gibbs
for a potential. It was shown by Borsato and MacDonald in [3] that for subshifts over a
countable group and any potential φ, a measure is Gibbs for φ if and only if it is conformal
Gibbs for φ (see §4 for a precise definition). As a consequence, this means that μφ is Gibbs
for φ if and only if, for every Borel isomorphism of the form ξv,w and for μφ-almost every
(a.e.) x ∈ X,

d(μφ ◦ ξv,w)

dμ
(x) = exp

( ∑
g∈G

φ(σg(ξv,w(x))) − φ(σg(x))

)
.

Since, in general, equilibrium states are not necessarily Gibbs, this equality cannot always
hold. In the general subshift setting of this paper, little can be said of this LRN derivative.

In [17], Meyerovitch showed that for a general Zd subshift X and potential φ with
d-summable variation, if μφ is an equilibrium state for φ and if EX(v) = EX(w), then
d(μφ ◦ ξv,w)/dμ satisfies the equation above. In the language of Meyerovitch, μφ must be
(T0

X, ψφ)-conformal.
In §4, we will use Theorem 1.1 to obtain the following bound on this LRN, showing a

conformal Gibbs-like result.

THEOREM 1.3. Let F � G, v, w ∈ LF (X), φ ∈ SV (X), and μφ be an equilibrium state
for φ. If EX(v) ⊂ EX(w), then μφ ◦ ξv,w is absolutely continuous with respect to μφ when
restricted to [w] and for μφ-a.e. x ∈ [w],

d(μφ ◦ ξv,w)

dμφ

(x) ≤ exp
( ∑

g∈G

φ(σg(ξv,w(x))) − φ(σg(x))

)
.

We have become aware that Corollary 1.4 has been proven in even greater generality
in the sofic group setting in [2]. However, we recover the fact in the countable amenable
group setting as an easy corollary of Theorem 1.3.

COROLLARY 1.4. Let X ⊂ AG be a subshift over a countable amenable group G, let
φ ∈ SV (X) be a potential with summable variation, and let μφ be an equilibrium state
for φ. Then, μφ is (T0

X, ψφ)-conformal.

The structure of this paper is as follows. We begin with §2 on the relevant preliminaries,
discussing countable amenable groups and their relevant properties. We then formally
introduce subshifts over a countable amenable group, and discuss their thermodynamic
formalism. Finally, we discuss equilibrium measures, the Gibbs property, and their
relationship.

In §3, we prove Theorem 1.1, beginning with a lemma using Downarowicz, Huczek,
and Zhang’s exact tiling result from [10] to generate a sufficiently sparse almost partition
of a given group G. After some preliminary lemmas in the subshift setting, we prove
Theorem 1.1 and conclude Corollary 1.2 in the locally constant case.

Finally, §4 is concerned with the conformal Gibbs perspective where we formally
introduce the concept and relevant definitions. We then prove Theorem 1.3, relate it to the
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Bounds for equilibrium states on amenable group subshifts 5

results of Meyerovitch, and conclude by extending [17, Theorem 3.1 and Corollary 3.2] to
the countable amenable subshift setting.

2. Preliminaries
2.1. Countable amenable groups. Let G be a countable group and denote the identity
of G by e. We use the notation K � G to indicate that K is a finite subset of G. A Følner
sequence for G is a collection of finite subsets {Fn} of G such that G = ⋃

n∈N Fn and
for all K � G, limn→∞ |KFnFn|/|Fn| = 0. A countable group G is called amenable if
there exists a Følner sequence in G.

For a given Følner sequence {Fn}, we say the sequence is tempered if there exists some
C > 0 such that for all n > 0, | ⋃

k<n F−1
k Fn| ≤ C|Fn|. For any Følner sequence, there

exists a subsequence that is tempered, see [16, Proposition 1.5] for a proof of this fact.
A deeper discussion of Følner sequences and their relevant properties can be found in
[8, Ch. 4], but for our purposes, we note that for any amenable group G, there exists a
tempered Følner sequence that can be taken such that n! divides |Fn| for every n ∈ N.

Similar in spirit, we can define a relative almost-invariance: for any finite F , T � G and
ε > 0, we say T is right (K , ε)-invariant if |T KT |/|T | < ε. We can equivalently say G
is amenable if for every finite K � G and every ε > 0, there exists some finite T � G that
is right (K , ε)-invariant.

In our setting, we will also be interested in a sense of sparseness of sets, for this, we
define the following.

Definition 2.1. For any S ⊂ G, F � G, we say S is left F-sparse if for all distinct s, s′ ∈ S,

sF ∩ s′F = ∅.

Note here, by a trivial application of the definition, we know for any F ⊂ H � G

and S ⊂ G, if S is left H sparse, then S is left F sparse. We will now define the right
(respectively left) H-interior and H-boundary of F for F , H � G.

Definition 2.2. The right H-interior of F, denoted by IntH (F ), is defined by

IntH (F ) =
⋂
h∈H

Fh = {f ∈ F : for all h ∈ H , f h ∈ F }.

The right H-boundary of F, denoted ∂H (F ), is all elements of F not in the H-interior.
Precisely,

∂H (F ) = F\IntH (F ) = {f ∈ F : there exists h ∈ H such that f h /∈ F }.
The left H-interior/boundary of F is defined similarly.

The proof of our main theorem will also require taking advantage of a result by
Downarowicz, Huczek, and Zhang regarding exact tilings of G from [10]. For a countable
amenable group G, a finite tiling T = {Ti : 1 ≤ i ≤ k} is a collection of tiles such that⋃

i≤k Ti = G and for each Ti ∈ T , there exists a finite shape Si � G, and a collection of
centers C(Si) ⊂ G such that Ti = SiC(Si). In particular, a tiling T is called exact if for

https://doi.org/10.1017/etds.2024.133 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.133


6 C. E. Hedges

distinct c1, c2 ∈ C(Si), Sic1 ∩ Sic2 = ∅. We also note it can be assumed that e ∈ S for
every shape. We can now state their result.

THEOREM 2.3. [10, Theorem 4.3] Given any infinite, countable amenable group G, any
ε > 0, and any finite K � G, there exists an exact tiling T where each shape is right
(K , ε)-invariant.

Their result in fact included statements regarding the entropy of the tiling space which
we have omitted since they are not necessary for the purposes of this paper.

2.2. G-subshifts. Let G be a countable amenable group. Let A be a finite set, called
the alphabet, endowed with the discrete topology. Our configuration space is the set of
functions x : G → A, which we denote AG, endowed with the product topology. For any
H ⊂ G and x ∈ AG, we denote the restriction of x to H by xH .

We define a G-action of homeomorphisms on AG by the left-translation map: for all
g ∈ G and x ∈ AG, we define pointwise σg(x)h = xgh. The set AG and the collection of
left-translations (σg)g∈G together form a topological dynamical system (AG, σ) which we
call the full G-shift on A. A G-subshift is a subset X ⊂ AG that is closed in the product
topology and is σ -invariant (that is, for all g ∈ G, σg(X) ⊂ X). When G is clear, we will
refer to a G-subshift as just a subshift.

For any finite F � G and any w ∈ AF , we call w a configuration of shape F. For a
subshift X and a finite configuration w of shape F � G, we say w is in the language of X
(or w is legal in X) if there exists some x ∈ X such that xF = w. We call LF (X) = {xF :
x ∈ X} the F-language of X, and L(X) = ⋃

F�G LF (X) the language of X.
For any F � G and w ∈ AF , we define the cylinder set of w as follows:

[w] = {x ∈ AG : xF = w}.
In particular, the cylinder sets form a basis for the product topology on AG. Cylinder sets
are frequently taken intersected with a subshift, which will be clear by context.

Finally, we note here that the product topology on AG is metrizable, and for any Følner
sequence {Fn}, the metric

d(x, y) = 2− min{n∈N:xFn=yFn }

induces the product topology. This metric serves primarily to establish that G-subshifts are
expansive.

For any disjoint H , K ⊂ G and any x ∈ AH , y ∈ AK , we define the concatenation
of x and y by xy ∈ AH∪K such that (xy)H = x and (xy)K = y. We also define for any
v ∈ LF (X), the extender set of v, EX(v), to be the collection of all background con-
figurations for which v is legal. Specifically, EX(v) = {η ∈ AG\F : vη ∈ X}. For any
v, w ∈ LF (X), we say v is replaceable by w if EX(v) ⊂ EX(w).

We will now define the following functions that will be useful in the proof of our main
results and essential to our discussion of the conformal Gibbs corollaries.

Definition 2.4. For any F � G, v, w ∈ LF (X), we define ξv,w : X → X through the
following cases.
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Bounds for equilibrium states on amenable group subshifts 7

• For x ∈ [v], if the concatenation wxFc ∈ X, then ξv,w(x) = wxFc ; otherwise,
ξv,w(x) = x.

• For x ∈ [w], similarly define ξv,w(x).
• Otherwise, let ξv,w(x) = x.

Note this is exactly switching v and w in the F-location whenever the resulting point is
still in X. It will be noted in §4 that these functions are in fact Borel isomorphisms that
generate the homoclinic (Gibbs) relation.

For a given subshift X ⊂ AG, we will denote the collection of σ -invariant probability
measures on X by Mσ (X). The existence of such measures is guaranteed by the fact that
G is amenable. For a given μ ∈ Mσ (X), for any collection of legal finite configurations
W ⊂ L(X), we will use μ(W) to mean μ(

⋃
w∈W [w]).

We say μ ∈ Mσ (X) is ergodic if for all measurable A ⊂ X, for all g ∈ G, if
μ(Aσ−1

g A) = 0, then μ(A) ∈ {0, 1}. Here, Mσ (X) is convex and compact under the
weak-∗ topology, in fact, it forms a Choquet simplex whose extreme points are exactly the
ergodic measures.

2.3. Thermodynamic formalism. The theory of thermodynamic formalism bridges the
gap between microscopic and macroscopic descriptions of systems with many interacting
particles, extending concepts of statistical mechanics to symbolic dynamics. Gibbs
measures are central to this framework, enabling the analysis of global statistical properties
derived from local interactions in a broad range of dynamical systems. This section delves
into the thermodynamic formalism for countable amenable group actions on finite alphabet
subshifts, examining topological pressure and its connection to statistical physics, the
construction of partition functions, and the characterization of equilibrium states.

To begin, we must define topological pressure of a given potential over our subshift X.
We first let φ : X → R be a real valued, continuous function which we will call a potential.
We will denote the set of all potentials on a subshift X by C(X). For any F � G, we define
the F-Birkhoff sum of φ: φF = ∑

g∈F φ ◦ σg . Finally, for any open cover U of X, any
F � G, we define the open cover UF = ∨

f ∈F σ−1
f U = {⋂f ∈F σ−1

f (Uf ) : Uf ∈ U}. We
use this notation to define the following partition function.

Definition 2.5. We define a partition function for any F � G and any open cover U of X:

ZF (φ, U) = inf
{∑

u∈U ′
exp

(
sup
x∈u

φF (x)
)

: U ′ is a subcover of UF

}
.

We can define the topological pressure of φ with respect to a given open cover U to be

P(φ, U) = lim
n→∞ |Fn|−1 log ZFn(φ, U)

for any Følner sequence {Fn}. This limit is guaranteed to exist and does not depend on the
choice of Følner sequence, further discussion of which can be found in [5] and [12]. We
can now define the following.
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8 C. E. Hedges

Definition 2.6. The topological pressure of φ is then

Ptop(φ) = sup
U

P(φ, U).

Since, in the subshift setting, the dynamical system (X, σ) is expansive, the above
supremum is attained at an open cover U of diameter less than or equal to the expansiveness
constant. In particular, we can compute topological pressure by

Ptop(φ) = lim
n→∞ |Fn|−1 log

∑
w∈LFn(X)

exp
(

sup
x∈[w]

φFn(x)
)
.

In addition to the topological pressure, for a given invariant measure μ ∈ Mσ (X), we
can define the pressure of μ with respect to φ ∈ C(X) as follows:

Pφ(μ) = h(μ) +
∫

φ dμ,

where h(μ) is the Kolmogorov–Sinai entropy of the invariant probability measure μ. As
shown by Ollagnier and Pinchon [19], in the countable amenable subshift setting, the
variational principle holds. In particular, for all φ ∈ C(X),

Ptop(φ) = sup
μ∈Mσ (X)

Pφ(μ).

In statistical physics, equilibrium states correspond with probability measures on the
state space that minimize the Gibbs free energy of the system. Up to a multiplicative
constant, the free energy of an invariant measure corresponds with the negative pressure,
and so we similarly define an equilibrium state as follows.

Definition 2.7. We say μ ∈ Mσ is an equilibrium state for φ if it attains the variational
principle supremum, that is,

Ptop(φ) = h(μ) +
∫

φ dμ.

When h is upper semicontinuous (as in the case for expansive dynamical systems), we
know the collection of equilibrium states for a given φ is non-empty, compact under the
weak-∗ topology, and convex, where the extreme points are exactly the ergodic equilibrium
states.

2.4. Equilibrium measures and the Gibbs property. A rich theory has developed around
relating equilibrium states and measures with the Gibbs property (for some definition
of Gibbs property). In the classical results of Dobrušin, Lanford, and Ruelle, the Gibbs
property can be defined in terms of conditional probabilities as follows.

Definition 2.8. For a subshift X ⊂ AZ
d

and a potential φ ∈ C(X), we say a measure μ

is Gibbs for φ if for all F � Zd , for all w ∈ LF (X), and for μ-a.e. η ∈ AZ
d\F such that

wη ∈ X,

μ(w||η) = exp(φ(wη))∑
v∈LF (X) exp(φ(vη)) · 1X(vη)

.
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Bounds for equilibrium states on amenable group subshifts 9

In other words, we say a measure is Gibbs for φ when the probability of a local
configuration, w, given a background configuration, η, can be computed in the typical
way one computes Gibbs measures in the finite case. The results of Dobrušin combined
with those of Lanford and Ruelle show equivalence to the Gibbs property and being an
equilibrium state under certain assumptions on subshift.

The following theorem involves a technical condition called property (D), which is
described in [9].

THEOREM 2.9. (Dobrushin [9]) Let X ⊂ AZ
d

be a subshift satisfying property (D) and
φ ∈ C(X) be a potential with d-summable variation. If μ ∈ Mσ (X) is an invariant
probability measure that is Gibbs for φ, then μ is an equilibrium state for φ.

THEOREM 2.10. (Lanford and Ruelle [15]) Let X ⊂ AZ
d

be a subshift of finite type and
φ ∈ C(X) be a potential with d-summable variation. If μ is an equilibrium state for φ,
then μ is Gibbs for φ.

Subshifts of finite type, SFTs, are an important and well-studied class of subshifts that
are not defined here. Analogous results have since been shown in the countable amenable
subshift setting [18, 23]. Note that these statements rely on relatively strong assumptions on
both the subshift and the potential. When no assumptions are made of the potential, little
can be said about the equilibrium state. In fact, by upper semicontinuity of the entropy
map, it can be shown that for any subshift X ⊂ AG and any ergodic state μ ∈ Mσ (X),
there exists a potential φ ∈ C(X) for which μ is the unique equilibrium state [13]. It is
therefore quite natural to retain some regularity assumptions on the class of potentials
under consideration.

3. Proof of Theorem 1.1
For our results, we will impose a natural regularity assumption on our potential φ, but
impose no restriction on the subshift X ⊂ AG. Our proof of Theorem 1.1 will be adapted
from the proof technique of García-Ramos and Pavlov in [11], which involves replacing v
with w along a sufficiently sparse and regular grid in G. Lemma 3.1 allows us to construct
a partition of G from which we may choose the appropriate grid. We will then prove a
few technical lemmas, and finally we will show our main result and conclude with a few
notable corollaries.

3.1. Sufficiently sparse almost partitions. The following lemma allows us to generate a
finite ε-almost partition of G where each part is sufficiently sparse relative to some fixed
F � G.

LEMMA 3.1. For any F � G, ε > 0, and Følner sequence {Fn}, there exists a finite
collection P = {Pi : 1 ≤ i ≤ N} of pairwise disjoint, left F-sparse subsets of G and a
subsequence {Fnk

} such that

lim inf
k→∞

| ⋃
P∈P P ∩ Fnk

|
|Fnk

| ≥ 1 − ε.
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In lieu of a complete and technical proof, we provide an outline of how this result
can be shown. The result can be viewed as a weakened reformulation of a quasitiling
result of Ornstein and Weiss in [21], or an application of the exact tiling results in [10].
In essence, one can construct a quasitiling (or an exact tiling) of G using a finite collection
of shapes that are sufficiently F-invariant. The F-invariance ensures that we can consider
only the F-interiors of these shapes and maintain a (1 − ε)-covering of G. We then let
P ∈ P represent all the shifts of a particular location of an element in a specified shape.
This allows us to ensure that P is left F-sparse since we have restricted to the F-interiors
of the relevant shapes.

3.2. Subshift lemmas. We begin by describing our regularity constraints imposed on the
potential φ.

Definition 3.2. The F-variation of φ for any F ⊂ G is defined as

VarF (φ) = sup{φ(x) − φ(y) : x, y ∈ X and xF = yF }.
Definition 3.3. We say {En} is an exhaustive sequence in G if E1 ⊂ E2 ⊂ · · · and
G = ⋃

n∈N En.

Definition 3.4. We say φ has summable variation according to the exhaustive sequence
{En} if ∑

n∈N
|E−1

n+1\E−1
n | · VarEn(φ) < ∞.

Additionally, we will say φ ∈ C(X) has summable variation if φ has summable
variation according to some exhaustive sequence.

For a fixed exhaustive sequence {En}, we define SV{En}(X) to be the collection
of all potentials with summable variation according to {En}. We also let SV (X) =⋃

{En} SV{En}(X) denote the collection of all potentials with summable variation according
to some exhaustive sequence.

It is worth noting here that when G = Zd , we can take En = {k ∈ Zd : |ki | ≤ n} and
summable variation according to this sequence corresponds to d-summable variation in
the typical sense.

Definition 3.5. For an exhaustive sequence {En}, we define the summable variation norm
on SV{En}(X) by

||φ||SV{En} = 2|E1| · ||φ||∞ +
∑
n∈N

|E−1
n+1\E−1

n | · VarEn(φ).

OBSERVATION 3.6. If φ has summable variation according to some exhaustive sequence
{En}, then for any F � G such that e ∈ F , φ has summable variation according to
exhaustive sequence {EnF }.
Proof. First, let H � G and note HF−1 is also a finite set. We therefore have some N ∈ N

such that for all n ≥ N , HF−1 ⊂ En and so H ⊂ EnF . It immediately follows that {EnF }
is an exhaustive sequence.
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Since e ∈ F by assumption, we have En ⊂ EnF . We now see that∑
n∈N

|En+1F\EnF |VarEnF (φ) ≤ |F |
∑
n∈N

|En+1\En|VarEn(φ) < ∞.

We now restate relevant definitions and lemmas from García-Ramos and Pavlov in [11].

Definition 3.7. For v, u ∈ L(X), we define Ov(u) = {g ∈ G : σg(u)F = v}.
In particular, Ov(u) represents the indices where v occurs in u and can be read as

‘occurrences of v in u’. We will now define a replacement function that for a given finite
configuration u, replaces occurrences of v with w in specified locations.

Definition 3.8. Let F , H � G and fix any v, w ∈ LF (X) and u ∈ LH (X). Let S ⊂ Ov(u)

be an F-sparse set of occurrences of v in u. We now define Rv→w
u (S) = u′ as follows:

• for s ∈ S, f ∈ F , let u′
sf = wf ; and

• for all other g ∈ H\SF , let u′
g = ug .

Since S is an F-sparse subset of Ov(u), we know u′ is well defined and uniquely
determined. Note here that u′ is exactly the configuration obtained by replacing v with
w in the S-locations.

We remind the reader that for any finite configuration v ∈ LF (X), the extender set of
v is defined as EX(v) = {η ∈ AFc

: vη ∈ X}. Note here, whenever EX(v) ⊂ EX(w), then
Rv→w

u (S) ∈ L(X) for any left F-sparse set S ⊂ Ov(u).

LEMMA 3.9. [11, Lemma 4.2] For any F, v, w ∈ LF (X) with v �= w, and left F-sparse
set T ⊂ Ov(u), Rv→w

u is injective on subsets of T.

LEMMA 3.10. [11, Lemma 4.3] For any F and v, w ∈ LF (X), any left F-sparse set
T ⊂ Ov(u), any u′, and any m ≤ |T ∩ Ow(u′)|,

|{(u, S) : S is left F -sparse, |S| = m, S ⊆ T , u′ = Rv→w
u (S)}| ≤

(|T ∩ Ow(u′)|
m

)
.

The following lemma will be useful for computing topological pressure.

LEMMA 3.11. Let μφ be an ergodic equilibrium measure for any φ ∈ C(X). For any
tempered Følner sequence {Fn}, if Sn ⊂ LFn(X) such that μφ(Sn) → 1, then

Ptop(φ) = lim
n→∞

1
|Fn| log

( ∑
w∈Sn

sup
x∈[w]

exp(φFn(x))

)
.

Proof. Let ε > 0 and note by definition of topological pressure above, we have

lim sup
n→∞

1
|Fn| log

( ∑
w∈Sn

sup
x∈[w]

exp(φFn(x))

)
≤ Ptop(φ).

For every n, define

Tn =
{
w ∈ LFn(X) : μφ([w]) < exp

(
|Fn|

(
sup

x∈[w]
φFn(x) − (Ptop(φ) − ε)

))}
.
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Note since Fn is a tempered Følner sequence and μφ is ergodic, we can apply the
pointwise ergodic theorem and the Shannon–Macmillan–Breiman theorem proven in
[12, 21] to see for μφ-a.e. x ∈ X,

Ptop(φ) = h(μφ) +
∫

φ dμφ = lim
n→∞ |Fn|−1(φFn(x) − log μφ([xFn])).

By the definition of Tn, it therefore follows that μφ(
⋃

N∈N
⋂

n≥N Tn) = 1, and so
μφ(Tn) → 1. Further, μ(Sn ∩ Tn) → 1 and by definition of Tn,

∑
w∈Sn∩Tn

sup
x∈[w]

exp(φFn(x)) ≥ μφ(Sn ∩ Tn)exp(|Fn|(Ptop(φ) − ε)).

By taking sufficiently large n, we therefore have∑
w∈Sn

sup
x∈[w]

exp(φFn(x)) ≥ 0.5exp(|Fn|(Ptop(φ) − ε)).

Since ε > 0 was arbitrary, we are finished.

We remind the reader that for v, w ∈ LF (X), ξv,w : X → X is the map that swaps v
and w in the F location whenever legal.

OBSERVATION 3.12. If φ has summable variation according to the exhaustive sequence
{En}, then for any F � G, v, w ∈ LF (X), and any x ∈ [v],∑

g∈G

|φ(σg(x)) − φ(σg(ξv,w(x)))| ≤ |F | · ||φ||SV{En} .

We note the proof of Observation 3.12 is standard and the statement appears nearly iden-
tically as [1, Proposition 3.1]. The final lemma in this section is a Stirling approximation
that will be necessary to compute a lower bound on pressure in the proof of Theorem 1.1.

LEMMA 3.13. For b, a ∈ Q+, and any sequence nk ∈ N such that for all k, k! divides nk ,
let D ∈ R satisfying log(a/b) > D. Then, for sufficiently small c ∈ Q+, we have

lim
k→∞ n−1

k

(
log

(
ank

cnk

)
− log

(
bnk

cnk

))
> cD.

Proof. We define for all c ∈ (0, min{a, b}) ∩ Q,

f (c) = lim
k→∞ n−1

k

(
log

(
ank

cnk

)
− log

(
bnk

cnk

))
.

First note, we have for all k ∈ N,(
log

(
ank

cnk

)
− log

(
bnk

cnk

))
= log(ank)! + log((b − c)nk)! − log(bnk)! − log((a − c)nk)! .

If we divide by nk and take the limit as k goes to infinity, Stirling’s approximation implies

f (c) = a log
a

a − c
+ b log

b − c

b
+ c log

a − c

b − c
.
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We now examine

f ′(c) = a

a − c
− b

b − c
+ log

a − c

b − c
+ c

b − a

(a − c)(c − b)
.

Note here f ′(0) = log(a/b) > D. Since f (0) = 0, it immediately follows that for suffi-
ciently small c ∈ Q+, we know f (c) > cD.

3.3. Proof of Theorem 1.1.

THEOREM 3.1. Let G be a countable amenable group and X be a G-subshift. Let
φ ∈ SV (X), μφ an equilibrium state for φ, F � G and v, w ∈ LF (X). If EX(v) ⊂
EX(w), then

μφ([v]) ≤ μφ([w]) · sup
x∈[v]

exp
( ∑

g∈G

φ(σg(x)) − φ(σg(ξv,w(x)))

)
.

First, we let X, φ, F, v and w be as in the statement of the theorem. By ergodic
decomposition, it is sufficient to show the desired result for ergodic equilibrium states,
so we let μφ be an ergodic equilibrium state for φ. Fix C = supx∈[v]

∑
g∈G φ(σg(x)) −

φ(σg(ξv,w(x))) and note by Observation 3.12, we know −∞ < C < ∞. We now suppose
for a contradiction that μφ([v]) > μφ([w]) · eC .

We now take δ ∈ (0, 4
5μφ([v])) satisfying

e−C · μφ([v]) − 5δ/4
μφ([w]) + 2δ

> 1.

Note here, this is attainable for all sufficiently small δ since we know

f (δ) = e−C · μφ([v]) − 5δ/4
μφ([w]) + 2δ

is continuous and, by assumption, f (0) > 1.
Let Fn be a Følner sequence such that for each n, n! divides |Fn| and F−1

n = Fn. It
is noted by Xu and Zheng in [24] that we can assume Fn is tempered by passing to a
subsequence. Re-index this sequence by n, and thus since Fn is tempered, we know it
satisfies the requirements for the lemmas above.

We now define Sn ⊂ LFn(X) as follows:

Sn := {u ∈ LFn(X) : |Ov(u)| ≥ |Fn|(μφ([v]) − δ) and |Ow(u)| ≤ |Fn|(μφ([w]) + δ)}.
We note here since μφ is ergodic, μφ(Sn) → 1 and we can therefore apply Lemma 3.11

to see

Ptop(φ) = lim
n→∞ |Fn|−1 log

∑
u∈Sn

sup
x∈[u]

exp(φFn(x)).

We now apply Lemma 3.1 with respect to F and ε = δ/8, re-index our Følner sequence
according to the lemma, and let P = {Pi : 1 ≤ i ≤ N} be our collection of pairwise
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14 C. E. Hedges

disjoint, left F-sparse sets. We also pass to the tail of the sequence of Følner sets ensuring
that for each n, we have

|⋃i≤N Pi ∩ Fn|
|Fn| ≥ 1 − δ

4
.

For each 1 ≤ i ≤ N , we now define

Si
n =

{
u ∈ Sn : |Ov(u) ∩ Pi | ≥ μφ([v]) − 5δ/4

N
|Fn|

}
.

LEMMA 3.2. For each n ∈ N, Sn = ⋃
1≤i≤N Si

n.

Proof. Suppose there exists some u ∈ Sn\ ⋃
1≤i≤N Si

n. We therefore know for all P ∈ P ,
|Ov(u) ∩ P | < (μφ([v]) − 5δ/4)/N |Fn|. Let Q = Fn\ ⋃

i≤N Pi and note that

|Ov(u)| =
N∑

i=1

|Ov(u) ∩ Pi | + |Ov(u) ∩ Q| < (μφ([v]) − 5δ/4)|Fn| + |Ov(u) ∩ Q|.

However, since u ∈ Sn, we know (μφ([v]) − δ) · |Fn| < |Ov(u)|. It follows that

(μφ([v]) − δ) · |Fn| < (μφ([v]) − 5δ/4)|Fn| + |Ov(u) ∩ Q|.
By our construction of P and since we took a sufficiently long tail for Fn, we know
that |Ov(u) ∩ Q| ≤ |Q ∩ Fn| ≤ (δ/4)|Fn|. We therefore have μφ([v]) − δ < μφ([v]) − δ,
arriving at a contradiction, and we can conclude that Sn = ⋃

1≤i≤N Si
n.

LEMMA 3.3. There exists some fixed 1 ≤ i ≤ N and a subsequence (nk) for which we
have

Ptop(φ) = lim
k→∞ |Fnk

|−1 log
∑

u∈Si
nk

sup
x∈[u]

exp(φFnk
(x)).

Proof. First notice, since Sn = ⋃
i≤N Si

n,

∑
u∈Sn

sup
x∈[u]

exp(φFn(x)) ≤
N∑

i=1

∑
u∈Si

n

sup
x∈[u]

exp(φFn(x)),

and we therefore have for each n, some 1 ≤ in ≤ N such that

1
N

∑
u∈Sn

sup
x∈[u]

exp(φFn(x)) ≤
∑

u∈S
in
n

sup
x∈[u]

exp(φFn(x)).

We now use the pigeonhole principle to find a subsequence nk such that ink
= i is constant.

Note, by our construction, we have∑
u∈Si

nk

sup
x∈[u]

exp(φFn(x)) ≥ N−1
∑
u∈Sn

sup
x∈[u]

exp(φFn(x)).
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We now examine

Ptop(φ) = lim
n→∞ |Fn|−1

∑
u∈Sn

sup
x∈[u]

exp(φFn(x))

≥ lim
n→∞ |Fn|−1 log

∑
u∈Si

nk

sup
x∈[u]

exp(φFn(x))

≥ lim
n→∞ |Fn|−1 log N−1

∑
u∈Sn

sup
x∈[u]

exp(φFn(x))

= lim
n→∞ |Fn|−1 log N−1 + lim

n→∞ |Fn|−1
∑
u∈Sn

sup
x∈[u]

exp(φFn(x)) = Ptop(φ).

We now apply Lemma 3.3 and fix the resulting 1 ≤ i ≤ N and re-index along the
resulting subsequence (nk). Denote S′

k = Si
nk

and fix P = Pi . We can therefore compute
topological pressure by restricting to the sequence of collections of finite configurations S ′

n.
We will now make replacements of v with w in every u ∈ S ′

n at locations in P with a small
frequency to increase the pressure of the dynamical system to arrive at our contradiction.

We let a, b ∈ Q+ such that a ≤ (μφ([v]) − 5δ/4)/N , b ≥ (μφ([w]) + 2δ)/N , and
log(a/b) > C. Note, such a, b ∈ Q+ must exist since log(μφ([v]) − 5δ/4)/(μφ([w]) +
2δ) > C by assumption. We now let ε ∈ Q+ be sufficiently small to satisfy Lemma 3.13
with respect to a, b and D = C.

Define for each u ∈ S′
n,

Au = {Rv→w
u (S) : S ⊂ Ov(u) ∩ P and |S| = ε · |Fn|}.

Since ε ∈ Q and n! divides |Fn|, for sufficiently large n, ε · |Fn| ∈ N and Au is well
defined. We restrict our consideration for all n large enough that this definition makes
sense. Additionally, since EX(v) ⊂ EX(w), we have Au ⊂ L(X).

We can now define for each n ∈ N, Ln = ⋃
u∈S′

n
Au.

LEMMA 3.4. For each n ∈ N,
∑

u∈Ln
supx∈[u] exp(φFn(x)) is bounded below by

(
∑

u∈S′
n

supx∈[u] exp(φFn(x) − (ε · |Fn|/N)C))
(�(μφ([v])−5δ/4)|Fn|/N�

ε·|Fn|
)

(�(μφ([w])+2δ)|Fn|/N�
ε·|Fn|

) . (1)

Proof. Note here, for each u ∈ S′
n,

|Au| =
(|Ov(u) ∩ P |

ε · |Fn|
)

≥
(�(μφ([v]) − 5δ/4)|Fn|/N�

ε · |Fn|
)

.

However, for every u′ ∈ ⋃
u∈Sn

Au, we know u′ came from some u ∈ Sn by replacing
the ε · |Fn|/N v terms with w. We can therefore get a bound on the following:

|Ow(u′) ∩ P | ≤ |Ow(u) ∩ P | + ε · |Fn|
N

<
(μφ([w]) + δ)|Fn|

N
+ δ|Fn|

|FF−1| · N
.

Since |FF−1| ≥ 1, we therefore have

|Ow(u′) ∩ P | <
(μφ([w]) + 2δ)|Fn|

N
.
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16 C. E. Hedges

We therefore know for any fixed u′ ∈ Au, there are at most
(�(μφ([w]) + 2δ)|Fn|/N�

ε · |Fn|
)

u terms for which u′ ∈ Au.
It follows that

∑
u∈Ln

supx∈[u] exp(φFn(x)) is bounded below by

(
∑

u∈S′
n

∑
u′∈Au

supx∈[u′] exp(φFn(x)))
(�(μφ([v])−5δ/4)|Fn|/N�

ε·|Fn|
)

(�(μφ([w])+2δ)|Fn|/N�
ε·|Fn|

) . (2)

We now bound for any fixed u ∈ S′
n and each u′ ∈ Au, supx∈[u′] φFn(x). First, note

u′ = Rv→w
u (S) for some S ⊂ Fn. Since EX(v) ⊂ EX(w) and by our choice of S, we know

EX(u) ⊂ EX(u′). We therefore know ξu,u′ (as defined above) is injective and non-identity
on [u]. In particular, we are replacing our v terms located at S with w terms just as we did
in the construction of u′. Note here, ξu,u′([u]) ⊂ [u′] and thus, we have

sup
x∈[u′]

φFn(x) ≥ sup
x∈ξu,u′ ([u])

φFn(x) = sup
x∈[u]

φFn(ξu,u′(x)).

We now fix any x ∈ [u]. Note that since S is finite and left F-sparse, we may make the v to
w replacements sequentially. Each of these replacements takes the form σg−1(ξv,w(σg(x))

for some g ∈ G. Note here, for each replacement of this kind, by definition of C, we have

φFn(σg−1(ξv,w(σg(x))) ≥ φFn(x) − C.

Since we will make |S| of these replacements, it follows that

φFn(ξu,u′(x)) ≥ φFn(x) − |S|C.

We therefore know that
∑
u∈S′

n

∑
u′∈Au

sup
x∈[u′]

exp(φFn(x)) ≥
∑
u∈S′

n

|Au| sup
x∈[u]

exp(φFn(x) − |S|C).

Since |Au| ≥ 1, we therefore have
∑
u∈S′

n

∑
u′∈Au

sup
x∈[u′]

exp(φFn(x)) ≥
∑
u∈S′

n

sup
x∈[u]

exp(φFn(x) − |S|C). (3)

Combining equations (2) and (3), we arrive at our desired result that
∑

u∈Ln
supx∈[u]

exp(φFn(x)) is bounded below by equation (1).

We will conclude the proof of Theorem 1.1 by computing a lower bound on topological
pressure and arrive at a contradiction. Since Ln ⊂ LFn(X), it must be the case that

Ptop(φ) ≥ lim sup
n→∞

|Fn|−1 log
( ∑

u∈Ln

sup
x∈[u]

exp(φFn(x))

)
.
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By application of Lemma 3.4, we can see that Ptop(φ) is bounded below by

lim inf
n→∞ |Fn|−1 log

(
∑

u∈S′
n

supx∈[u] exp(φFn(x) − (ε · |Fn|/N)C))
(�(μφ([v])−5δ/4)|Fn|/N�

ε·|Fn|
)

(�(μφ([w])+2δ)|Fn|/N�
ε·|Fn|

) ,

which is exactly equal to

lim inf
n→∞ |Fn|−1 log

( ∑
u∈S′

n

sup
x∈[u]

exp(φFn(x))

)
− ε · C

+ |Fn|−1 log
(�(μφ([v]) − 5δ/4)|Fn|/N�

ε · |Fn|
)

− |Fn|−1 log
(�(μφ([w]) + 2δ)|Fn|/N�

ε · |Fn|
)

.

(4)

We now note by our choice of a, b, and ε,

lim
n→∞ |Fn|−1 log

(�(μφ([v]) − 5δ/4)|Fn|/N�
ε · |Fn|

)
− |Fn|−1 log

(�(μφ([w]) + 2δ)|Fn|/N�
ε · |Fn|

)

≥ lim
n→∞ |Fn|−1 log

(
a|Fn|

ε · |Fn|
)

− |Fn|−1 log
(

b|Fn|
ε · |Fn|

)
> εC.

It therefore follows that equation (4) is strictly greater than

lim inf
n→∞ |Fn|−1 log

( ∑
u∈S′

n

sup
x∈[u]

exp(φFn(x))

)
,

and since equation (4) is a lower bound for pressure, we therefore know

Ptop(φ) > lim inf
n→∞ |Fn|−1 log

( ∑
u∈S′

n

sup
x∈[u]

exp(φFn(x))

)
.

This contradicts Lemma 3.3. In particular, this means our assumption that μφ([v]) >

μφ([w]) · eC was incorrect, arriving at our desired result that if EX(v) ⊂ EX(w), then

μφ([v]) ≤ μφ([w]) · sup
x∈[v]

exp
( ∑

g∈G

φ(σg(x)) − φ(σg(ξv,w(x)))

)
.

3.4. Locally constant corollaries. We will now explore the case where φ is locally
constant.

The following result shows that when the finite configurations v and w agree on a
sufficiently chosen boundary, we may compute bounds for their relative measure using only
information from the configurations themselves. Further, when they have equal extender
sets, we have a closed form formula depending only on φ, v, and w to compute the ratio of
their measures.

We will say that φ is an H-potential for some H � G if for all x, y ∈ X such that
xH = yH , then φ(x) = φ(y), that is, VarH (φ) = 0. Additionally, for any H ⊂ G, we will
denote H± = H ∪ H−1.
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COROLLARY 3.5. Let H , F � G, v, w ∈ LF (X), and φ be an H-potential. Suppose that
EX(v) ⊂ EX(w) and for all g ∈ FcH± ∩ F , vg = wg (that is, v and w agree on their
H-boundary). Then, for any equilibrium state μφ for φ,

μφ([v]) ≤ μφ([w]) · exp
( ∑

g∈F\FcH−1

φ(σg(v)) − φ(σg(ξv,w(w)))

)
.

Proof. We first note, for all x ∈ [v] and for any g ∈ F ∩ FcH−1, by assumption, we have
xgH = ξv,w(x)gH . Since φ is an H-potential, it immediately follows that for all g ∈ F ∩
FcH−1,

φ(σg(x)) − φ(σg(ξv,w(x))) = 0.

We now consider g ∈ Fc. If gH ∩ F = ∅, then xgH = ξv,w(x)gH by definition of ξv,w.
We now consider gH ∩ F �= ∅. However, by assumption, since g ∈ Fc, we know for all
f ∈ gH ∩ F , vf = wf and again we can conclude xgH = ξv,w(x)gH . Thus, we know for
all g ∈ Fc,

φ ◦ σg(x) − φ ◦ σg(ξv,w(x)) = 0.

Since φ is locally constant, it has summable variation, and we can apply Theorem 1.1 to
see

μφ([v]) ≤ μφ([w]) sup
x∈[v]

exp
( ∑

g∈F\FcH−1

φ(σg(x)) − φ(σg(ξv,w(x)))

)
.

We let x, y ∈ [v], g ∈ F\FcH±, and h ∈ H . By construction, we know g /∈ FcH−1 and,
thus, gH ∩ Fc = ∅. Since φ is an H-potential, it follows that φ ◦ σg(x) = φ ◦ σg(y), and
similarly for ξv,w(x) and ξv,w(y). We can therefore conclude that

∑
g∈F\FcH± φ(σg(x)) −

φ(σg(ξv,w(x))) does not depend on the choice of x ∈ [v] and can be computed by only
looking at the cylinder set, and we have arrived at our desired result.

As an immediate corollary, we have the following.

COROLLARY 3.6. Let H , F � G, v, w ∈ LF (X), and φ be an H potential. Suppose that
EX(v) = EX(w) and for all g ∈ FcH± ∩ F , vg = wg (that is, v and w agree on their
H-boundary). Then, for any equilibrium state μφ for φ,

μφ([v])
exp

( ∑
g∈F\FcH−1 φ ◦ σg(v)

) = μφ([w])
exp

( ∑
g∈F\FcH−1 φ ◦ σg(w)

) .

We remind the reader that in the case of φ = 0, equilibrium states correspond with
measures of maximal entropy. In this case, as a corollary of Theorem 1.1, we extend the
results of García-Ramos and Pavlov in [11] to the countable amenable subshift setting.

COROLLARY 3.7. Let X be a G-subshift, F � G, v, w ∈ LF (X), and μ a measure of
maximal entropy. If EX(v) ⊂ EX(w), then μ([v]) ≤ μ([w]).
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4. Conformal Gibbs results
4.1. Homoclinic relation and conformal Gibbs. As previously mentioned, a measure
μ is Gibbs for a potential φ (in the sense of the theorem of Dobrušin and that of
Lanford–Ruelle) if and only if it is conformal Gibbs for φ. This section will explore our
conformal Gibbs-like result, for which we will follow the definition found in [3].

First, we define the homoclinic relation, also known as the Gibbs relation, as
TX ⊂ X × X such that (x, y) ∈ TX if and only if xFc = yFc for some F � G. We now say
a Borel isomorphism f : X → X is a holonomy of TX if for all x ∈ X, (x, f (x)) ∈ TX.
It is known (see [3]) that there exists a countable group 
 of holonomies of X such that
TX = {(x, γ (x)) : x ∈ X, γ ∈ 
}. In fact, by a trivial extension of [3, Lemma 1], we
can see immediately that 
 = 〈ξv,w : v, w ∈ LF (X), F � G〉 is a countable group of
holonomies such that TX = {(x, γ (x)) : x ∈ X, γ ∈ 
}.

For any measurable A ⊂ X, we define TX(A) = ⋃
x∈A{y ∈ X : (x, y) ∈ TX}. For

a Borel measure μ on X, we say μ is TX-non-singular if for all null sets A ⊂ X,
μ(TX(A)) = 0. Note for any holonomy f : X → X, if A ⊂ X is a null set and μ is
TX-non-singular, then μ ◦ f (A) ≤ μ(TX(A)) = 0 and therefore μ ◦ f << μ.

We define a cocycle on TX to be any measurable ψ : TX → R such that for all x, y,
z ∈ X with (x, y), (y, z) ∈ TX, we have ψ(x, y) + ψ(y, z) = ψ(x, z). We can now define
conformality following [3, Definition 1].

Definition 4.1. Let μ be a TX-non-singular Borel probability measure on X and let
ψ : TX → R be a cocycle. We say μ is (ψ , TX)-conformal if for any holonomy
f : X → X, we have

dμ ◦ f

dμ
(x) = exp(ψ(x, f (x)).

Since we are concerned with Gibbs measures, in general, for a potential φ ∈ SV (X),
we define the following cocycle:

ψφ(x, y) =
∑
g∈G

φ ◦ σg(y) − φ ◦ σg(x)

and we will say that a measure μ is conformal Gibbs for φ if it is (ψφ , TX)-conformal.
Connecting this concept further to the classical notion of Gibbs measures, it was shown

in [3] that a measure is conformal Gibbs for φ if and only if it is Gibbs for φ in the sense
of Definition 2.8.

In addition to the homoclinic relation, in [17], Meyerovitch defined a subrelation as
follows. First, let

F(X) = {f ∈ Homeo(X) : there exists F � G such that for all x ∈ X, f (x)Fc = xFc }.
In particular, F(X) is the group of all background preserving homeomorphisms. We then
define T0

X = {(x, f (x)) : x ∈ X, f ∈ F(X)}. Clearly, T0
X ⊂ TX; however, in general,

these are not necessarily equal.
Notice that when X is an SFT, then each ξv,w is in fact a homeomorphism and

thus ξv,w ∈ F(X). In this case, T0
X = TX. Additionally, even if X is not an SFT, if
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EX(v) = EX(w), ξv,w is again a homeomorphism. However, it need not be the case that
ξv,w is continuous in general.

Example 4.2. Take X ⊂ {0, 1}Z to the orbit closure of x = 0∞10∞ (which is sometimes
referred to as the sunny-side-up subshift). We define ξ1,0 to swap a 1 and 0 in the
identity location, and note here that EX(1) � EX(0). For each n ≥ 0, define xn ∈ X

such that (xn)n = 1. Then, for all n ≥ 1, ξ1,0(xn) = xn. However, we have xn → 0∞ and
ξ1,0(0∞) = x0. It immediately follows that

lim
n→∞ ξ1,0(xn) = 0∞ �= x0 = ξ1,0( lim

n→∞ xn)

and we can conclude ξ1,0 is not continuous.

In the case of G = Zd and φ ∈ C(X) has d-summable variation, Meyerovitch proved
the following result.

THEOREM 4.3. (Meyerovitch [17]) Let X ⊂ AZ
d

be a subshift, φ ∈ C(X) a potential with
d-summable variation, and μφ be an equilibrium state for φ that is TX-non-singular. Then,
μφ is (ψφ , T0

X)-conformal.

In particular, μφ is conformal Gibbs with respect to the sub-relation T0
X. What this

means in the terminology of our paper is for G = Zd and φ with d-summable variation,
if EX(v) = EX(w), then for μφ-a.e. x ∈ X, (d(μ ◦ ξv,w)/dμ)(x) = exp(ψφ(x, ξv,w(x))).
We will use Theorem 1.1 to extend this result both to the general amenable group setting
as well as to provide an inequality on the derivative when EX(v) ⊂ EX(w).

4.2. Proof of conformal Gibbs result. In this section, we will prove the following
theorem.

THEOREM 4.4. Let F � G, v, w ∈ LF (X), φ ∈ SV (X), and μφ be an equilibrium state
for φ. If EX(v) ⊂ EX(w), then μφ ◦ ξv,w is absolutely continuous with respect to μφ when
restricted to [w] and for μφ-a.e. x ∈ [w],

d(μ ◦ ξv,w)

dμ
(x) ≤ exp(ψφ(x, ξv,w(x))).

For the remainder of this section, we fix some F � G, v, w ∈ LF (X), φ ∈ SV (X), and
μφ an equilibrium state for φ.

OBSERVATION 4.5. If EX(v) ⊂ EX(w), then μφ ◦ ξv,w << μφ when restricted to [w].

Proof. Let A ⊂ [w] be a null set. Note here

ξv,w(A) = {x ∈ A : ξv,w(x) = x} � {ξv,w(x) : x ∈ A and ξv,w(x) ∈ [v]}.
Since {x ∈ A : ξv,w(x) = x} ⊂ A, it must be a null set, and thus it is sufficient to assume
without loss of generality that ξv,w(A) ∩ A = ∅.

Since we know μφ is outer regular, we can let Un = ⋃
i≤Nn

[wn,i] be an outer
approximation by cylinder sets such that μφ(A) = limn→∞ μφ(Un). By taking sufficiently
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large n, we can assume without loss of generality that [wn,i] ⊂ [w] for all n, i. Note for
each n, i, we have EX(ξv,w(wn,i )) ⊂ EX(wn,i ). We now apply Theorem 1.1 with respect
to φ, μφ , vn,i , and wn,i to see

μφ(ξv,w(A)) = lim
n→∞

∑
i≤Nn

μφ(ξv,w([wn,i]))

≤ lim
n→∞

∑
i≤Nn

μφ([wn,i]) sup
x∈[v]

exp(f (x)) = 0.

In particular, this means we can discuss the LRN derivative when restricted to [w]. We
now define for each n ∈ N, φn : X → R to be an En potential approximating φ from above.
In particular, for all u ∈ LEn(X), for any x ∈ [u], let φn(x) = supy∈[u] φ(y).

OBSERVATION 4.6. φn converges to φ with respect to the summable variation norm
induced by {En}.
Proof. First note, for any k, n ∈ N, we have

VarEk
(φn − φ) ≤ 2||φ||∞ and VarEk

(φn − φ) ≤ 2VarEk
(φ).

Let ε > 0 and note since φ has summable variation according to {En}, by definition,
there exists some M ∈ N such that

∑∞
k=M+1 |Ek+1\Ek|VarEk

(φ) < ε. We fix this M. We
now note by continuity of φ and since {En} is an exhaustive sequence, we know there exists
some N ∈ N such that for all n ≥ N ,

||φN − φ||∞ < ε

(
2|E1| +

M∑
k=1

|Ek+1\Ek|
)−1

.

We now let n ≥ N and we examine

||φN − φ||SV{En} = 2|E1| · ||φn − φ||∞ +
M∑

k=1

|Ek+1\Ek|VarEk
(φn − φ)

+
∞∑

k=M+1

|Ek+1\Ek|VarEk
(φn − φ)

≤ ||φn − φ||∞
(
2|E1| +

M∑
k=1

|Ek+1\Ek|
)

+ 2
∞∑

k=M+1

|Ek+1\Ek|VarEk
(φ).

By our choice of N and M, we know for all n ≥ N , ||φN − φ||SV{En} < 3ε. Since ε was
arbitrary, we can conclude the proof of the observation.

OBSERVATION 4.7. If EX(v) ⊂ EX(w), then the function f (x) = ψφ(x, ξv,w(x)) is
continuous on [v].

Proof. Using our locally constant approximations φn, we define for each n ∈ N,

fn(x) = ψφn(x, ξv,w(x)) =
∑
g∈G

φn(σg(ξv,w(x))) − φn(σg(x)).
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Since φn is locally constant, we know the infinite sum is in fact a finite sum and so fn is
continuous on [v]. We now claim that fn → f uniformly on [v]. By Observation 3.12, we
know for all x ∈ [v],

|fn(x) − f (x)| ≤ |F | · ||φn − φ||SV{En} .

Since φn → φ with respect to the summable variation norm by Observation 4.6, we
can conclude that fn → f uniformly on [v]. It immediately follows that f is continuous
on [v].

We can combine the above observations with Theorem 1.1 to prove the desired result.

THEOREM 4.3. Let F � G, v, w ∈ LF (X), φ ∈ SV (X), and μφ be an equilibrium state
for φ. If EX(v) ⊂ EX(w), then for μφ-a.e. x ∈ [w],

dμ ◦ ξv,w

dμ
(x) ≤ exp(ψφ(x, ξv,w(x))).

Proof. First, we fix F � G, v, w ∈ LF (X), φ ∈ C(X), and μφ as in the theorem. We
again define for all x ∈ X,

f (x) = ψφ(x, ξv,w(x)) =
∑
g∈G

φ(σg(ξv,w(x))) − φ(σg(x)),

which we know to be continuous on [v] by Observation 4.7.
We fix any Følner sequence {Fn} and assume without loss of generality that F ⊂ Fn for

all n. Fix any x ∈ [w]. We define wn = xFn and vn = ξv,w(x)Fn . Note here
⋂

n∈N[wn] = x,⋂
n∈N[vn] = ξv,w(x). Since F ⊂ Fn, we know EX(vn) ⊂ EX(wn). We can directly apply

Theorem 1.1 to see for each n ∈ N,

μφ(vn) ≤ μφ(wn) sup
y∈[vn]

exp(−f (y)).

Since by Observation 4.7, we know f is continuous on [v] and thus there exists some
yn ∈ [vn] such that supy∈[vn] exp(−f (y)) = exp(−f (yn)). We therefore have

μφ(vn)

μφ(wn)
≤ exp(−f (yn)).

Since yn ∈ [vn] and
⋂

n∈N[vn] = {ξv,w(x)}, we know yn → ξv,w(x). We can now take
limits to see

dμφ ◦ ξv,w

dμφ

(x) = lim
n→∞

μφ(vn)

μφ(wn)
≤ lim

n→∞ exp(−f (yn)) = exp(f (x)).

Finally, we note that whenever μφ satisfies the equations in Theorem 1.3, it is trivial to
show μφ must also satisfy the equations in Theorem 1.1.

OBSERVATION 4.4. Let X be a subshift and u, v ∈ LF (X) such that EX(v) ⊂ EX(w). Let
φ ∈ C(X) and μφ satisfy for μφ-a.e. x ∈ [w],

d(μ ◦ ξv,w)

dμ
(x) ≤ exp(ψφ(x, ξv,w(x))).
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Then,

μφ([v]) ≤ μφ([w]) · sup
x∈[v]

exp
( ∑

g∈G

φ(σg(x)) − φ(σg(ξv,w(x)))

)
.

Proof. First, we notice that since EX(v) ⊂ EX(w), then [v] ⊆ ξv,w([w]). Further, since
ξv,w is an involution, we know

μφ([v]) = μφ(ξv,w(ξv,w([v]))) =
∫

x∈ξv,w([v])

d(μφ ◦ ξv,w)

dμφ

(x) dμφ .

Since by assumption, for μφ-a.e. x ∈ [w],

d(μ ◦ ξv,w)

dμ
(x) ≤ exp(ψφ(x, ξv,w(x))),

we know that∫
x∈ξv,w([v])

d(μφ ◦ ξv,w)

dμφ

(x) dμφ ≤
∫

x∈ξv,w([v])
exp(ψφ(ξv,w(x), ξv,w(ξv,w(x)))) dμφ .

It follows immediately that

μφ([v]) ≤ μφ(ξv,w([v])) · sup
y∈[v]

exp(ψφ(ξv,w(x), x)).

Since ξv,w([v]) ⊂ [w], we arrive at our desired conclusion.

We will now note that as a corollary of Theorem 1.3, we can extend [17, Theorem 3.1 and
Corollary 3.2] to the countable amenable group subshift setting. We have become aware
that [2, Theorem B] extends this further to the countable sofic group subshift setting.

COROLLARY 4.5. Let X ⊂ AG be a subshift over a countable amenable group G, let
φ ∈ SV (X) be a potential with summable variation, and let μφ be an equilibrium state
for φ. Then, μφ is (T0

X, ψφ)-conformal.

Proof. First note, as observed in [17], the collection {ξv,w : EX(v) = EX(w)} generates
F(X). By application of the results in [17], it is therefore sufficient to show that for any
v, w ∈ LF (X) with EX(v) = EX(w), we have for all x ∈ X,

dμ ◦ ξv,w

dμ
(x) = exp(ψφ(x, ξv,w(x))).

Let v, w ∈ LF (X) such that EX(v) = EX(w). Let x ∈ [w] and for all n ∈ N, define
vn, wn ∈ LFn(X) as in the proof of Theorem 1.3. By application of Theorem 1.1, we can
see that

inf
y∈[vn]

exp(−f (y)) ≤ μφ([vn])
μφ([wn])

≤ sup
y∈[vn]

exp(−f (y)).
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By taking limits, we can conclude that for all x ∈ [w],

dμ ◦ ξv,w

dμ
(x) = exp(ψφ(x, ξv,w(x))).

The proof is similar for x ∈ [v] and for all x ∈ X\([v] ∪ [w]), we know

dμ ◦ ξv,w

dμ
(x) = exp(ψφ(x, ξv,w(x))) = 1.

Again, by following the techniques in [17], it follows that μφ is (T0
X, ψφ)-conformal.
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