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Abstract

In this paper, we show that there exist a Tychonoff quasi-Lindelöf space X and a compact space Y such
that X × Y is not quasi-Lindelöf. This answers negatively an open question of Petra Staynova.
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1. Introduction

By a space we mean a topological space. Let us recall that a space X is Lindelöf if
every open cover of X has a countable subcover. As a generalisation of Lindelöfness,
Frolik [3] defined a space X to be weakly Lindelöf if for every open cover U of X
there exists a countable subset V of U such that ∪{V : V ∈ V} = X. Unfortunately,
this property is not inherited by closed subspaces. Thus Arhangel’skiı̆ [1] defined
a space X to be quasi-Lindelöf if every closed subspace of X is weakly Lindelöf.
Recently, Staynova [5, 6] studied the relationships between quasi-Lindelöf spaces and
related spaces and investigated topological properties of quasi-Lindelöf spaces. In [7],
Song and Zhang stated that the product of a weakly Lindelöf space and a compact
space is weakly Lindelöf, for which a proof was provided by Staynova [5]. Thus
Staynova [5, 6] asked the following question.

P 1.1. Is the product of a quasi-Lindelöf space and a compact space quasi-
Lindelöf?

The purpose of this paper is to show that there exist a Tychonoff quasi-Lindelöf
space X and a compact space Y such that X × Y is not quasi-Lindelöf, which gives a
negative answer to the question.

Throughout this paper, the cardinality of a set A is denoted by |A|. Let ω be the first
infinite cardinal and c the cardinality of the set of all real numbers. As usual, a cardinal
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is the initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often
viewed as a space with the usual order topology. Other terms and symbols that we do
not define follow [2].

2. Main result

In the following, we give an example showing that the product of a Tychonoff quasi-
Lindelöf space X and a compact space Y need not be quasi-Lindelöf. We need the
following lemma from [5].

L 2.1. If X is a separable space, then X is quasi-Lindelöf.

E 2.2. There exist a Tychonoff quasi-Lindelöf space X and a compact space Y
such that X × Y is not quasi-Lindelöf.

P. Let R be a maximal almost disjoint family of infinite subsets of ω with |R| = c.
Let X = R ∪ ω be the Isbell–Mrówka space [4]. Then X is quasi-Lindelöf by

Lemma 2.1, since ω is a countable dense subset of X.
Let D = {dα : α < c} be the discrete space of cardinality c and let Y = D ∪ {d∗} be the

one-point compactification of D.
Now we show that X × Y is not quasi-Lindelöf. Since |R| = c, we can enumerate

R as {rα : α < c}. Let A = {〈rα, dα〉 : α < c}. Then A is a closed subset of X × Y by the
construction of the topology of X × Y with |A| = c. For each α < c, let

Uα = X × {dα}.

Then Uα is an open subset of X × Y . LetU = {Uα : α < c}. ThenU is a family of open
subsets of X × Y such that A ⊆

⋃
U. Let V be any finite or countably infinite subset

ofU. It is not difficult to see that⋃
V =


⋃
V, V finite,⋃
V ∪ (X × {d∗}, V infinite.

Let α0 = sup{α : Uα ∈ V}. Then α0 < c, since V is finite or countably infinite. If we
pick α′ > α0, then Uα′ <V. Thus

〈rα′ , dα′〉 <
⋃
V,

since Uα′ is the only element of U containing 〈rα′ , dα′〉 and
⋃
V ∩ Uα′ = ∅, which

completes the proof. �
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