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CORRIGENDUM

THE BAIRE METHOD FOR THE PRESCRIBED
SINGULAR VALUES PROBLEM

(J. London Math. Soc. (2) 70 (2004) 719–734)

F. S. DE BLASI and G. PIANIGIANI

In the proof of Theorem 5.1 of the above-mentioned paper, the proof of Claim 1 is
not correct (by a misuse of Mazur’s theorem). With the same notation as in that
paper, we here present the correct proof.

Claim 1. Mα is open in MC .

To show that MC � Mα is closed, consider any sequence {uk} ⊂ MC � Mα

converging to u in MC . Denote by Mn×n the vector space of the n × n
real matrices A with the usual norm ‖A‖ = sup{|A(x)| | |x| � 1}. Since ‖∇uk(x)‖ �
σ1(∇uk(x)) � 1 for x ∈ Ω almost everywhere, the sequence {∇uk} is weakly
compact in L2(Ω, Mn×n), and thus a subsequence, say {∇uk}, converges to some
ω in the weak topology of L2(Ω, Mn×n). By Mazur’s theorem [2, p. 6] there exists
a sequence of finite convex combinations {∇wm}, where wm =

∑pkm

i=0 λkm

i ukm+i ,
{km} is strictly increasing, λkm

i � 0 and
∑pkm

i=0 λkm

i = 1, which converges to ω in
L2(Ω, Mn×n). Hence (see Brezis [1, p. 150]) ∇u = ω and there exists a subsequence,
say again {wm}, such that {∇wm} converges to {∇u} almost everywhere.

As the map g(A) = 1
n

∑n
i=1 σi(A) is convex on Mn×n by Proposition 2.4, and

{uk} ⊂ MC � Mα, we have

1
m(Ω)

�
Ω

g(∇wm(x)) dx � 1
m(Ω)

pkm∑
i=0

λkm

i

�
Ω

g(∇ukm+i(x)) dx � 1 − α.

Letting m → ∞ gives

1
m(Ω)

�
Ω

( 1
n

n∑
j=1

σj(∇u(x))
)

dx � 1 − α,

and thus u ∈ MC � Mα. Therefore MC � Mα is closed and Claim 1 holds.
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