CORRIGENDUM

THE BAIRE METHOD FOR THE PRESCRIBED SINGULAR VALUES PROBLEM

(J. London Math. Soc. (2) 70 (2004) 719-734)

F. S. DE BLASI AND G. PIANIGIANI

In the proof of Theorem 5.1 of the above-mentioned paper, the proof of Claim 1 is not correct (by a misuse of Mazur's theorem). With the same notation as in that paper, we here present the correct proof.

Claim 1. \mathcal{M}_{α} is open in \mathcal{M}_{C} .

To show that $\mathcal{M}_C \setminus \mathcal{M}_\alpha$ is closed, consider any sequence $\{u_k\} \subset \mathcal{M}_C \setminus \mathcal{M}_\alpha$ converging to u in \mathcal{M}_C . Denote by $M^{n \times n}$ the vector space of the $n \times n$ real matrices A with the usual norm $||A|| = \sup\{|A(x)| \mid |x| \leq 1\}$. Since $||\nabla u_k(x)|| \leq \sigma_1(\nabla u_k(x)) \leq 1$ for $x \in \Omega$ almost everywhere, the sequence $\{\nabla u_k\}$ is weakly compact in $L^2(\Omega, M^{n \times n})$, and thus a subsequence, say $\{\nabla u_k\}$, converges to some ω in the weak topology of $L^2(\Omega, M^{n \times n})$. By Mazur's theorem [2, p.6] there exists a sequence of finite convex combinations $\{\nabla w_m\}$, where $w_m = \sum_{i=0}^{p_{k_m}} \lambda_i^{k_m} u_{k_m+i}$, $\{k_m\}$ is strictly increasing, $\lambda_i^{k_m} \geq 0$ and $\sum_{i=0}^{p_{k_m}} \lambda_i^{k_m} = 1$, which converges to ω in $L^2(\Omega, M^{n \times n})$. Hence (see Brezis [1, p.150]) $\nabla u = \omega$ and there exists a subsequence, say again $\{w_m\}$, such that $\{\nabla w_m\}$ converges to $\{\nabla u\}$ almost everywhere.

As the map $g(A) = \frac{1}{n} \sum_{i=1}^{n} \sigma_i(A)$ is convex on $M^{n \times n}$ by Proposition 2.4, and $\{u_k\} \subset \mathcal{M}_C \setminus \mathcal{M}_{\alpha}$, we have

$$\frac{1}{m(\Omega)} \int_{\Omega} g(\nabla w_m(x)) \, dx \leqslant \frac{1}{m(\Omega)} \sum_{i=0}^{p_{k_m}} \lambda_i^{k_m} \int_{\Omega} g(\nabla u_{k_m+i}(x)) \, dx \leqslant 1 - \alpha.$$

Letting $m \to \infty$ gives

$$\frac{1}{m(\Omega)} \int_{\Omega} \left(\frac{1}{n} \sum_{j=1}^{n} \sigma_{j}(\nabla u(x)) \right) dx \leqslant 1 - \alpha,$$

and thus $u \in \mathcal{M}_C \setminus \mathcal{M}_\alpha$. Therefore $\mathcal{M}_C \setminus \mathcal{M}_\alpha$ is closed and Claim 1 holds.

References

- 1. H. Brezis, Analyse fonctionnelle, théorie et applications (Masson, Paris, 1983).
- I. EKELAND and R. TEMAM, Analyse convexe et problèmes variationnels (Dunod; Gauthier-Villars, Paris, 1974).

Received 4 July 2006.

2000 Mathematics Subject Classification 35F30 (primary), 54E52 (secondary).

F. S. De Blasi Dipartimento di Matematica Università di Roma 'Tor Vergata' Via delle Ricerca Scientifica 1 00133 Roma Italy G. Pianigiani
Dipartimento di Matematica
per le Decisioni
Università di Firenze
Via Lombroso 6/17
50134 Firenze
Italy