
J. Fluid Mech. (2025), vol. 1011, A17, doi:10.1017/jfm.2025.349

Cabbeling as a catalyst and driver of
turbulent mixing

Josef I. Bisits
1,2

, Jan D. Zika
1,2

and Taimoor Sohail
1,2

1School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
2Australian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, Australia
Corresponding author: Josef I. Bisits, j.bisits@unsw.edu.au

(Received 15 December 2024; revised 26 March 2025; accepted 27 March 2025)

At constant pressure, a mixture of water parcels with equal density but differing salinity
and temperature will be denser than the parent water parcels. This is known as cabbeling
and is a consequence of the nonlinear equation of state for seawater density. With a
source of turbulent vertical mixing, cabbeling has the potential to trigger and drive
convection in gravitationally stable water columns and there is observational evidence
that this process shapes the thermohaline structure of high-latitude oceans. However,
the evolution and maintenance of turbulent mixing due to cabbeling has not been fully
explored. Here, we use turbulence-resolving direct numerical simulations to investigate
cabbeling’s impact on vertical mixing and pathways of energy in closed systems. We
find that cabbeling can sustain convection in an initially gravitationally stable two-layer
configuration where relatively cold/fresh water sits atop warm/salty water. We show the
mixture of the cold/fresh and warm/salty water is constrained by a density maximum
and that cabbeling enhances mixing rates by four orders of magnitude. Cabbeling’s
effect is amplified as the static stability limit is approached, leading to convection
being sustained for longer. We find that available potential energy, which is classically
thought to only decrease with mixing, can increase with mixing due to cabbeling’s
densification of the mixed water. Our direct numerical dimulations support the notion that
cabbeling could be a source of enhanced ocean mixing and that conventional definitions of
energetic pathways may need to be reconsidered to take into account densification under
mixing.
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1. Introduction
Nonlinearities in the equation of state for seawater density result in oceanic processes
that influence the distribution of seawater in the global ocean (Nycander, Hieronymus &
Roquet 2015). These nonlinear processes in the ocean play an important role in the climate
system as they affect estimates of steric sea level change (Gille 2004), are necessary for
the formation of Antarctic intermediate water and layering of the deep waters in polar
oceans (Nycander et al. 2015), influence the formation of sea ice (Roquet et al. 2022) and
the internal pycnocline (Klocker et al. 2023) in the Southern Ocean. Despite the known
importance of nonlinear processes, quantifying their impact on other oceanic processes,
such as mixing, remains a challenge.

Cabbeling and thermobaricity are the two most important nonlinear processes in
the ocean (Foster 1972; McDougall 1987; Nycander et al. 2015), with both having a
significant impact on water mass transformation (Iudicone et al. 2008; Kasajima &
Johannessen 2009; Klocker & McDougall 2010; Urakawa & Hasumi 2012; Groeskamp,
Abernathey & Klocker 2016). Cabbeling occurs when two water parcels of equal density
but differing absolute salinity (hereafter salinity or S) and conservative temperature
(hereafter temperature or Θ) are mixed to create denser water than the parent water parcels
(Witte 1902; Foster 1972). Fofonoff (1957) suggested that if relatively light, cold/fresh
water mixes with denser warm/salty water, the gain in density from cabbeling may be
sufficient for marginally stable profiles to become gravitationally unstable. This process is
called cabbeling instability (Foster 1972).

It has been suggested that the cabbeling instability may have a strong influence on
local mixing rates (Fofonoff 1957; Foster 1972). More recently, it was suggested that
cabbeling plays a significant role in shaping the thermohaline structure of high-latitude
oceans (Bisits, Zika & Evans 2024) where conditions for cabbeling are ideal due to the
relatively large temperature inversions that form between the near-freezing surface waters
and deeper, denser, warmer waters. The theoretical hypothesis that cabbeling can cause
convection (Fofonoff 1957), along with evidence of cabbeling’s widespread influence in
the high-latitude oceans (Bisits et al. 2024), suggest that cabbeling may be a contributor
to enhanced mixing in the high-latitude oceans. However, to date, cabbeling as a catalyst
for convection has not been observed (although observing profiles that are unstable to
cabbeling would be very challenging due to the short time scales over which they would
be present) or simulated using turbulence-resolving simulations.

In this study, we use direct numerical simulation (DNS) to investigate the effects
of cabbeling on mixing and energetic pathways. Direct numerical simulation captures
processes at all scales of motion, from millimetre-scale turbulence tothe domain-scale
dynamics, enabling the quantification of a closed energy budget, and accurate estimation
of the sources and sinks of energy reservoirs. Direct numerical simulation has been
employed to explore mixing and dissipation, for example Vreugdenhil, Gayen & Griffiths
(2016)and Sohail et al. (2018, 2020), double diffusive effects on mixing in both the salt
fingering regime, for example Shen (1997) and Ma & Peltier (2021), and the diffusive
convection regime, for example Carpenter et al. (2012a,b), and more recently on ocean-
driven ice shelf melting (Middleton et al. 2021; Wilson et al. 2023). We use DNS in this
study because cabbeling triggers mixing and flow dynamics that occur across all length
scales, thus enhancing mixing rates over their molecular values. Further, DNS allows us to
accurately compute how nonlinear processes influence energetics in closed systems. To our
knowledge, this is the first use of DNS to explicitly simulate cabbeling, enabling a robust
quantification of the impact of cabbeling on mixing rates and the energetic pathways that
can form with a nonlinear equation of state.
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(a) (b)Two-layer profile Cabbeling effect in S–� space
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Figure 1. (a) Densification of mixed water at the interface of lighter cold/fresh and denser warm/salty water in
a two-layer system. (b) The two-layer system in panel (a) mapped onto S − Θ space where the blue dot is the
shallow cold/fresh layer and the red dot is the deeper warm/salty layer. The mixed water (purple line) crosses
the isopycnal at the deep water (dotted red contour) hence an instability will form between some of the mixed
water and the deep water. All figures in this study are produced using Makie.jl (Danisch & Krumbiegel 2021).

2. Theory

2.1. Nonlinearities and mixing
Consider the hypothetical water column in figure 1(a) where there are two layers: lighter,
relatively cold/fresh shallow water atop denser, warm/salty deep water. This water column
is initially gravitationally stable. However, if some mixing occurs at the interface between
the two layers, a spectrum of mixed water (i.e. the range of possible waters that can be
formed by mixing the initial deep and shallow waters, hereafter mixed water) will form,
some of which may be denser than the deeper water, thus forming an instability as in
figure 1(a). Analysing the properties of the mixed water in salinity–temperature (S − Θ)

space, where these variables are conserved, illustrates how and when nonlinearities and
mixing lead to cabbeling.

Assuming the S − Θ properties are uniform within each layer of the water column in
figure 1(a), mapping the initial state of the water column into (S − Θ) space will give just
two points: the shallow cold/fresh water and the deep warm/salty water (blue and red dots
respectively in figure 1b). At constant pressure, these two water parcels are gravitationally
stable as the shallower water (blue dot) is to the left of the isopycnal at the deep water (red
dotted contour line) – that is, ρshallow − ρdeep < 0.

When the shallow and deep water masses are mixed by some form of turbulent mixing,
the S − Θ properties of the resulting mixtures must fall along the straight line connecting
them in (S − Θ) space (purple line in figure 1b). Note that the mixture falling on a
straight line is only applicable for turbulent mixing that sufficiently elevates the salinity
and temperature diffusivities to an approximately homogeneous rate which temporarily
overrides the transport by molecular diffusion (Guthrie, Fer & Morison 2017). Due to the
curvature of isopycnals, i.e. due to nonlinearity, as the water mixes, some of it becomes
denser than the deep water, forming a gravitational instability between some of the mixed
water and the deep water.

Fofonoff (1957) hypothesised that cabbeling leads to gravitational instability when
shallower waters exceed a salinity and temperature threshold set by the S − Θ properties
of deeper waters. Geometrically, this threshold can be seen by considering the tangent
line to the deeper water in S − Θ space (dash-dot red line in figure 1b). Once the straight
line connecting the shallow and deep waters is steeper than the tangent line to the deep
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water, some of the mixture must be denser than the deeper water. Thus, provided the
S − Θ properties of shallower waters are in the region between the tangent line and
isopycnal to the deep water (the shaded red region in figure 1b), cabbeling can generate
a gravitational instability in a previously gravitationally stable profile. The salinity and
temperature threshold from Fofonoff (1957) can indicate when a cabbeling instability is
present but gives no information about whether the instability triggers and drives further
convective mixing, and if so, for how long. To quantify the effect the cabbeling instability
can have on mixing we introduce a diagnostic for vertical diffusivity appropriate to DNS.

2.2. Effective diffusivity
Effective diffusivity is a measure of the vertical transport of a scalar field assuming the
scalar field has been re-sorted so it monotonically increases with depth (Holmes et al.
2021). The effective diffusivity only requires knowledge of the tracer field to compute,
and is appropriate for this study as we want to diagnose cabbeling’s influence on the rate
of vertical tracer transport. Diagnosing the effect cabbeling has on mixing is important for
improvements to simulating convection in global ocean models.

We compute the effective diffusivity for the horizontally averaged salinity field

κeff (z∗, t) = ∂〈S〉xy/∂t

∂〈S〉xy/∂z∗ , (2.1)

where the z∗ vertical coordinate is a remapping of the horizontally averaged salinity field,
indicated by 〈〉xy , into a monotonic function. In (2.1), the numerator is the vertical transport
across each depth and the denominator is the vertical gradient.

The effective diffusivity can be calculated using the entire three-dimensional salinity
field reshaped into a single array. However, we choose to horizontally average because
initially, and towards the end of our simulations, we have two layers that are largely
homogeneous leading to many instances of zero vertical gradient. Note that taking the
horizontal average prior to computing the effective diffusivity is only appropriate for
domains that have uniform horizontal area.

To compute (2.3) at each depth level in our domain, we first horizontally average the
three-dimensional salinity field then sort from saltiest to freshest (i.e. so the saltiest water
is at the bottom of the domain). Cumulatively integrating the sorted salinity array from the
bottom to the top of the domain gives the horizontally averaged salinity content at each
depth, the time change of which is the flux across each depth and the numerator in (2.3).
Dividing the flux array element-wise by the vertical gradient of the sorted horizontally
averaged salinity field, gives the effective diffusivity at each depth.

2.3. Nonlinearities and the energetics of mixing
Changes in the effective diffusivity due to enhanced mixing are also reflected in the energy
budget, which captures the fluxes of energy between reservoirs. Winters et al. (1995)
proposed possible pathways of energy between different reservoirs in a density-stratified
Boussinesq flow with a linear equation of state. Within a fixed volume, the integrated total
potential energy

PE = g
∫

V
ρzdV, (2.2)

can be partitioned into background potential energy, BPE, and available potential energy,
APE. The BPE is the minimum PE state achieved by adiabatic rearrangement of fluid
parcels and the APE is the difference between the PE and the BPE. This partitioning
means only APE can be converted into kinetic energy (KE), via reversible buoyancy fluxes.
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Changes in BPE are due to irreversible mixing which always acts to increase the BPE at
the expense of the APE.

Urakawa, Saenz & Hogg (2013) showed that in a global ocean model with a nonlinear
equation of state, cabbeling can be a source of APE due to isopycnal diffusion creating
a reversible exchange with the BPE reservoir. Here, we consider how cabbeling can be
a source of APE via irreversible vertical mixing, which in current models for energetic
pathways is only ever a sink for APE.

3. Simulations
We use DNS to explore how cabbeling can trigger and maintain convective turbulent
mixing from an initially gravitationally stable state. Direct numerical simulation resolves
the smallest scale at which turbulent motion occurs, typically the local Kolmogorov scale
η = (ν3/ε)1/4 (where ν is viscosity and ε is kinetic energy dissipation), and, in some cases,
the local Batchelor scale. Resolving all scales of turbulence is key in this study because
mixing due to cabbeling can occur at any turbulent length scale. Further, DNS allows a
precise calculation of the energy budget which is crucial for understanding how nonlinear
processes can drive convective mixing.

The DNS used in this project was built using Oceananigans.jl (Ramadhan et al.
2020). The DNS is non-hydrostatic and solves the incompressible Navier–Stokes equations
in three dimensions under the Boussinesq approximation. The temperature and salinity
tracers are set with equal, isotropic molecular diffusivity values and are evolved using the
55-term polynomial approximation to the equation of state appropriate for Boussinesq
models (Roquet et al. 2015). The boundary conditions for the momentum and tracers
are horizontally periodic and zero-flux vertically. We set the kinematic viscosity ν =
1 × 10−6 m2 s−1, and equal diffusivity values for the salt and temperature tracers κ = 1 ×
10−7 m2 s−1 resulting in a Prandtl number, Pr = ν/κ , of 10. With a Prandtl number greater
than one, the Batchelor scale Ba = η/

√
Pr must also be resolved in the simulations. The

domain’s extent is [Lx , L y, Lz] = [0.07 m, 0.07 m, 1 m] so that x ∈ [−0.035, 0.035),
y ∈ [−0.035, 0.035) and z ∈ [−1, 0]. We choose a vertical extent for our domain which
minimises the impact of thermobaricity (as thermobaricity only becomes significant
at greater depths), thereby enabling an assessment of cabbeling instability in isolation
(Harcourt 2005).

The resolution for the different experiments is set depending on the local length scale
of the turbulence that is being resolved – see table 1 for the Kolmogorov and Batchelor
scales, as well as the resolution set, in our simulations. The standard convergence criterion
for DNS solutions requires a closed energy budget and fully resolved Kolmogorov
and Batchelor scales (Gayen, Griffiths & Hughes 2014). Our simulations meet this
convergence criterion except for experiment V during t = 6 min to t = 17 min where the
local space-time minimum Batchelor length is slightly under resolved. For more details
regarding the resolution set to resolve the Batchelor scale, and the energy budgets, please
see Appendix A.

Although double diffusive effects have been shown to be important in a two-layer
gravitationally stable system with cold/fresh water atop warm/salty water, e.g Carpenter
et al. (2012a), we are specifically interested in the influence of nonlinear processes on
turbulent vertical mixing. To allow us to focus on the effect of nonlinearities, we set the
same diffusivity value (the thermal molecular diffusivity) for the salinity and temperature
tracers thereby removing double diffusive effects from this study. Alternatively, we could
opt to set an enhanced, equal turbulent diffusivity for both salinity and temperature,
however, choosing the thermal molecular diffusivity eliminates the uncertainty involved
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Experiment S Θ 	ρ η Ba [Nx , Ny, Nz] Rρ RaS RaΘ

(g kg−1) ( ◦C) (kg m−3) (mm) (mm) — — — —

Statically stable,
Stable to cabbeling
I 34.694 0.5 −0.0046 43.73 13.83 35, 35, 500 — 5.6 × 107 —
II 34.551 −1.5 −0.0280 99.39 31.43 115, 115, 1650 1.3 1.5 × 109 1.1 × 109

Statically stable,
Unstable to cabbeling
III 34.568 −1.5 −0.0142 3.13 0.99 115, 115, 1650 1.16 1.3 × 109 1.1 × 109

IV 34.580 −1.5 −0.0046 2.06 0.65 115, 115, 1650 1.05 1.2 × 109 1.1 × 109

Statically unstable
V 34.590 −1.5 0.0035 1.55 0.49 115, 115, 1650 0.96 1.1 × 109 1.1 × 109

Table 1. Initial S − Θ properties for the shallow water and the initial density difference between the shallow
and deep water, 	ρ = ρshallow − ρdeep , in all experiments. The minimum space-time local Kolmogorov (η)
and Batchelor (Ba) scales during the experiments and the resolution [Nx , Ny, Nz] set to resolve these scales.
Initial non-dimensional numbers shown are the diffusive density ratio, Rρ , the salinity Rayleigh number, RaS ,
and the temperature Rayleigh number, RaΘ .
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Flow evolution in experiment IV
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Figure 2. Snapshots of the flow evolution in the experiment IV. Potential density is shown on the x−z face
(at y = −0.035) and the horizontal plane in the middle of the domain. Vertical velocity is shown on the y−z
face (at x = −0.035) with the depth-averaged vertical velocity at the top (z = 0) of the domain.

in selecting an appropriate turbulent diffusivity, which is highly variable throughout the
high-latitude oceans (e.g. Rippeth et al. (2015) for the Arctic Ocean). Further, we would
also miss out on capturing scales of motion down to the molecular level if not resolving
down to the molecular value for temperature.

The initial state for our experiments has two layers of equal thickness. The salinity
and temperature are uniform within each layer but for a small amount of noise in
the salinity field about the interface, O(2 × 10−4g kg−1), seeded to kick off turbulent
motion (see figure 2 at time t = 0). Across all experiments we set the same initial
salinity and temperature in the deeper layer – S = 34.7g kg−1 and Θ = 0.5 ◦C. To
investigate the effect of cabbeling, five experiments were run each with different S − Θ
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Experiment initial conditions

Isopycnal at deep water

Tangent at deep water

Deep water

Ⅰ, stable to cabbeling

Ⅱ, stable to cabbeling

Ⅲ, unstable to cabbeling

Ⅳ, unstable to cabbeling

Ⅴ, statically unstable

34.55

0.5

0

−0.5

Θ
 (

◦ C
)

−1.0

−1.5

34.60

S (g kg−1)

34.65 34.70

Figure 3. Initial conditions for the experiments run in this study in S − Θ space. The deep water properties are
fixed across all experiments (red circle) and the shallow water properties (coloured markers) vary so we can
determine if convection can be triggered once the system is unstable to cabbeling (i.e. once the shallow water
properties lie in the wedge between the dash-dot and solid grey lines). For the S − Θ values of the shallow
water see table 1.

properties in the shallower layer. The initial conditions can be seen in S − Θ space
in figure 3 with the values set in the shallow layer reported in table 1. Table 1
also shows relevant non-dimensional parameters for the experiments: diffusive density
ratio, Rρ , salinity and temperature Rayleigh numbers, RaS = gβ	SH3/νκ and RaΘ =
gα	Θ H3/νκ respectively. We have used equation (1) from McDougall (1981) for the
density ratio and the expressions for α̃ and β̃ on page 93 of McDougall (1981) to calculate
the Rayleigh numbers. These expressions are more appropriate than evaluating α and β at
midpoint salinity and temperature when the equation of state is nonlinear.

The initial salinity and temperature values used in our experiments are based on
observations from the Weddell sea reported in Fofonoff (1957). They are broadly
representative of high latitude upper ocean conditions – near freezing surface water atop
deeper warm salty water. The cold conditions at high latitudes are ideal for cabbeling
because the dependence of density on temperature becomes increasingly nonlinear as
seawater approaches its freezing point (Roquet et al. (2022)), and temperature inversions
often form between the surface and deeper waters there.

As in table 1, the initial conditions can be broken up into: statically stable, stable
to cabbeling (I, II), statically stable, unstable to cabbeling (III, IV), and statically
unstable (V). Experiment I has uniform temperature over the domain so that the density is
only determined by the salinity scalar field. In I, a mixture of water parcels cannot exceed
the maximum density of its parent waters, so we expect no instability to develop after
the initial noise is dissipated. The initial conditions in experiment IV set a difference in
both salinity and temperature between the two layers. Here, we expect to see a cabbeling
instability develop at the interface of the two layers after a small amount of mixing
has taken place. By setting the same initial density difference across the interface in
experiments I and IV, we have a way of comparing the effect of cabbeling on marginally
stable profiles without using a linear equation of state as this would change other aspects
of the flow field.

Experiments II and III provide us with more information about when cabbeling can
trigger, and its ability to sustain, an instability. Experiment II has S − Θ properties in the
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shallow water which place it on the theoretical limit for stability to cabbeling suggested
in Fofonoff (1957) (see figure 3). The S − Θ properties for experiment III place it on
the midpoint between the tangent and isopycnal to the deep water. Similar to IV, this
initial condition is unstable to cabbeling, giving us a way to compare how convection
evolves when the initial state is unstable to cabbeling to different degrees. Experiment
V is statically unstable, so we are able to compare any cabbeling driven convection to
convection that is also driven by gravitational instability. Note that experiment V is also
influenced by cabbeling, since, when the deep and shallow waters mix, all the mixed water
is denser than both of its parent waters.

4. Results
In experiments I and II, the initial state is stable to cabbeling, meaning that after an initial
enhancement in mixing due to the random noise in the salinity field, the salinity tracer
mixes at approximately its parameterised value (see figure 5b). In experiments III and
IV, the initial state is statically stable but unstable to cabbeling, leading to dense water
forming at the interface after some mixing has taken place – see the snapshot at t = 3 min
from experiment IV in figure 2. This instability then develops and begins to drive turbulent
motion that eventually is present in the entire bottom layer (see the water column at times
t = 13 min and t = 24 min in figure 2). Experiment V is statically unstable so we see
convection immediately driven by the presence of a gravitational instability (again see
figure 5b).

4.1. Density evolution
For cabbeling to form an instability from an initially gravitationally stable state, the
maximum density of the mixed water, ρmax = max{ρmixed water }, must be denser than
the deep water

ρmax − ρdeep > 0. (4.1)

In our closed system, the density of the mixed water is constrained to a maximum along
the straight line connecting the shallow and deep waters in (S − Θ) space – an example of
this is the magenta dot in figure 1b. Hence, ρmax will be a linear combination of the initial
salinity and temperature values

ρmax = max{ρ (
Sdeep + a	S, Θdeep + a	Θ, p0

) : a ∈ [0, 1]}, (4.2)

where 	S = (Sshallow − Sdeep), 	Θ = (Θshallow − Θdeep), p0 is a reference pressure,
taken to be 0 dbar in our case, and a is a parameter indicating the relative proportion of
shallow and deep waters in a given mixture. We estimate (4.2) by computing the density
along the straight line connecting the initial salinity and temperature of the two layers and
taking the maximum.

Figure 4(a) shows the theoretical maximum density (red curve) along with the density
attained at the interface at the first saved snapshot, t = 1 min, for experiments II–V
(coloured markers). We calculate (4.2) with Sdeep = 34.7g kg−1, Θdeep = 0.5 ◦C, 	Θ =
−2, as we have in experiments II–V, over a range of values for 	S with p0 = 0. Note we
have not included experiment I because it has a different 	Θ . We clearly see that (4.2)
is a very accurate prediction for the maximum density that is attained due to cabbeling in
our experiments. Further, in experiment II, which is stable to cabbeling, we see that the
maximum density does not exceed the deep water density whilst in experiments III and
IV, which are statically stable but unstable to cabbeling, the maximum density is greater
than the initial deep water density. This supports the hypothesis from Fofonoff (1957) for
the onset of convection due to cabbeling and suggests that while the system is unstable to
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Figure 4. (a) Mixed water density at the model interface at t = 1 min for experiments II–V (coloured markers)
and theoretical maximum density (red line) calculated using (4.2). Experiments II–V have the same initial
Sdeep , Θdeep and 	Θ , so here ρmax becomes a function of the initial 	S. (b) Horizontally averaged density
profiles during experiment IV with the theoretical maximum density for this experiment. In both panels the
potential density is presented as an anomaly from 1000 kg m−3, i.e. σ ′

0 = σ0 − 1000.

cabbeling, mixing at the interface of the shallow and deep water will transform water to
the theorised maximum density to sustain convection. Eventually, in a closed system, the
majority of deep water, with the requisite amount of shallow water, will be brought to the
maximum density at which point the system will be stable to cabbeling.

To investigate the density evolution, figure 4(b) shows horizontally averaged density
profiles at various times during experiment IV, and (4.2). The profile at t = 1 min, shows
mixing has caused the density at the interface to attain the density maximum. As the
simulation runs, the cabbeling instability drives rapid mixing at the migrating interface,
transforming the mixture of shallow and deep water to the density maximum. There also
appears to be a regime shift at t = 400 min, where even though not all the deep water has
been transformed to the maximum density, the nature of the mixing at the interface appears
to be more diffuse than convection-driven, indicating the system is now stable to cabbeling.

4.2. Effective diffusivity
To further investigate the apparent regime shift from cabbeling-driven convection to
diffusion, we compute the effective diffusivity for the salinity tracer in all experiments
using (2.1). Figure 5(a) shows the horizontally averaged effective diffusivity at each depth
for experiment IV. The cabbeling instability sustains high diffusivity in much of the deeper
layer until t ≈ 200 min. The diffusivity in the deeper layer then begins to decrease until
t ≈ 400 min after which point cabbeling instabilities appear to be mixed away supporting
what we inferred from the density evolution in this experiment (figure 4b). Note, the high
diffusivity at the very beginning of the simulation at the top and bottom of the domain in
figure 5(a) is the initial salinity noise being mixed away in the sorted horizontally averaged
salinity profile.

Until approximately t = 100 min in experiment III and t = 200 min in experiment
IV, cabbeling driven convection leads to an average effective diffusivity of κeff ≈ 1 ×
10−3 m2 s−1, two orders of magnitude greater than the value thought to characterise the
global-averaged diapycnal diffusivity above 1000 m (Waterhouse et al. 2014) and similar in
magnitude to experiment V which is statically unstable (see figure 5b). This suggests that
being more unstable to cabbeling leads to longer periods of cabbeling driven convection
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Experiment Ⅳ horizontal averaged salinity effective diffusivity

Depth integrated horizontal averaged salinity effective diffusivity
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Figure 5. (a) Effective diffusivity for the horizontally averaged salinity field, calculated using (2.1), for
experiment IV. (b) Depth-averaged effective diffusivity for the horizontally averaged salinity field from all
experiments.

rather than higher diffusivity. After t ≈ 300 min in experiment III and t ≈ 400 min in
experiment IV the average effective diffusivity in the system decreases to approximately
5 × 10−7 m2 s−1. This is still five times greater than the parameterised salinity diffusivity,
κS = 1 × 10−7 m2 s−1, and experiments I and II that are stable to cabbeling where κeff ≈
1 × 10−7 m2 s−1, but is an indication that the cabbeling instability is having a reduced
impact on mixing.

4.3. Energetics
The turbulent mixing we see in the simulations requires a source of KE. In our closed,
initially gravitationally stable system, the APE reservoir is the only possible source of KE.
To track the effect cabbeling has on the APE, we compute the PE using (2.2) and determine
the BPE as in Carpenter et al. (2012a) by reshaping and sorting the three-dimensional
potential density field (referenced to 0 dbar) into a monotonically increasing array and
defining a height coordinate which has the same number of elements as the sorted array
over the vertical extent of our domain. Again, due to the depth range we are focusing on,
the thermobaric effect is negligible. The PE and BPE are then referenced to the initial PE,
PEt=0, and non-dimensionalised so

PE = PEt=0 − PE
PEt=0

and BPE = PEt=0 − BPE
PEt=0

, (4.3)

with APE =PE −BPE .
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Figure 6. (a) Non-dimensional PE, BPE and APE energy reservoirs during experiment IV. (b) The time
derivative of the non-dimensional energy reservoirs throughout experiment IV.

Figure 6(a) shows the time series of the PE , BPE and APE during experiment IV. We
see an increase in APE (red curve in figure 6a) at the beginning of the simulation due
to cabbeling forming denser waters. Figure 6(b) shows the time derivative of the energy
reservoirs throughout experiment IV. The positive sign of the APE time derivative (red
curve in figure 6b) indicates generation of APE . In the time period 0 to ≈ 20 min we see
the most rapid increase in APE and this is purely due to cabbeling forming denser water.
The cabbeling generated APE is then lost to the KE and BPE reservoirs from t ≈ 20 min
onward with intermittent production of APE as the simulation runs. The time derivative
of the APE only becomes strictly decreasing after t = 602 min indicating there is still
APE production from cabbeling till this point. However, APE production reduces after
t = 200 min.

The production of APE is reflected in the effective diffusivity for this experiment
– rapid convective mixing triggered and sustained by cabbeling producing APE (until
approximately t = 200 min) after which we see a decreasing trend in the effective
diffusivity explained by cabbeling no longer producing APE to sustain further convection.
Exceptions to this trend are the three spikes in κeff between t = 300 min to 400 min
(see figure 5b). The time derivative of the energy reservoirs and κeff during t =
250 min to 400 min from experiment IV are shown in figure 7. In figure 7, we see that
during t ≈ 260 min to 300 min there is a production of APE . By the time of the first spike
in κeff (at t ≈ 310 min) the APE is again decreasing suggesting some of the APE produced
during t ≈ 260 min to 300 min has been transferred to the KE reservoir leading to the
spike in κeff. After this first spike in κeff, we again see the production of APE followed
by spikes in κeff accompanied by a loss of APE . This suggests cabbeling is contributing
to the spikes in κeff during t = 300 min to 400 min by producing APE some of which is
converted to KE .

In experiments I and II, we found that after the initial APE injection (due to the random
noise in the salinity field) was lost, there was no change in APE for the rest of the
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Experiment Ⅳ, t = 250–400 min

2.00 × 10−5

1.50 × 10−5

1.00 × 10−5

−3

−4

−55.00 × 10−6

0

270 300 330 360 390

R
at

e 
(s

−
1
)

Time (mins)

κ
ef
f (

m
2
s−

1
, 
lo

g
1
0
)

κeff dtBPEdtAPE dtPE

Figure 7. Time derivative of the energy reservoirs and κeff during t = 250 min to 400 min from experiment IV.
The left y-axis is the rate of changes in the non-dimensional energy reservoirs and the right y-axis is κeff.

simulation (i.e. dtAPE = 0, figure not shown). This results in the salinity tracer evolving
approximately at its parameterised value (purple line in figure 5b). In experiment V, the
initial state is statically unstable hence there is an initial source of APE for the KE to
draw from. This results in high diffusivity occurring immediately in experiment V (see
the yellow line figure 5b). Cabbeling still has an effect in experiment V by creating denser
water at the interface, thereby generating APE. Experiment V differs from experiments III
and IV because, even though in all cases cabbeling generates APE through densification
of the mixed water at the interface, experiments III and IV have no initial APE, therefore
enhanced mixing only occurs after cabbeling has generated a sufficient amount of APE.

5. Discussion
Our results demonstrate that cabbeling can trigger and sustain convection in profiles that
are initially gravitationally stable. Whilst a cabbeling instability is present in our initially
gravitationally stable experiments (III and IV) we see elevated diffusivity, which is the
same order of magnitude as generated by the initially gravitationally unstable profile
(experiment V), alongside a production of APE.

If cabbeling were having no effect in the global ocean then we would expect to see
profiles approaching the static stability limit prior to the onset of convection. Instead the
results of Bisits et al. (2024) show the cabbeling instability threshold describes well the
stability limiting behaviour of profiles in the high-latitude oceans. In figure 8(a), we see
that high diffusivity can be generated and sustained from a statically stable initial state
(experiments III and IV). This supports the notion of a cabbeling instability threshold by
demonstrating that the initial state need not be gravitationally unstable for the onset of
convection. Instead, cabbeling can cause the gravitationally stable initial state to become
unstable leading to convection. Combined with the results in Bisits et al. (2024), this
reinforces the important role cabbeling may play in the high-latitude oceans.

The static density difference, 	ρ, between two waters with distinct S − Θ properties
cannot predict when a cabbeling instability is present in statically stable profiles. From
(4.1) we can define a cabbeling density difference, 	ρ′ = ρmax − ρdeep, such that{

	ρ′ = 0 stable to cabbeling,
	ρ′ > 0 unstable to cabbeling,

(5.1)
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Figure 8. (a) Time average, indicated by 〈〉t , of effective diffusivity (κeff) during t = 11 min to 300 min of the
experiments. Here, the x-axis is 	ρ = ρshallow − ρdeep , meaning there is no indication of the profile being
unstable to cabbeling. Panel (b) shows the same time average of κeff but this time the x-axis is 	ρ′ = ρmax −
ρdeep which is a binary criteria for determining if a profile is unstable to cabbeling (equation (5.1)).

providing a binary distinction for the cabbeling instability. Panel (b) in figure 8 shows the
time mean effective diffusivity for salinity, 〈κeff〉t , during t = 11 min to 300 min against
the initial cabbeling density difference for all experiments. We see that that the stable
to cabbeling experiments (I and II) have 	ρ′ = 0, hence no instability can form from
cabbeling. As a result we see no enhancement of κeff. The statically stable, unstable to
cabbeling experiments (III and IV) have 	ρ′ > 0 and we see that elevated diffusivity is
sustained in the time period t = 11 min to 300 min in those experiments. Using (5.1) for
investigating the stability of profiles to cabbeling may yield further insight into the role of
cabbeling in the global ocean.

Our results suggest that the cabbeling instability needs to be taken into account when
simulating convection and included in models of energetic pathways. Typically, global
ocean and coupled climate models employ convective adjustment schemes to diagnose,
and instantaneously mix away gravitational instabilities. Therefore, these schemes do not
take into account how a cabbeling instability can trigger and sustain convection when water
columns are gravitationally stable. To accurately simulate convection in regions where the
conditions for cabbeling are prime, e.g. at high latitudes, parameterisations may need to
be adjusted to factor in the cabbeling instability.

Current models of energetic pathways, e.g. Winters et al. (1995); Hughes, Hogg &
Griffiths (2009), define APE as gravitational potential energy relative to the lowest
possible energy state under adiabatic redistribution (i.e. relative to the BPE). This
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definition means that in a closed system, mixing can only reduce APE by transferring
energy to the BPE. However, our simulations demonstrate that mixing leads to a
production of APE while a cabbeling instability is present. Adapting models of energetic
pathways to account for nonlinear processes, by for example, redefining APE or BPE, is
crucial for increased understanding of the energetics of mixing in the ocean.

The simulations run in this study are designed to focus on cabbeling. However, there
are other nonlinear and small-scale processes that impact mixing and energetics in the
ocean. In particular, future work may consider understanding the impact and interplay of
thermobaricity and/or double diffusive instabilities, yielding a more complete picture of
fine-scale ocean mixing, energetics and dynamics. Regardless of the domain size in our
experiment setup, cabbeling will lead to denser water than the deep water forming at the
interface of the two layers, and enhanced mixing rates, from initial conditions that are
unstable to cabbeling. That being said, changes in domain size and aspect ratio may lead
to different flow structure thereby influencing our transport diagnostics, however, this is
not something we investigate in this study (see Wang et al. 2020 for how domain aspect
ratio influences flow structure in Rayleigh Bernard convection).

6. Conclusion
In this work, we have simulated convection triggered by density production due to
cabbeling in a direct numerical simulation for the first time. We have demonstrated the
impact of this ‘cabbeling instability’ on gravitationally stable vertical profiles. We show
the significant influence cabbeling has on mixing rates and the energetics of mixing, and
discuss the implications of these findings on global ocean modelling and observations.

In our cabbeling experiments, after an initial perturbation, mixing is enhanced until the
fluid reaches a state where cabbeling can no longer destabilise the water column – that
is, until the system becomes stable to cabbeling. This means the majority of the deep
water in the two-layer system transforms to a predicted maximum density. We find that
densification from cabbeling creates a source of gravitational APE which drives turbulent
motion and generation of KE without any external forcing and continues to do so until the
system is stable to cabbeling. This suggests either an exception to the rule that mixing
always decreases the APE in a closed system, or that the definition of APE or BPE
should be modified to account for nonlinear changes in density with mixing. These results
highlight the importance of the cabbeling instability in both high-latitude ocean modelling
and mixing, and emphasise the need to reconsider energy budgets to account for the
influence of cabbeling instability on energy reservoirs.
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Figure 9. Time series of the minimum local Batchelor scale in experiment V for the first 50 min. The orange
dots indicate the saved snapshots where the local minimum Batchelor scale is not resolved.

Appendix A.
In table 1, we report the minimum space–time value for the local Batchelor length (Ba)
during each experiment. Provided our grid resolution is less than the minimum Batchelor
length (i.e. 	x < Ba, 	y < Ba and 	z < Ba) the experiment will resolve the Batchelor
scale at all points in space and time.

The horizontal and vertical resolution in experiment I is 2 mm with a Batchelor length
of 13.83 mm giving us sufficient resolution to resolve the Batchelor scale at all points in
space and time in experiment I. The horizontal and vertical resolution in experiments II–V
is 0.6 mm. For experiments II–IV this again gives us sufficient resolution to resolve the
local Batchelor scale at all points in space and time (see table 1 for the Batchelor length
in these experiments). In experiment V we find the minimum local Batchelor scale is not
resolved between t = 6 min to 10 min and t = 13 min to 17 min (see figure 9). We still have
a closed energy budget (see below), so results from t = 6 min to 17 min are reported with
confidence that the DNS solution converges even though we are slightly under resolving
the Batchelor scale during this time.

To achieve a closed energy budget in our DNS experiments we require the production
and dissipation of kinetic energy to balance (Gayen et al. 2014). Within our closed system,
changes in the volume integrated (KE) reservoir are due to turbulent kinetic energy
dissipation, ε, and the volume integrated buoyancy flux (which is the production of KE).
Therefore, to achieve a closed energy budget we require

1
ρ0

d
dt

KE =
∫

V
bwdV − ε

ρ0
, (A1)

where ρ0 is the reference density used in the simulations. To determine if (A1) is satisfied,
we compute each term in (A1) individually. Figure 10 shows that, qualitatively the energy
budget is balanced for all experiments. The titles in each panel also report the mean
absolute error (MAE) between the left- and right-hand sides of (A1),

MAE =
〈∣∣∣∣ 1

ρ0

d
dt

KE −
(∫

V
bwdV − ε

ρ0

)∣∣∣∣
〉

t
. (A2)

The closure of our energy budget and resolution sufficient to resolve the Batchelor scale,
show how we satisfy the standard convergence criteria for DNS solutions (Gayen et al.
2014).
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Figure 10. Energy budget for the five simulations in this study. The blue line is the left-hand side of (A1) and
the dashed orange line is the right-hand side of (A1). The dimensions of the y-label are Watts/ρ0 which in our
case is m5s−3.
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