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Self-extensions of Verma modules and

differential forms on opers

Edward Frenkel and Constantin Teleman

Abstract

We compute the algebras of self-extensions of the vacuum module and the Verma modules
over an affine Kac–Moody algebra ĝ in suitable categories of Harish-Chandra modules. We
show that at the critical level these algebras are isomorphic to the algebras of differential
forms on various spaces of opers associated to the Langlands dual Lie algebra of g, whereas
away from the critical level they become trivial. These results rely on and generalize
the description of the corresponding algebras of endomorphisms obtained by Feigin and
Frenkel and the description of the corresponding graded versions due to Fishel, Grojnowski
and Teleman.

Introduction

Let g be a simple finite-dimensional Lie algebra and ĝκ, where κ is an invariant inner product on g,
the corresponding affine Kac–Moody algebra. Consider the vacuum module Vκ over ĝκ (see § 2 for
the precise definitions). According to the results of [FF92, Fre04], the algebra of endomorphisms
of Vκ is trivial, i.e. isomorphic to C, unless κ = κc, the critical value. In contrast, the algebra
Endĝκc

Vκc is large and is in fact canonically isomorphic to the algebra of functions on the space
OpLg(D) of Lg-opers on the disc, where Lg is the Lie algebra that is Langlands dual to g (its Cartan
matrix is the transpose of that of g).

In this paper we consider the algebra of endomorphisms of Vκ in the derived category of
(ĝκ, G[[t]])-modules, or in other words the algebra of self-extensions of Vκ in the abelian category
of (ĝκ, G[[t]])-modules (here G is the connected simply connected algebraic group corresponding
to g). As we show in § 2, this algebra may be realized as the relative cohomology

H•(g((t)), g,EndCVκ) � H•(g[[t]], g,Vκ). (0.1)

We show that for κ �= κc we have H i(g((t)), g,EndC Vκ) = 0 if i > 0, so the corresponding algebra of
self-extensions of Vκ is isomorphic to C. But if κ = κc, then this algebra is isomorphic to the algebra
of differential forms on OpLg(D) (more precisely, this isomorphism is defined up to a scalar which
is fixed once we choose an invariant bilinear form κ0 on g). Moreover, deforming Vκc to Vκ, we
obtain a differential on the cohomology H•(g((t)), g,EndC Vκc) which coincides with the de Rham
differential.

In order to prove this result, we use the quasi-classical statement about the cohomology
H•(g[[t]], g,Vcl), where V

cl is the associate graded of Vκc with respect to the PBW filtration.
The space OpLg(D) is an affine space modeled on the vector space Cg∗,ω defined in § 1. Accord-
ing to [FGT04], H•(g[[t]], g,Vcl) is isomorphic to the algebra of differential forms on Cg∗,ω. Using
this result and the description of H0(g[[t]], g,Vκc) from [FF92] and [Fre04] mentioned above, we
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obtain our result by employing the spectral sequence on the cohomology corresponding to the PBW
filtration.

We also prove an analogue of this result for the Verma modules Mλ,κ. In this case we consider
the algebra of endomorphisms of Mλ,κ in the derived category of (ĝκ, B̃) Harish-Chandra modules,
where B̃ is the Iwahori subgroup of G[[t]], the preimage of a Borel subgroup B ⊂ G under the
evaluation homomorphism G[[t]] → G. This algebra is realized as the cohomology

H•(g((t)), h,EndCMλ,κ) � H•(b̃, h,Mλ,κ ⊗ C−λ),

where b̃ is the Lie algebra of B̃ and h is the Cartan subalgebra of the constant subalgebra g. It follows
from the results of [FF92] and [Fre04] that Endĝκc

Mλ,κc is the algebra of functions on the space
OpLg(D)λ of Lg-opers on D with regular singularities and residue −λ−ρ. We show, in the same way
as in the case of the vacuum modules, that the full algebra of self-extensions of Mλ,κc is isomorphic
to the algebra of differential forms on OpLg(D)λ. We also show that for κ �= κc this algebra is just
isomorphic to C.

The above statements are closely related to and were motivated by the result of B. Feigin
announced in [Fei91] that the cohomology of ĝκc with coefficients in the completion of the enveloping
algebra of ĝκc (with respect to the adjoint action) is isomorphic to the algebra of differential forms
on the space of Lg-opers on the punctured disc.

The paper is organized as follows. In § 1 we consider the graded version of the vacuum module
(we call it ‘classical’) and recall the result of [FGT04]. In § 2 we define the vacuum module Vκ over
the affine Kac–Moody algebra ĝκ and describe the algebra of its self-extensions in a suitable category
of Harish-Chandra modules as the relative Lie algebra cohomology H•(g((t)), g,EndCVκ). In § 3 we
realize it as the cohomology of the Chevalley complex of g[[t]] relative to g with coefficients in Vκ. We
show that the algebra structure on this cohomology is induced by a DG vertex superalgebra structure
on the complex. Next, we show that the latter is actually skew-commutative, and hence gives rise
to the structure of skew-commutative associative algebra on H•(g[[t]],Vκc). Our first proof of this
fact was based on an explicit computation of this cohomology. But, as was subsequently pointed
out to us by D. Gaitsgory, this is in fact a corollary of a general property of the Chevalley complex
of an arbitrary vertex Lie superalgebra (see Proposition 3.3 and Remark 3.5).

In § 4 we compute the cohomology of the vacuum module Vκc and show that it is isomorphic
to the algebra of differential forms on the space OpLg(D). We then show that the cohomology
of Vκ where κ �= κc is isomorphic to C. In § 5 we consider the graded version M

cl of the Verma
module and compute the cohomology H•(b̃, h,Mcl) using the results of [FGT04]. Finally, in § 6 we
use the computation in the graded case and a description of the algebra of endomorphisms of the
Verma modules Mλ,κ to find the full algebra of self-extensions of Mλ,κ in the appropriate category
of Harish-Chandra modules.

1. Cohomology of the classical vacuum module

Let g be a simple finite-dimensional Lie algebra and G the connected simply connected algebraic
group corresponding to g. Introduce the ‘classical’ vacuum module over the Lie algebra g[[t]],

V
cl = Sym(g((t))/g[[t]]) � Fun(g∗[[t]] dt),

where we use the residue pairing. We consider the relative cohomology H•(g[[t]], g,Vcl) of g[[t]]
modulo the constant Lie subalgebra g with coefficients in V

cl. This cohomology may be computed
by the standard Chevalley complex of Lie algebra cohomology

C•(g[[t]], g,Vcl) =
(
V

cl ⊗
∧ •(g[[t]]/g)∗

)g
=

(
Fun(g∗[[t]] dt) ⊗

∧ •(g[[t]]/g)∗
)g
.
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Remark 1.1. Here and below we view g[[t]] and similar vector spaces as complete topological spaces,
and by the dual of such a vector space we mean the vector space of continuous linear functionals on
it (the topological dual). As the result, C•(g[[t]], g,Vcl) is a vector space topologized as the direct
limit of its finite-dimensional subspaces.

The commutative algebra structure on V
cl gives rise to a skew-commutative algebra structure

on the complex C•(g[[t]], g,Vcl). The Chevalley differential is a derivation of this algebra structure.
Hence the cohomology H•(g[[t]], g,Vcl) also acquires the structure of a skew-commutative algebra.
We recall the description of this algebra obtained in [FGT04].

Set
Cg∗ = g∗/G := Spec(Fun g∗)G

and define the local Hitchin space Cg∗,ω as

Cg∗,ω = Γ
(
D,ω ×

C×
Cg∗

)
,

where ω is the canonical line bundle on the disc D = SpecC[[t]]. Let us choose generators Pi, i =
1, . . . , �, of (Fun g∗)G of degrees di + 1, where the di are the exponents of g, so that (Fun g∗)G =
C[Pi]i=1,...,�. Then we obtain an identification

Fun(Cg∗,ω) = C[Pi,n]i=1,...,�;n�0,

where the Pi,n are the functions on g∗[[t]] dt defined by the formula

Pi,n(f(t) dt) = the tn-coefficient of Pi(f(t)). (1.1)

Note that this definition depends on the choice of t, but we obtain a coordinate-independent
isomorphism

Cg∗,ω �
�⊕

i=1

Γ(D,ω⊗(di+1)) = C[[t]](dt)⊗(di+1)

(it depends only on the choice of the generators Pi in (Fun g∗)G).
It is clear that the functions Pi,n on g∗[[t]] dt are g[[t]]-invariant. Hence we obtain a homomor-

phism
Fun(Cg∗,ω) → H0(g[[t]], g,Vcl).

Next, following [FGT04], we construct a map

ϕcl
κ0

: Fun(Cg∗,ω) → H1(g[[t]], g,Vcl),

for any non-zero invariant inner product κ0 on g (recall that such κ0 is unique up to a scalar). By
abusing notation, we will also denote by κ0 the corresponding map g∗ → g. We need to associate
to each P ∈ Fun(Cg∗,ω) a cocycle ϕcl

κ0
(P ) in

C1(g[[t]], g,Vcl) = Hom(g[[t]]/g,Fun(g∗[[t]] dt))g.

We set
(ϕcl

κ0
(P ))(x(t)) = ∂κ0(dx(t)) · P = 〈κ0(dx(t)), dP 〉, (1.2)

where κ0(dx(t)) ∈ g∗[[t]] dt is considered as the constant tangent vector field to g∗[[t]] dt, and
∂κ0(dx(t)) is the corresponding directional derivative. It is clear from this formula that ϕcl

κ0
factors

through the de Rham differential d : Fun(Cg∗,ω) → Ω1(Cg∗,ω).
In particular, applying the map ϕcl

κ0
to the space C∗g∗,ω of generators of Fun(Cg∗,ω), which is the

dual space to Cg∗,ω, we obtain a map

C∗g∗,ω → H1(g[[t]], g,Vcl).
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If we multiply κ0 by λ, then this map will get divided by λ.
The following theorem is a version of Theorem B of [FGT04].

Theorem 1.2. There is an isomorphism of graded algebras

H•(g[[t]], g,Vcl) � Ω•(Cg∗,ω) = Fun(Cg∗,ω) ⊗
∧ •(C∗g∗,ω).

The right-hand side is a free skew-commutative algebra with even generators Pi,n ∈ H0(g[[t]], g,Vcl)
given by formula (1.1) and odd generators ϕcl

κ0
(Pi,n) ∈ H1(g[[t]], g,Vcl) given by formula (1.2).

We will now explain how to obtain the odd generators from the even ones by using a deformation
of the g[[t]]-module V

cl.
For h ∈ C, let Connh be the space of h-connections on the trivial G-bundle on the disc D. These

are operators of the form h∂t +A(t), where A(t)dt is a section of g⊗ ω on D. The Lie algebra g[[t]]
acts on this space by infinitesimal gauge transformations:

x(t) ·A(t) = [x(t), A(t)] − h∂tx(t). (1.3)

In particular, Connh becomes the space g[[t]] dt when h = 0. We set

V
cl
h = Fun(Connh).

Recall that V
cl = Fun(g∗[[t]] dt). Using the invariant inner product κ0 on g, we identify g∗ with g

and hence V
cl with Fun(g[[t]] dt). Then V

cl
h becomes a one-parameter deformation of V

cl. Note that
the spaces Connh are isomorphic to each other for all non-zero values of h, and so are the modules
V

cl
h .

Explicitly, the action (1.3) translates into the following action of g[[t]] on V
cl
h . For A ∈ g, n ∈ Z,

denote A⊗ tn by An. Then the difference between the actions of An ∈ g[[t]] on monomial elements
B1,m1 · · ·Bk,mk

,mi < 0, in V
cl
h and V

cl is equal to

h
k∑

i=1

nδn,−miκ0(A,Bi)B1,m1 · · · B̂i,mi · · ·Bk,mk
. (1.4)

When h �= 0, any h-connection can be brought to the form h∂t by using gauge transformations
from the first congruence subgroup

G(1) = {g ∈ G[[t]] | g(0) = 1}. (1.5)

Therefore the Lie algebra g ⊗ tC[[t]] acts co-freely on V
cl
h and we obtain the following result.

Lemma 1.3. For h �= 0 the cohomology H i(g[[t]], g,Vcl
h ) vanishes for i > 0, and H0(g[[t]], g,Vcl

h ) = C.

The one-parameter family of g[[t]]-modules V
cl
h gives rise to a g[[t]]⊗C[h]-module, free over C[h],

which by abuse of notation we also denote by V
cl
h . Consider the Chevalley complex C•(g[[t]], g,Vcl

h )
of relative cohomology of g[[t]] modulo g with coefficients in this module. Given a class ω in
H i(g[[t]], g,Vcl), we choose a cocycle ω̃ representing it and extend it in an arbitrary way to an
element ω̃(h) of C•(g[[t]], g,Vcl

h ). Applying the differential of this complex to ω̃(h), dividing by h
and considering the result modulo h, we obtain an element of Ci+1(g[[t]], g,Vcl). It is clear that this
element is a cocycle and that the corresponding cohomology class in H i+1(g[[t]], g,Vcl) is indepen-
dent of all choices. Thus, we obtain well-defined linear maps

ϕcl,i
κ0

: H i(g[[t]], g,Vcl) → H i+1(g[[t]], g,Vcl)

for all i � 0. Writing down the definition of ϕcl,0
κ0 explicitly, using formula (1.4), we obtain that ϕcl,0

κ0

acts on H0(g[[t]], g,Vcl) precisely as the map ϕcl
κ0

given by formula (1.2).
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The differential of the Chevalley complex C•(g[[t]], g,Vcl
h ) is an odd derivation of its algebra

structure. Therefore we obtain that the operators ϕcl,i
κ0 combine into an odd derivation of the

algebra H•(g[[t]], g,Vcl), which we will also denote by ϕcl
κ0

. We have ϕcl,i+1
κ0 ◦ ϕcl,i

κ0 = 0 for all i � 0.
Recall from Theorem 1.2 that we have an isomorphism (dependent on κ0)

H•(g[[t]], g,Vcl) � Ω•(Cg∗,ω),

where Ω•(Cg∗,ω) is the algebra of differential forms on Cg∗,ω. Under this identification the derivation
ϕcl

κ0
becomes nothing but the de Rham differential.

2. Generalities on extensions

Fix an invariant inner product κ on g (recall that it is unique up to a scalar), and let ĝκ denote the
one-dimensional central extension of g ⊗ C((t)),

0 → CK → ĝκ → g ⊗ C((t)) → 0,

with the commutation relations

[A⊗ f(t), B ⊗ g(t)] = [A,B] ⊗ f(t)g(t) − (κ(A,B)Res f dg)K, (2.1)

where K is a central element. The Lie algebra ĝκ is the affine Kac–Moody algebra associated to κ.
Introduce the vacuum module of level κ:

Vκ = Indĝκ
g[[t]]⊕CK C,

where g[[t]] acts on the one-dimensional space C by 0, and K as the identity. We denote by v the
generating vector of this module.

We wish to compute the algebra Ext•(Vκ,Vκ) of self-extensions of Vκ in suitable categories
of Harish-Chandra modules (see Propositions 2.1 and 2.2 below), where the multiplication is the
Yoneda product. In this section we will show that this algebra is given by the cohomologies of a
suitable relative Chevalley complex. In § 3 we will show that this algebra is skew-commutative. Then
we will compute this algebra in § 4.

In what follows by a representation of the group G[[t]] we will understand a direct limit of its
finite-dimensional algebraic representations. In particular, any vector v in such a representation is
invariant under the Nth congruence subgroup of G[[t]] for sufficiently large N and hence satisfies
tNg[[t]]v = 0. Let RepG[[t]] be the category of all such representations.

Consider the category HC(ĝκ, G[[t]]) of Harish-Chandra modules for the pair (ĝκ, G[[t]]), i.e. ĝκ-
modules on which the action of g[[t]] exponentiates to an action of G[[t]], and such that K acts as
the identity. This is a full additive subcategory within all ĝκ-modules, closed under forming kernels
and cokernels, and is therefore abelian.

Next, we consider the relative Chevalley complex of continuous, g-invariant linear maps from∧ •g((t))/g to EndVκ. Here End Vκ is topologized as

lim←− Hom(Vα,Vκ), where Vκ = lim−→Vα, dimVα <∞.

This complex is naturally a DG algebra, so its cohomology H•(g((t)), g,End Vκ) acquires the
structure of an associative (super)algebra.

Proposition 2.1. There is a natural isomorphism

Ext•HC(ĝκ,G[[t]])(Vκ,Vκ) � H•(g((t)), g,End Vκ).

Moreover, the Yoneda product corresponds to the cup-product on the Chevalley complex.
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As HC(ĝκ, G[[t]]) does not have enough projectives or injectives, this requires an argument.

Proof. The cohomologies of the Chevalley complex of continuous, G-invariant linear maps M ⊗∧ •g((t))/g → N define the bi-additive functors

(M,N) �→ Ek(M,N).

The E• are equipped with functorial ‘connecting homomorphisms’, converting short exact sequences,
in either variable, into long exact sequences. This situation is summarized by saying that the E• form
an exact connected right sequence of functors, in each variable separately [Str78, III, § 2], [Lan84,
IV, § 7]. Note that E0 = Hom, which is left exact.

The Yoneda Ext, on the other hand, are the universal exact connected right sequences starting
with Hom [Str78, III, § 1]; they therefore map functorially to the E•. To show equality of the two
functors, it suffices to check universality of the E•. This will follow from Grothendieck’s erasability
criterion [Str78, Theorem 3.4.3], but first we wish to spell out our map from Ext to E.

Consider first k = 1. A representative N → X(η) → M of a class η ∈ Ext1 gives, after a
choice of G-invariant linear splitting, a crossed homomorphism g((t)) × M → N . The latter is
the same as a one-cocycle in the relative Chevalley complex. Changing the splitting modifies the
cocycle by a coboundary, so we get a well-defined Chevalley class. Note that our cocycle will be
continuous, because any linear splitting of X(η) is so.1 It is a standard exercise to check additivity
and functoriality of the resulting map Ext1 → E1, along with the match of the first connecting maps
in the long exact sequence.

A Yoneda k-extension N → X1 → X2 → · · · → Xk →M factors into a product of 1-extensions,
by an epic-monic factorization (i.e. representing each morphism Xp → Xp+1 as the composition
Xp → ImXp → Xp+1). We chose G-linear splittings of the short exact sequences

0 → ImXp−1 → Xp → ImXp → 0

to obtain Chevalley one-cocycles, and assign to the extension (X•) the cup-product of the cor-
responding classes, obtained from the previous construction. Clearly, that is independent of the
splittings, but we must check that this assignment descends to equivalence classes. That is, for a
morphism (commutative diagram) of k-extensions

N ��

��

(X•)

...

�� ��

�� M

��
N �� (Y •) �� M

the associated Chevalley classes agree. To see that, note that we can construct commuting splittings
of the two extensions (by compatible splitting of each step in their epic-monic factorizations).
The associated Chevalley (M,N)-cocycles then agree, by commutativity of the diagram; so our
assignment of Chevalley classes descends to Yoneda equivalence classes.

We now have a transformation of functors which preserves the products, and must check it
is an isomorphism. We say that the functors E•(M,N) are erasable in M if, for any k > 0 and
η ∈ Ek(M,N), there exists an epimorphism f : M ′ → M so that f∗η = 0 in Ek(M ′, N). The
Ext• always satisfy this condition, essentially by construction (take M ′ = Xk above). Assuming
erasability of E•, let us check that our transformation Φ : Ext• → E• is an isomorphism, by
induction on k; we know it for k = 0. Let then η ∈ ker Φ : Extk(M,N) → Ek(M,N) and assume
that f∗η = 0 as above. With K = ker f , it follows that η = δζ for some ζ ∈ Extk−1(K,N).

1It is not difficult to show that our Harish-Chandra category is closed under forming extensions, whence it follows
that all one-cocycles are in fact continuous.
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Then, δΦ(ζ) = Φ(η) = 0, so Φ(ζ) comes from Ek−1(M ′, N). By inductive assumption, the latter
is Extk−1(M ′, N), so ζ comes from there and then η = δζ = 0. This shows injectivity of the map;
surjectivity is left to the reader.

Let us then verify erasability in M . Let M ′ = Indĝκ
g[[t]]⊕CK M and note that restriction of cocycles

gives a map of Chevalley complexes

C•(g((t)), g;M ′, N) → C•(g[[t]], g;M,N), (2.2)

which we claim to be a quasi-isomorphism. Granting this for now, we identify the right-hand
Chevalley cohomologies above with the Ext groups in the category RepG[[t]]. Indeed, observe that
RepG[[t]] contains enough injectives: for any representation N of G, the space Γ(N) of global sec-
tions of the vector bundle associated to N over G[[t]]/G is injective. Any representation V of G[[t]]
may be embedded into a representation of this type, namely, into Γ(V ). Clearly, the Chevalley coho-
mology of Hom(M,Γ(N)) coincides with ExtG[[t]](M,Γ(N)) = HomG(M,N) by de Rham’s theorem
on the contractible space G[[t]]/G. Thus, we deduce the isomorphism

Ek(M ′, N) � ExtkG[[t]](M,N). (2.3)

The functor Extk is left erasable in RepG[[t]]. Now, if M is already a representation of ĝκ, the
inclusion of vector spaces M → M ′ that we used above to construct a map (2.2) has a splitting
M ′ → M which is a homomorphism of ĝκ-modules. This splitting lifts any class η ∈ Ek(M,N)
to η′ ∈ Ek(M ′, N). The isomorphic image of η′, via (2.3), in ExtkG[[t]](M,N) vanishes after further
lifting to ExtkG[[t]](M1, N) via an epimorphism M1 → M , which is an erasure of η in RepG[[t]] (by
the above, we know that such a map M1 →M exists). We then have a commutative diagram

Ek(M ′, N)

��

∼ �� Extk
G[[t]](M,N)

��

Ek(M ′1, N) ∼ �� ExtkG[[t]](M1, N)

where M ′1 = Indĝκ
g[[t]]⊕CK M , which shows that the image of η′ under the vertical map is zero. Hence

the composition Ek(M,N) → Ek(M ′, N) → Ek(M ′, N) obtained via the composite epimorphism
M ′1 → M ′ → M sends η to zero as well. The epimorphism M ′1 → M is then the desired erasure of
η in HC(ĝκ, G[[t]]).

We are left to check that (2.2) is a quasi-isomorphism. Letting

F−1g((t)) = 0, F0g((t)) = g[[t]], F1g((t)) = g((t))

gives increasing filtrations on
∧

g((t))/g and M ′, and hence on their tensor product. (Thus, F0M
′ =

M and F1M
′ = M ⊕ (t−1g[t−1])⊗M .) This leads to a complementary, descending filtration on the

Chevalley complex for (g((t)), g): the maps that vanish on the pth part of the tensor product filtration
live in pth degree. The associated graded complex is C•(g[[t]], g;K ⊗M,N), where K is the Koszul
complex on g((t))/g[[t]]. Consequently, the restriction (2.2) gives an isomorphism of cohomologies, if
we use the Gr of the left-hand Chevalley complex. Because the filtration is Hausdorff and complete
on our space of continuous linear maps, cocycles and coboundaries can be lifted order-by-order to
the complex from its Gr, leading to an isomorphism of cohomologies in the original map (2.2).2

Finally, consider the category HC(ĝκ, G) of continuous Harish-Chandra modules for the pair
(ĝκ, G): these are the g-integrable ĝκ-modules (where g ⊂ gκ is the constant subalgebra) with

2This is, of course, the ‘collapse of the spectral sequence’ argument in [Fuc88, Theorem 1.5.4].
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continuous action for the direct limit topology (see Remark 1.1), and on which K ≡ 1. Continuity
amounts to asking that every vector is annihilated by some subalgebra tNg[[t]].

Note that the category HC(ĝκ, G[[t]]) is a full subcategory of HC(ĝκ, G).

Proposition 2.2. There are natural isomorphisms

ExtkHC(ĝκ,G)(Vκ,Vκ) � ExtkHC(ĝκ,G[[t]])(Vκ,Vκ).

Proof. We shall see below that we have a natural isomorphism

ExtkHC(g[[t]],G)(M,N) � Extk
G[[t]](M,N) (2.4)

for any objects M,N of RepG[[t]]. Assuming this, we can repeat the argument in the proof of Propo-
sition 2.1, with the category RepG[[t]] replaced by HC(g[[t]], G), to conclude that the Chevalley
complex C•(g((t)), g;M,N) computes the Ext in HC(ĝκ, G).

To verify the isomorphism (2.4), we use the right adjoint functor CoInd to the forgetful functor
from G[[t]]-modules to HC(g[[t]], G). Namely, CoInd(N) is the space of horizontal sections of the
bundle G[[t]]×GN over G[[t]]/G, with flat connection determined from the g[[t]]-action. It is easy to
see that the right derived functors Rq CoInd are the de Rham cohomologies with coefficients in the
same bundle. We also note that modules of the form HomG(Ug[[t]];N) are injective objects in
the category HC(ĝκ, G[[t]]). Indeed, for any object M of this category Hom(M,HomG(Ug[[t]];N))
is isomorphic to HomG(M,N). The functor CoInd takes HomG(Ug[[t]];N) to Γ(N). For any object
M of RepG[[t]], we have therefore a Grothendieck spectral sequence

ExtpG[[t]](M,Rq CoInd(N)) ⇒ Extp+q
HC(g[[t]],G)(M,N).

However, if N is already in RepG[[t]], Rq CoInd(N) = 0 for q > 0: this is because the flat N -bundle
over G[[t]]/G becomes isomorphic to the trivial N -bundle by a shearing map (γ, n) �→ (γ, γn),
and contractibility of the space implies the vanishing of higher cohomology. The spectral sequence
degenerates to the desired isomorphism of the Ext.

3. DG vertex algebra structure and skew-commutativity

We now wish to compute the algebra Ext•HC(ĝκ,G)(Vκ,Vκ). By Proposition 2.1, it is isomorphic
to the algebra H•(g((t)), g,End Vκ). Since Vκ is an induced module, Shapiro’s lemma [Fuc88,
Theorem 1.5.4] (see also the end of our proof of Proposition 2.1) implies the following statement.

Lemma 3.1. We have a canonical isomorphism

H•(g[[t]], g,Vκ) � H•(g((t)), g,End Vκ).

In particular, H•(g[[t]], g,Vκ) acquires an algebra structure via this isomorphism.

Remark 3.2. A similar argument shows that H•(g[[t]], g,Vκ) is isomorphic to the relative semi-
infinite cohomology H

∞
2

+•(ĝ2κc , g,Vκ ⊗ V2κc−κ), which is well defined because Vκ ⊗ V2κc−κ is a
module of twice the critical level, as defined in § 4.

Thus, we need to compute the cohomology H•(g[[t]], g,Vκ). It is realized as the cohomology of
the relative Chevalley complex

C•(g[[t]], g,Vκ) =
(

Vκ ⊗
∧ •(g[[t]]/g)∗

)g
.

However, it is not immediately clear what algebra structure is induced on the cohomology of this
complex via the isomorphism of Lemma 3.1. We now explain how to define this algebra structure
directly on H•(g[[t]], g,Vκ).
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Namely, we will define a DG vertex superalgebra structure on the relative Chevalley complex
C•(g[[t]], g,Vκ). It will induce a vertex superalgebra structure on its cohomology H•(g[[t]], g,Vκ).
We will show that the vertex superalgebra H•(g[[t]], g,Vκ) is skew-commutative, and hence we will
obtain the structure of an ordinary skew-commutative algebra on H•(g[[t]], g,Vκ). Finally, we
will show that the latter coincides with the algebra structure obtained from Lemma 3.1. Hence,
by Proposition 2.1, the algebra H•(g[[t]], g,Vκ) is isomorphic to the algebra Ext•HC(ĝκ,G)(Vκ,Vκ).

We start by recalling that the ĝκ-module Vκ is a vertex algebra (see [FB04, § 2.4]). Let {Ja}
be a basis of g. Denote the element Ja ⊗ tn ∈ ĝκ by Ja

n . Then Vκ is freely generated by the vertex
operators

Y (Ja
−1v, z) = Ja(z) =

∑
n∈Z

Ja
nz
−n−1

in the sense of the Reconstruction theorem [FB04, § 4.4].
Next, recall that any skew-commutative associative superalgebra V with a unit and a super-

derivation T carries a canonical vertex superalgebra structure with the vertex operators defined by
the formula [FB04, § 1.4]

Y (A, z) = mult(ezTA) =
∑
n�0

1
n!
zn mult(T nA).

Conversely, given a skew-commutative vertex superalgebra V , with the vertex operation

Y : V → EndV [[z±1]], A �→ Y (A, z) =
∑
n∈Z

A(n)z
−n−1, (3.1)

we recover the skew-commutative algebra product on it by the formula A,B �→ A(−1)B.
Consider the skew-commutative algebra

∧ •(g[[t]]∗). It has generators ψ∗a,n ∈ g[[t]]∗, where a =
1, . . . ,dim g, n � 0, defined by the formula ψ∗a,n(Jb

m) = δa,bδn,−m. Define a superderivation T on∧ •(g[[t]]∗) by the formula T · ψ∗a,n = −(n − 1)ψ∗a,n−1. Then
∧ •(g[[t]]∗) acquires the structure of a

vertex superalgebra. It is freely generated by the vertex operators

Y (ψ∗a,n, z) = ψ∗a(z) =
∑
n�0

ψ∗a,nz
−n,

in the sense of the Reconstruction theorem [FB04, § 4.4].
Let us observe that

∧ •(g[[t]]∗) is a module over the Clifford algebra associated to the vector space
g[[t]]⊕ g[[t]]∗ with the non-degenerate symmetric bilinear form induced by the residue pairing. This
algebra has generators ψa,n, ψ

∗
a,m, a = 1, . . . ,dim g;n � 0,m � 0, satisfying the anti-commutation

relations

[ψa,n, ψ
∗
b,m]+ = δa,bδn,−m, [ψa,n, ψb,m]+ = [ψ∗a,n, ψ

∗
b,m]+ = 0.

The operators ψ∗a,m act on
∧ •(g[[t]]∗) by multiplication and the operators ψa,n act by contraction.

Introduce the generating functions

ψa(z) =
∑
n�0

ψa,nz
−n−1.

We consider the tensor product vertex superalgebra structure on the Chevalley complex

C•(g[[t]],Vκ) = Vκ ⊗
∧ •(g[[t]]∗).

For A ∈ C•(g[[t]],Vκ) we denote by p(A) its parity. The vertex operation

Y : C•(g[[t]],Vκ) → EndC•(g[[t]],Vκ)[[z±1]]
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may be determined by linearity by the explicit formula

Y (Ja1
n1

· · · Jak
nk
v ⊗ ψ∗b1,m1

· · ·ψ∗bl,ml
, z)

=
k∏

i=1

1
(−ni − 1)!

l∏
j=1

1
(−mj)!

: ∂−n1−1
z Ja1(z) · · · ∂−nk−1

z Jak(z) : ∂−m1
z ψ∗b1(z) · · · ∂−ml

z ψ∗bl
(z),

(3.2)

where the colons denote normal ordering.
The differential d of Lie algebra cohomology is given by the formula

d = Resz=0

(∑
a

Ja(z)ψ∗a(z) − 1
2

∑
a,b,c

µab
c ψ
∗
a(z)ψ

∗
b (z)ψc(z)

)
dz,

where (µab
c ) are the structure constants of g:

[Ja, Jb] =
∑

c

µab
c J

c.

One checks easily that d is a superderivation of the vertex algebra C•(g[[t]],Vκ), i.e. we have

Y (dA, z) = [d, Y (A, z)]±, (3.3)

where the sign of the commutator depends on whether the parity of A ∈ C•(g[[t]],Vκ) is even
or odd. Therefore the differential d gives C•(g[[t]],Vκ) the structure of a DG vertex superalgebra.
Thus, its cohomology is a graded vertex superalgebra.

Next, observe that the relative Chevalley complex C•(g[[t]], g,Vκ) is equal to the intersection
of the kernels of the operators ψi,0 = Resz=0 ψi(z) dz and Ĵa

0 = Resz=0 Ĵ
a(z) dz, a = 1, . . . ,dim g,

where

Ĵa(z) = Ja(z) −
∑

b

µab
c ψ
∗
b (z)ψc(z).

These operators are superderivations of the vertex algebra structure on C•(g[[t]],Vκ), i.e. they
satisfy relations similar to (3.3). Therefore the intersection of the kernels of these operators is a
vertex subalgebra of C•(g[[t]],Vκ). Hence we obtain that C•(g[[t]], g,Vκ) also carries the structure
of a DG vertex superalgebra, and so its cohomology H•(g[[t]], g,Vκ) is a graded vertex superalgebra.

The following result (and its generalization described in Remark 3.5) has been suggested to us
by Gaitsgory.

Proposition 3.3. The vertex superalgebras C•(g[[t]],Vκ) and C•(g[[t]], g,Vκ) are homotopy skew-
commutative. Thus, their cohomology vertex superalgebras H•(g[[t]],Vκ) and H•(g[[t]], g,Vκ) are
skew-commutative.

Proof. Suppose that V is a vertex superalgebra with the vertex operation Y (see (3.1)). Restricting
it to the negative powers of z we obtain an operation Y− : V → EndV ⊗ z−1

C[[z−1]], which gives
V the structure of a vertex Lie superalgebra (see [FB04, § 16.1]). Recall that a vertex superalgebra
is called skew-commutative if Y− ≡ 0.

We will introduce the following notation for A,B ∈ V :

Y(m)(A,B) = A(m)B, m � 0,

Y(m)(A,B) = 0, m < 0.

Then the vertex Lie superalgebra operation Y− on V is encoded by the linear maps Y(m) : V ⊗ V →
V . Thus, V is skew-commutative if and only if Y(m) = 0 for all m � 0.
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We recall that the operations Y(m) satisfy the following identities:

Y(m)(A,B) = (−1)p(A)p(B)
m∑

n=0

1
n!

(−1)m−nT nY(m−n)(B,A), (3.4)

Y(m)(TA,B) = Y(m−1)(A,B), (3.5)

Y(m)(A,B(−1)C) = Y(m)(A,B)(−1)C + (−1)p(A)p(B)B(−1)Y(m)(A,C)

+
m−1∑
j=0

Y(m−j−1)(Y(j)(A,B), C) (3.6)

(see [FB04, § 16.1]).
Now consider the DG vertex superalgebra C• = C•(g[[t]],Vκ) with the differential d. Formula

(3.3) implies the following identity:

dY(m)(A,B) = Y(m)(dA,B) + (−1)p(A)Y(m)(A, dB). (3.7)

We will show that C• is homotopy skew-commutative, i.e. we will construct bilinear maps

Z(m) : C• ⊗ C• → C•, m � 0,

of cohomological degree −1 such that

dZ(m)(A,B) − Z(m)(dA,B) + (−1)p(A)Z(m)(A, dB) = Y(m)(A,B). (3.8)

This will imply that the cohomology vertex superalgebra H•(g[[t]],Vκ) is skew-commutative.
In order to construct it, we need to formulate some general properties of biderivations of vertex

Lie algebras. Let V be a vertex Lie algebra. We will call a collection of linear maps Z(m) : V ⊗V →
V, m � 0, a skew-symmetric biderivation if they satisfy the following properties:

Z(m)(A,B) = (−1)p(A)p(B)
m∑

n=0

1
n!

(−1)m−nT nZ(m−n)(B,A), (3.9)

Z(m)(TA,B) = Z(m−1)(A,B), (3.10)

Z(m)(A,B(−1)C) = Z(m)(A,B)(−1)C + (−1)p(A)p(B)B(−1)Z(m)(A,C)

+
m−1∑
j=0

Y(m−j−1)(Z(j)(A,B), C). (3.11)

In particular, (Y(m)) is a skew-symmetric biderivation.
The following lemma, which is proved by a straightforward calculation using the identities

(3.4)–(3.6), (3.9)–(3.11) and (3.7), is a generalization of the well-known properties of the ordinary
derivations.

Lemma 3.4.

(1) Let V be a vertex superalgebra freely generated by elements Ai, i ∈ I. Suppose that we are
given Z(m)(Ai, Aj) ∈ V for all m � 0 and i, j ∈ I, satisfying the identities (3.9). Then this
assignment may be extended uniquely to a skew-symmetric biderivation of V .

(2) Let V be a DG vertex superalgebra, freely generated by Ai, i ∈ I, and (Z(m)) a skew-symmetric
biderivation of V . Suppose that (Z(m)) satisfies the identity (3.8) specialized to A = Ai,
B = Aj , i, j ∈ I. Then (Z(m)) satisfies the identity (3.8) for all A,B ∈ V and hence gives V
the structure of a homotopy skew-commutative DG vertex superalgebra.

Recall that our DG vertex superalgebra C• is generated by Ja−1v and ψ∗a,0, a = 1, . . . ,dim g.
In light of Lemma 3.4, in order to construct a homotopy (Z(m)) on C•, it is sufficient to define
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the Z(m) on these generators in such a way that they satisfy (3.8) and (3.9). We define them by the
following formulas:

Z(m)(J
a
−1v, ψ

∗
b,0) = −Z(m)(ψ

∗
b,0, J

a
−1v) = 1

2δa,bδm,0,

Z(m)(J
a
−1v, J

b
−1v) = Z(m)(ψ

∗
a,0, ψ

∗
b,0) = 0.

One checks by a direct calculation that these formulas satisfy the identities (3.8) and (3.9).
Hence they can be extended uniquely to a skew-symmetric biderivation of C• which gives rise to
the structure of a skew-commutative homotopy DG superalgebra on it. This proves the statement
of the proposition for the Chevalley complex C• = C•(g[[t]],Vκ). In order to prove the statement for
the relative Chevalley complex C•(g[[t]], g,Vκ), which is a DG vertex subalgebra of C•, it is sufficient
to show that our biderivation (Z(m)) preserves this subcomplex. But it follows from the construction
that the maps Z(m) commute with the action of ψ∗a,0 and Ĵa

0 on C•. Hence the homotopy (Z(m))
preserves C•(g[[t]], g,Vκ). This completes the proof.

Remark 3.5. The vertex algebra Vκ is the enveloping vertex algebra of the vertex Lie algebra
associated to the affine Kac–Moody algebra ĝκ. An analogue of the complex C•(g[[t]],Vκ) may be
defined for the enveloping vertex algebra of any vertex Lie algebra. This cohomology complex is
then a DG vertex superalgebra. The above proof carries over verbatim to this more general context,
and we obtain that this cohomology complex is always homotopy skew-commutative.

Thus, we obtain that H•(g[[t]], g,Vκ) is a skew-commutative vertex superalgebra. Therefore the
bilinear operation on H•(g[[t]], g,Vκ) given by the formula

A,B �→ A(−1)B (3.12)

defines the structure of a skew-commutative associative algebra on it.
For a general vertex algebra this operation is non-commutative and non-associative, so it does

not give it the structure of an algebra. But in our case, according to Proposition 3.3, it gives
H•(g[[t]], g,Vκ) the structure of a skew-commutative associative algebra. In the next lemma we
show that the above product coincides with the product structure on the cohomology H•(g[[t]], g,Vκ)
induced by its isomorphism with the algebra of the Ext from Lemma 3.1. Thus, we obtain that the
latter is skew-commutative, which is not obvious otherwise.

Let us observe that the Fourier coefficients of the series (3.2) may be viewed as elements of
the Chevalley complex C•(g((t)), g,End Vκ). Indeed, the lth group of this complex is spanned by
skew-symmetric continuous l-linear maps from g((t)) to EndVκ. To a Fourier coefficient A(n) =∫
Y (A, z)zn dz we assign the l-linear functional whose value on Jb1

p1
∧ · · · ∧ Jbl

pl
is the endomorphism

of Vκ that equals the coefficient in front of ψ∗b1,p1
· · ·ψ∗bl,pl

in A(n).

Lemma 3.6. The isomorphism

H•(g[[t]], g,Vκ) � H•(g((t)), g,EndCVκ) (3.13)

of Lemma 3.1 may be realized as follows. Given a cohomology class in H•(g[[t]], g,Vκ), we represent
it by a cocycle A in C•(g[[t]], g,Vκ) and associate to it the cohomology class of A(−1) which is a
cocycle in C•(g((t)), g,End Vκ). Then the natural product structure on H•(g((t)), g,End Vκ) induces
a product structure on H•(g[[t]], g,Vκ) which is given by formula (3.12). In particular, the latter is
automatically associative.

Proof. Formula (3.3) implies that

[d,A(−1)]± = (dA)(−1), A ∈ C•(g[[t]], g,Vκ).

Therefore if A is a cocycle (respectively, a coboundary) in C•(g[[t]], g,Vκ), then A(−1) is a
cocycle (respectively, a coboundary) in C•(g((t)), g,End Vκ). Thus, we obtain a well-defined map
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from H•(g[[t]], g,Vκ) to H•(g((t)), g,End Vκ). Let us show that this map coincides with the isomor-
phism (3.13) obtained via the Shapiro lemma.

Recall the defining property of the isomorphism (3.13). If ω is any cocycle in the Chevalley
complex representing a cohomology class ω in H•(g((t)), g,End Vκ), then the cohomology class
in H•(g[[t]], g,Vκ) corresponding to ω under the isomorphism (3.13) is obtained by restricting ω
to

∧•(g[[t]]) and applying the corresponding endomorphism of Vκ to the vacuum vector Vκ. Recall
the vacuum axiom of the vertex algebra: in any vertex algebra V with the vacuum vector |0〉 we
have A(−1)|0〉 = A for any A. It follows that if ω = A(−1), then the result of the above procedure
will be A.

This proves that the isomorphism (3.13) is indeed realized by the assignment A �→ A(−1). But
the product of A(−1) and B(−1) in H•(g((t)), g,EndCVκ) is just the composition A(−1) ◦B(−1). This
induces the following product structure on H•(g[[t]], g,Vκ): A,B �→ (A(−1) ◦ B(−1))|0〉 = A(−1)B,
i.e. the one given by formula (3.12). This completes the proof.

4. Cohomology of the vacuum module of critical level

Now we specialize to the critical inner product κc = −1
2κK, where κK denotes the Killing form

on g. Thus, by definition,

κc(x, y) = −1
2 Tr(ad x ad y).

In order to simplify notation, we will denote Vκc by V.

In cohomological degree zero we have

H0(g[[t]], g,V) = V
g[[t]] � Endĝκc

V.

This algebra has been described in [FF92] and [Fre04]. Let us recall this result.

First we need to define g-opers (see [DS85, BD05, Fre04]). Choose a Cartan decomposition
g = n−⊕h⊕n and Chevalley generators fi, i = 1, . . . , �, of n−. Denote by b the direct sum h⊕n and
by N the Lie group of n. Then by definition a g-oper on the disc D = SpecC[[t]] is an equivalence
class of first-order operators

∇ = ∂t +
�∑

i=1

fi + v(t), v(t) ∈ b[[t]], (4.1)

with respect to the gauge action of the group N [[t]] given by the formula

g · (∂t +A(t)) = ∂t + gA(t)g−1 − ∂tg · g−1.

We denote the space of g-opers on D by Opg(D).

Let us include the element p−1 =
∑�

i=1 fi into a principal sl2-triple {p−1, 2ρ̌, p1}, where ρ̌ ∈ h is
the sum of the fundamental coweights. The space of invariants in n of the adjoint action of p1 has a
basis pj, j = 1, . . . , �, of elements such that [ρ̌, pj ] = djpj, where {d1, . . . , d�} is the set of exponents
of g.

It is known from [DS85] that the above action of N [[t]] is free and each equivalence class contains
a unique operator of the form ∂t +

∑�
i=1 fi + v(t), where

v(t) =
�∑

j=1

vj(t) · pj , vj(t) ∈ C[[t]].
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The series v1(t) transforms as a projective connection, while vj(t), j > 1, transforms as a (dj + 1)-
differential (see e.g. [Fre04]). Thus, we obtain an isomorphism

Opg(D) � Proj(D) ×
�⊕

j=2

Γ(D,ω⊗(dj+1)). (4.2)

This isomorphism is coordinate-independent, but it depends in the obvious way on the choice of the
fi and the pj. The space Proj(D) is an affine space modeled on the space Γ(D,ω⊗2) of quadratic
differentials on D. It follows from the identification (4.2) that the algebra Fun(OpLg(D)) has a
natural filtration, and the associated graded algebra is canonically isomorphic to Fun(Cg∗,ω) (see
[BD05, §§ 3.1.12–3.1.14], for more details).

The module V has a PBW filtration, and the associated graded gr V is isomorphic to V
cl. This

induces a filtration on V
g[[t]] = Endĝκc

V and we obtain a natural homomorphism of algebras

gr Endĝκc
V → (Vcl)g[[t]] = Fun(Cg∗,ω).

Let Lg be the Lie algebra that is Langlands dual to g, so that its Cartan matrix is the transpose to
that of g.

Theorem 4.1 [FF92, Fre04]. There is a canonical isomorphism of filtered algebras

Endĝκc
V � Fun(OpLg(D))

such that the following diagram is commutative.

gr Endĝκc

��

∼ �� gr Fun(OpLG(D))

��
Fun(Cg∗,ω)

(−1)deg

�� Fun(Cg∗,ω)

(Here (−1)deg is the automorphism taking value (−1)n on the subspace of elements of degree n.)

Next, we construct maps H i(g[[t]], g,V) → H i+1(g[[t]], g,V) similarly to the classical case, by
deforming the critical inner product. Consider the one-parameter family of vacuum modules

Vκ = Indĝκ
g[[t]]⊕CK C,

where κ = κc + hκ0, with respect to the parameter h. This family gives rise to a one-parameter
family of Chevalley complexes C•(g[[t]], g,Vκ).

Proposition 4.2. For κ �= κc the cohomology H i(g[[t]], g,Vκ) vanishes for i > 0, and H0

(g[[t]], g,Vκ) = C.

Proof. Consider the contragredient module V
∨
κ . It follows from the results of [KK79] that for generic

κ the ĝκ-module Vκ is irreducible. Therefore the natural homomorphism of ĝκ-modules Vκ → V
∨
κ is

an isomorphism. It follows that Vκ is g⊗tC[[t]]-cofree, and we obtain the assertion of the proposition
using Shapiro’s lemma. A proof that works for an arbitrary κ �= κc (when Vκ may be reducible)
will be given after the proof of Theorem 4.4.

Now, in the same way as in the classical case, we obtain linear maps

ϕi
κ0

: H i(g[[t]], g,V) → H i+1(g[[t]], g,V).

In particular, for i = 0 we obtain a map

ϕκ0 = ϕ0
κ0

: Fun(OpLg(D)) → H1(g[[t]], g,V).
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Explicitly, this map looks as follows. Suppose that P ∈ Fun(OpLg(D)) � V
g[[t]] and let us com-

pute the corresponding one-cocycle in the Chevalley complex C•(g[[t]], g,V), which is a linear map
ϕκ0(P ) : g ⊗ tC[[t]] → V. It follows from the definition that

x(t) �→ 1
h
x(t) · P̃

∣∣∣∣
h=0

, (4.3)

where P̃ is an arbitrary lifting of P to Vκ considered as a free module over C[h].

Lemma 4.3. The maps ϕi
κ0

satisfy the Leibniz rule with respect to the natural action of Fun
(OpLg(D)) � Endĝκc

V on H1(g[[t]], g,V). In particular, ϕ0
κ0

necessarily factors through the de
Rham differential

d : Fun(OpLg(D)) → Ω1(OpLg(D)).

We also have ϕi+1
κ0

◦ ϕi
κ0

= 0 for all i � 0.

Proof. After trivializing the terms Ci(g[[t]], g,Vκ) of the Chevalley complex as bundles over
SpecC[h], we can expand the differential δh in powers of h:

δh = δ0 + hδ1 + h2δ2 + · · · .
Note that δ0 is the differential on Ci(g[[t]], g,V), and δ1 = ϕκ0 (here we omit the upper index i to
simplify notation). From δ2h = 0, we find that δ20 = 0 (which is clear anyway, as δ0 is a differential);
additionally, with [ , ]+ denoting the supercommutator,

[δ0, δ1]+ = 0 and δ21 = −[δ0, δ2]+.

The first equality implies that δ1 = ϕκ0 maps δ0-cocycles to δ0-cocycles and so indeed gives rise to
a well-defined map H i(g[[t]], g,V) → H i+1(g[[t]], g,V), while the second equality means that at the
level of cohomologies we have δ21 = 0.

To see that the Leibniz rule holds, observe that δh preserves the multiplicative structure on the
Chevalley complex computing

H•(g((t)), g,End Vκ) � H•(g[[t]], g,Vκ).

Thus we have
δh

(
A ∗

h
B

)
= (δhA) ∗

h
B + (−1)deg AA ∗

h
(δhB),

where ∗
h

denotes the product on the complex depending on the parameter h. Expanding δh, A and

B in powers of h and using the fact that δ0 preserves the multiplicative structure on the Chevalley
complex at h = 0, we obtain that

δ1(A0 ∗B0) = (δ1A0) ∗B + (−1)deg AA ∗ (δ1B).

In particular, if we choose A0 to be an element of H0(g((t)), g,End V) = Fun(OpLg(D)), we obtain
the assertion of the lemma.

Since OpLg(D) is an affine space modeled on the vector space Cg∗,ω, the map Ω1(OpLg(D)) →
H1(g[[t]], g,V) gives rise to a map

C∗g∗,ω → H1(g[[t]], g,V). (4.4)

If we multiply κ0 by λ, then the map (4.4) will get divided by λ, as in the classical case.
Now we are ready to describe the cohomology algebra H•(g[[t]], g,V). The following assertion

means that this algebra is a skew-commutative polynomial algebra with the even generators being
the generators of the polynomial algebra Fun(OpLG(D)) and the odd generators being the images
of some basis elements of C∗g∗,ω under the map (4.4) which turns out to be injective.
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Theorem 4.4. For each non-zero invariant inner product κ0 on g we have an isomorphism

H•(g[[t]], g,V) � Ω•(OpLg(D)) = Fun(OpLg(D)) ⊗
∧ •(C∗g∗,ω), (4.5)

where Ω•(OpLg(D)) is the algebra of differential forms on OpLg(D), such that the map ϕκ0 gets
identified with the de Rham differential on Ω•(OpLg(D)). If we rescale κ0 by λ, then this isomorphism
gets rescaled by λ−i on the ith cohomology.

Proof. Let us describe the strategy of the proof. We will compute the cohomology H•(g[[t]], g,V)
using the spectral sequence induced by the PBW filtration on V. The first term of this spectral
sequence is equal to the cohomology H•(g[[t]], g,Vcl). We will prove that all higher differentials
vanish. This will imply that, for the PBW filtration,

grH•(g[[t]], g,V) = H•(g[[t]], g,Vcl),

which is described by Theorem 1.2. We will see that the algebra structures agree and will verify the
equality grϕκ0 = ϕcl

κ0
. This will imply that H•(g[[t]], g,V) is generated as an algebra in degrees 0

and 1. Theorem 4.1 and Lemma 4.3 will allow us to identify ϕκ0 with de Rham’s differential to give
a linear map

H1(g[[t]], g,V) → Ω1(OpLg(D))
whose gr is the isomorphism of Theorem 1.2. Symmetrized multiplication3 of the generators will give
us a linear map in (4.5), whose associated graded is the isomorphism in Theorem 1.2. The theorem
will then follow, since we know from Proposition 3.3 and Lemma 3.6 that the algebra H•(g[[t]], g,V)
is skew-commutative, and so (4.5) is an algebra isomorphism.

Now we proceed with the proof. First note that H0(g[[t]], g,V) is isomorphic to Fun(OpLg(D))
according to Theorem 4.1. Since gr Fun(OpLg(D)) = Fun(Cg∗,ω), we find from Theorem 1.2 that
the entire zeroth cohomology part of the first term of the spectral sequence survives. (Here and
below we say that a class in a particular term of a spectral sequence ‘survives’ if it is annihilated
by all higher differentials of the spectral sequence and does not lie in the image of any of the higher
differentials.)

Now let us look at the first cohomology part of the spectral sequence. Recall that

Fun(Cg∗,ω) � C[Pi,n]i=1,...,�;n�0.

Let us choose elements P̃i,n in the algebra Fun(OpLg(D)) whose symbols are equal to Pi,n. Then we
have

Fun(OpLg(D)) � C[P̃i,n]i=1,...,�;n�0.

Applying the map ϕκ0 to the P̃i,n, we obtain classes in the first cohomology group H1(g[[t]], g,V).
To show that these classes are non-zero, we compute how the symbol of ϕκ0 acts on the associate
graded cohomology and find that it coincides with the operator ϕcl

κ0
= ϕcl,0

κ0 .
Indeed, let us compute how the action of An = A⊗ tn ∈ g[[t]] on V changes when we deform the

central extension. We find that when we apply this element to a lexicographically ordered monomial
B1,m1 · · ·Bk,mk

vκ ∈ Vκ, the deformation is equal to

h
k∑

i=1

nδn,−miκ0(A,Bi)B1,m1 · · · B̂i,mi · · ·Bk,mk
vκ (4.6)

plus the sum of monomials of order less than k−1. Thus, the h-linear term of the deformation sends
the kth term of the PBW filtration on V to the (k − 1)th term, and comparing with formula (1.4),
we find that the corresponding operator on the associated graded coincides with the operator ϕcl

κ0
.

3We know from Proposition 3.3 that H•(g[[t]], g,V) is commutative, but we prefer not to use it here.
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Therefore we find that the symbol of the cohomology class ϕκ0(P̃i,n) is equal to ϕcl
κ0

(Pi,n),
which is one of the odd generators of H•(g[[t]], g,Vcl) from H1(g[[t]], g,Vcl). Thus, we obtain that
the cocycles representing all odd generators of H•(g[[t]], g,Vcl) may be lifted to cocycles in the
Chevalley complex C•(g[[t]], g,V). Since H•(g[[t]], g,V) is computed by a spectral sequence whose
first term is H•(g[[t]], g,Vcl) we find that these cocycles can become trivial only if their symbols
could be obtained from some cohomology classes in H0(g[[t]], g,Vcl) under the action of the higher
differentials on our spectral sequence. But we know that all classes in H0(g[[t]], g,Vcl) survive, so
under the action of the higher differentials they cannot kill any classes in H1(g[[t]], g,Vcl). Hence
all of these classes survive, and we obtain an injective map C∗g∗,ω → H1(g[[t]], g,V).

The natural action of H0(g[[t]], g,V) = Endĝκc
V on H i(g[[t]], g,V) leads to a map

Fun(OpLg(D)) ⊗ C∗g∗,ω → H1(g[[t]], g,V).

In the same way as above, we find that it is injective. Considering symbols and comparing with
H1(g[[t]], g,Vcl), we find that this map is an isomorphism.

We now generate higher cohomology classes in H i(g[[t]], g,V), i > 1, by taking symmetrized
products of the cocycles representing the classes in H1(g[[t]], g,V) that we have just constructed.
We need to prove inductively that the resulting cohomology classes are non-trivial and spanH•(g[[t]],
g,V). In light of the classical result, Theorem 1.2, it suffices to show that the multiplicative structures
on H•(g[[t]], g,V) and H•(g[[t]], g,Vcl) are compatible, in the sense that the latter is the associated
graded of the former.

We will give two proofs of this assertion. The first one is to use formulas (3.12) and (3.2)
defining the product structure on H•(g[[t]], g,V) using the structure of vertex algebra. Then we
find immediately from the vacuum axiom of vertex algebra that the symbol of the product of
two cocycles A,B ∈ C•(g[[t]], g,V), i.e. symb(A(−1)B), is equal to the product of their symbols,
symb(A) symb(B).

Now we give another proof that does not use the vertex superalgebra structure on C•(g[[t]], g,V).
Let us introduce a Lie algebra filtration (Fi) on g((t)) by setting

F−1 = 0, F0 = g[[t]], F1 = g((t)).

Then the associated graded Lie algebra is

g̃ = g[[t]] ⊕ g((t))/g[[t]],

where the Lie algebra structure on the first summand is the usual one, on the second summand it is
commutative, and the commutator between elements of the two summands is given by the natural
action of g[[t]] on g((t))/g[[t]]. The induced filtration on V coincides with the PBW filtration. Hence
we have an isomorphism

gr V � Indg̃
g[[z]] C � V

cl.

Thus, using the Shapiro lemma, we obtain the isomorphism

H•(g[[t]], g,Vcl) � H•(g̃, g,End V
cl),

which is compatible with the multiplicative structure. But the product on the algebra H•(g̃, g,
End V

cl) is clearly the associated graded of the product on H•(g((t)), g,End V), and hence we obtain
the desired assertion.

Finally, it follows from Proposition 3.3 and Lemma 3.6 that the algebra H•(g[[t]], g,V) is skew-
commutative. This completes the proof of Theorem 4.4.

Remark 4.5. The skew-commutativity of H•(g[[t]], g,V) may be shown without using the vertex
superalgebra structure on C•(g[[t]], g,V). By our construction, H•(g[[t]], g,V) is generated by classes
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in H0 and H1, and we already know that all elements H0(g[[t]], g,V) come from central elements.
Thus, H0 is central in the entire cohomology, and it remains to show that the generators in H1

anti-commute. These generators have the form ϕκ0(A) where A ∈ H0(g[[t]], g,V). Their anti-
commutativity follows from Lemma 4.3. Indeed, we have (denoting ϕκ0 by δ1 as in the proof of
Lemma 4.3)

[δ1(A), δ1(B)]+ = δ1([A, δ1(B)]) −Aδ21(B) + δ21(B)A,

using the Leibniz rule. The first term on the right-hand side vanishes because A is central in
H•(g[[t]], g,V), and the remaining two terms vanish because δ21 = 0 on the cohomology. Hence
[δ1(A), δ1(B)]+ = 0.

Proof of Proposition 4.2. Consider the spectral sequence induced by the PBW filtration on Vκ

and converging to H•(g[[t]], g,Vκ). It has the same first term H•(g[[t]], g,Vcl) as the one for V,
considered in the proof of Theorem 4.4. The computation of ϕκ0 in the above proof shows that the
first differential of this spectral sequence for Vκ differs from the one for V by the map hϕcl

κ0
, where

κ = κ0+hκ0 (see (4.6)). But the differential for V was equal to zero, and we know from Theorem 1.2
that ϕcl

κ0
is the de Rham differential on

H•(g[[t]], g,Vcl) � Ω•(Cg∗,ω).

Hence its cohomology is C, in degree 0.

Next, we consider the absolute cohomology.

Proposition 4.6. The cohomology H•(g[[t]],V) is canonically isomorphic to the tensor product of
H•(g[[t]], g,V) described in Theorem 4.4 and H•(g,C) which is the exterior algebra with generators
in degrees 2di + 1, i = 1, . . . , �.

Proof. The argument is standard, applying to any semi-direct product Lie algebra g � L (L =
g ⊗ tC[[t]] here), provided that g is reductive, L is a direct product, and V is a direct sum of
finite-dimensional irreducible g-modules.

Consider the Serre–Hochshild spectral sequence corresponding to the Lie subalgebra g ⊂ g[[t]]
(see e.g. [Fuc88]). In the first term we have

Ep,q
1 = Hq

(
g, V ⊗

∧
p(g[[t]]/g)∗

)
= Hq(g,C) ⊗ Cp(g[[t]], g,V),

where

Cp(g[[t]], g,V) =
(
V ⊗

∧
p(g[[t]]/g)∗

)g
is the pth group of the relative Chevalley complex computing H•(g[[t]], g,V). Therefore in the second
term we have

Ep,q
2 = Hq(g,C) ⊗Hp(g[[t]], g,V). (4.7)

We can therefore represent classes in Ep,q
2 as tensor products ω1 ⊗ ω2 of a cocycle ω1 in Cq(g,C)

representing a class in Hq(g,C) and a cocycle ω2 in (V ⊗ ∧p(g ⊗ tC[[t]])∗)g representing a class in
Hp(g[[t]], g,V). Applying the differential to this class, we find that it is identically equal to zero
because ω2 is g-invariant. Therefore all the classes in E2 survive. Moreover, all of the generators of
the two factors in the decomposition (4.7) lift canonically to the cohomology H•(g[[t]],V), and so
we obtain the desired statement.
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5. Cohomology of the classical Verma module

Let b be a Borel subalgebra of g. Denote by b̃ the Lie subalgebra of g[[t]] which is the preimage of
b under the evaluation homomorphism g[[t]] → g. Thus, we can write

b̃ = b ⊗ 1 ⊕ g ⊗ tC[[t]].

The Lie group of b̃ is the preimage of B, the Borel subgroup of G corresponding to b under the
evaluation homomorphism G[[t]] → G. We call it the Iwahori subgroup and denote it by B̃.

Decompose b = h⊕n into a direct sum of a Cartan subalgebra and a nilpotent subalgebra. Then
we have an analogous decomposition of b̃: b̃ = h ⊕ ñ, where

ñ = n ⊗ 1 ⊕ g ⊗ tC[[t]]. (5.1)

Given λ ∈ h∗, let Cλ be the one-dimensional representation of the Lie subalgebra b̃⊕ CK of ĝκ, on
which ñ acts by 0, h acts according to λ and K acts as the identity. Then the Verma module Mλ,κ

of highest weight λ at level κ is by definition the induced module

Mλ,κ = Indĝκ
b̃⊕CK

Cλ.

LetH be the Cartan subgroup ofG whose Lie algebra is h. We have the categories HC(ĝκ,H) and
HC(ĝκ, B̃) of continuous Harish-Chandra modules corresponding to the pairs (ĝκ,H) and (ĝκ, B̃),
respectively.

We wish to compute the algebras of self-extensions

Ext•HC(ĝκ,H)(Mλ,κ,Mλ,κ) and Ext•
HC(ĝκ,B̃)

(Mλ,κ,Mλ,κ).

Consider the relative cohomology

H•(g((t)), h,End Mλ,κ)

with its natural algebra structure. In the same way as in § 2, we obtain the following result.

Proposition 5.1. There are natural isomorphisms of algebras

Ext•HC(ĝκ,H)(Mλ,κ,Mλ,κ) � Ext•
HC(ĝκ,B̃)

(Mλ,κ,Mλ,κ) � H•(g((t)), h,End Mλ,κ).

Next, consider the relative cohomology

H•(b̃, h,Mλ,κ ⊗ C−λ) = H•(ñ,Mλ,κ)λ,

where on the right-hand side we consider the λ-component of the cohomology H•(ñ,Mλ,κc) with
respect to the natural action of the Cartan subalgebra h. Using the Shapiro lemma as in Lemma 3.1,
we obtain an isomorphism

H•(b̃, h,Mλ,κ ⊗ C−λ) � H•(g((t)), h,End Mλ,κ).

This isomorphism gives an algebra structure to H•(b̃, h,Mλ,κ ⊗ C−λ).
Thus, to compute the algebras of self-extensions of Mλ,κ introduced above, we need to compute

the relative Lie algebra cohomologies H•(b̃, h,Mλ,κ ⊗ C−λ). The computation will proceed in the
same way as in the case of the vacuum module. Namely, we will use a spectral sequence whose first
term is the cohomology of the graded version of Mλ,κ. In the rest of this section we describe the
latter.

The b̃-module Mλ,κ ⊗ C−λ carries a PBW filtration and the associate graded is isomorphic, as
a b̃-module, to

M
cl = Sym(g((t))/b̃).
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We consider the relative cohomology H•(b̃, h,Mcl). This cohomology is computed by the standard
Chevalley complex of Lie algebra cohomology

C•(b̃, h,Mcl) =
(

M
cl ⊗

∧ • ñ∗
)h

=
(
Sym(g((t))/b̃) ⊗

∧ • ñ∗
)h
.

The algebra structure on M
cl gives rise to a graded algebra structure on the cohomology of this

complex. We compute this cohomology using Theorem 1.2.
Recall the space Cg∗ from § 1 and define CRS

g∗,ω as

CRS
g∗,ω = Γ

(
D,

(
ω(0) ×

C×
Cg∗

)
(−0)

)
� t

(
t−1

C[[t]] dt ×
C×

Cg∗
)
,

where 0 is the closed point of the disc D = Spec C[[t]] and (−0) indicates sections sending the closed
point of D to the origin of the cone. Using the generators Pi, i = 1, . . . , �, of (Fun g∗)G introduced
in § 1, we obtain an identification

Fun(CRS
g∗,ω) = C[Pi,n]i=1,...,�;n�−di

,

where the Pi,n are the functions on g∗⊗ t−1
C[[t]] dt defined by (1.1). Thus, we obtain a coordinate-

independent isomorphism

CRS
g∗,ω �

�⊕
i=1

Γ(D,ω⊗(di+1)(di · 0)) = t−diC[[t]](dt)⊗(di+1).

Consider the restrictions of the functions Pi,n to

(g((t))/b̃)∗ ⊂ (g((t))/g ⊗ tC[[t]])∗ � g∗ ⊗ t−1
C[[t]] dt.

Since by construction these functions are b̃-invariant, we obtain a map

Fun(CRS
g∗,ω) → H0(b̃, h,Mcl).

Next, we use the map ϕcl
κ0

from § 1 to construct a map

(CRS
g∗,ω)∗ → H1(b̃, h,Mcl).

Proposition 5.2. There is a canonical isomorphism of graded algebras

H•(b̃, h,Mcl) � Ω•(CRS
g∗,ω) = Fun(CRS

g∗,ω) ⊗
∧ •(CRS

g,ω)∗.

The right-hand side is a free skew-commutative algebra with the even generators Pi,n ∈ H0(b̃, h,Mcl)
defined by (1.1) and the odd generators ϕcl

κ0
(Pi,n) ∈ H1(b̃, h,Mcl) defined by (1.2), where i = 1, . . . , �

and n � −di.

Proof. We use the same argument as in the proof of Theorem 1.13 of [FGT04], where a closely
related cohomology, H•(b̃, h,Sym(g((t))/ñ)), was computed.

Using the van Est spectral sequence, we obtain that

H•(b̃, h,Mcl) � H•
B̃

(Mcl), H•(g[[t]], g,Vcl) � H•G[[t]](V
cl).

By the Shapiro lemma, we have a spectral sequence converging to H•
B̃
(Mcl) whose second term

consists of the cohomologies

Hp
G[[t]]

(
Rq IndG[[t]]

B̃
M

cl
)
.

Using the residue pairing and a non-degenerate inner product κ0 on g we have an isomorphism

g((t))/b̃ � ñ
dt

t
� ñ
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as a b̃-module, and hence

M
cl = Sym(g((t))/b̃) � Fun(ñ).

Therefore we have

Rq IndG[[t]]

B̃
M

cl = Hq
(
G[[t]] ×̃

B

ñ, O
)
,

where O is the structure sheaf. But the splitting G[[t]] = G×G(1), where G(1) is the first congruence
subgroup, gives rise to the following isomorphism of G-equivariant vector bundles over G[[t]]/B̃ �
G/B:

G[[t]] ×̃
B

ñ � G×
B

ñ � T ∗(G/B) × (g ⊗ tC[[t]]),

where the second isomorphism is due to the fact that

G×
B

n � T ∗(G/B),

and the second summand in the direct sum decomposition (5.1) is a G-module giving rise to a trivial
vector bundle on G/B.

It follows from the results of [Hes76] that

Hq(T ∗(G/B),O) = 0, q > 0,

and

H0(T ∗(G/B),O) = Fun(N ),

where N ⊂ g is the nilpotent cone and the functions on N are pulled back to T ∗(G/B) via the
moment map T ∗(G/B) → g∗ κ0−→ g (its image belongs to N ). This implies that Rq IndG[[t]]

B̃
M

cl = 0
for q > 0. Consider the morphism

G[[t]] ×̃
B

ñ → T ∗(G/B) ×
g

g[[t]],

(g, x) �→ ((g, g(x)), g(x)),

where g is the projection of g ∈ G[[t]] onto G[[t]]/B̃ � G/B and g(x) = g(x) mod g⊗ tC[[t]], so that
g(x) ∈ T ∗g (G/B). It is clear that this is an isomorphism, and so we find that

IndG[[t]]

B̃
M

cl � Fun
(
G[[t]] ×̃

B

ñ
)
� Fun

(
N ×
g

g[[t]]
)
.

Therefore we obtain that

Hp

B̃
(Mcl) = Hp

G[[t]]

(
Fun

(
N ×
g

g[[t]]
))
.

Recall that N is a complete intersection whose ideal in Fun g is the augmentation ideal of the ring
of invariant functions (Fun g)G. Thus, the ring of functions on the fiber product appearing on the
right-hand side may be resolved by the Koszul complex

Fun g ⊗
∧ •(Pi)i=1,...,�.

Hence we find that H•(b̃, h,Mcl) is equal to the cohomology of the double complex

H•(g[[t]], g,Fun(g[[t]])) ⊗
∧ •(Pi)i=1,...,�.

But we already know the first factor from Theorem 1.2. It is clear from the description of the
generators of this cohomology that the even generators Pi,0 get eliminated by the exterior algebra∧ •(Pi)i=1,...,�. Hence we obtain that H•(b̃, h,Mcl) is a free skew-commutative algebra generated by
all remaining generators as described in Theorem 1.2. This gives us the statement of the proposition,
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with the shifting of the labeling of the generators due to the fact that we have used the identification
ñ dt/t � ñ in the course of the proof.

6. Self-extensions of the Verma modules

We can now compute the algebras of self-extensions of the Verma modules Mλ,κ in the categories
of Harish-Chandra modules introduced above. First, we describe some deformations of the space
CRS
g∗,ω.

Following [BD05, § 3.8.8], define a Lg-oper with regular singularity as the equivalence class
operators of the form

∂t +
1
t
(p−1 + v(t)), v(t) ∈ Lb[[t]]

with respect to the gauge action of LN [[t]]. Define the residue of this oper as p−1 + v(0). Clearly,
under gauge transformations by an element x(t) of LN [[t]] the residue gets conjugated by x(0) ∈ LN .
Therefore its projection onto Lg/LG = Lh/W = Spec(Fun Lh)W is well defined. Hence the residue
is a point in Lh/W = h∗/W . Denote the space of Lg-opers with regular singularity by OpRS

Lg (D) and
for λ ∈ h∗ denote by OpRS

Lg (D)λ its subspace of opers with residue equal to the projection of λ onto
h∗/W .

The natural map OpRS
Lg (D)λ → OpLg(D×) is an embedding and the canonical form of an oper

in OpRS
Lg (D)λ is given by the formula

∂t + p−1 +
�∑

i=1

t−di−1cj(t)pj , ci(t) ∈ C[[t]].

Moreover, the values ci(0) are uniquely determined by the requirement that λ ∈ Lh is LG-conjugate
to

p−1 +
(
c1(0) +

1
4

)
p1 +

�∑
i=2

cj(0)pj

(see [BD05, Proposition 3.8.9]). It follows that the algebra Fun(OpRS
Lg (D)) has a natural filtration,

and the associated graded algebra is isomorphic to Fun(CRS
g∗,ω).

According to the results of Frenkel (see [Fre04, Theorem 12.4, Lemma 9.4 and Proposition 12.8]),
we have the following analogue of Theorem 4.1 for Verma modules.

Theorem 6.1. For any λ ∈ h∗ there is a canonical isomorphism of algebras

Endĝκc
Mλ,κc = H0(b̃, h,Mλ,κc ⊗ C−λ) � Fun(OpRS

Lg (D)−λ−ρ).

The main step in the proof is proving that the associated graded of (Mλ,κc ⊗C−λ)b̃ with respect
to the PBW filtration is equal to (Mcl)b̃. We prove this by constructing b̃-invariant vectors in
Mλ,κc ⊗ C−λ using central elements of the completed universal enveloping algebra of ĝκc . Since the
center is ‘large’, namely, it is isomorphic to the algebra of functions on OpLg(D×), we construct
sufficiently many invariant vectors this way. But we know from Proposition 5.2 that

(Mcl)b̃ � Fun(CRS
g∗,ω).

Therefore SpecEndĝκc
Mλ,κc is an affine subspace of OpLg(D×) on which CRS

g∗,ω acts simply tran-
sitively. The fact that this subspace is equal to OpRS

Lg (D)−λ−ρ follows from our knowledge of how
the degree zero part of the center acts on the highest weight vector of Mλ,κc (see [Fre04, Proposi-
tion 12.8]).
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As in the case of the vacuum module, we now generalize Theorem 6.1 to a complete description
of the algebra H•(b̃, h,Mλ,κc ⊗ C−λ). It turns out to be isomorphic to the algebra of differential
forms on OpRS

Lg (D)−λ−ρ.

Theorem 6.2. For each non-zero invariant inner product κ0 on g there is an isomorphism of graded
algebras

Ext•
HC(ĝκc ,B̃)

(Mλ,κc ,Mλ,κc) = H•(b̃, h,Mλ,κc ⊗ C−λ)

� Ω•(OpRS
Lg (D)−λ−ρ)

= Fun(OpRS
Lg (D)−λ−ρ) ⊗

∧ •(CRS
g∗,ω)∗, (6.1)

where Ω•(OpRS
Lg (D)−λ−ρ) is the algebra of differential forms on OpRS

Lg (D)−λ−ρ. If we rescale κ0 by

λ, then this isomorphism gets rescaled by λ−i on the ith cohomology.

Proof. We apply verbatim the proof of Theorem 4.4. We compute the cohomology H•(b̃, h,Mλ,κc ⊗
C−λ) using the spectral sequence associated to the PBW filtration on Mλ,κc . Its first term is the
cohomology H•(b̃, h,Mcl) computed in Proposition 5.2. We find from Theorem 6.1 that the zeroth
cohomology part of the first term survives. Next, we construct cohomology classes inH1(b̃, h,Mλ,κc⊗
C−λ) in the same way as in Theorem 4.4, by deforming the module Mλ,κc away from the critical
level.

In the same way as in the case of the vacuum module we construct maps

ϕ̃i
κ0

: H i(b̃, h,Mλ,κc ⊗ C−λ) → H i+1(b̃, h,Mλ,κc ⊗ C−λ).

Considering the symbols of the classes in H1(b̃, h,Mλ,κc ⊗ C−λ) obtained by applying ϕ̃0
κ0

to the
generators of H0(b̃, h,Mλ,κc ⊗ C−λ), we find that these are the generators of H1(b̃, h,Mcl). Hence
these classes survive.

We then use the product structure to produce cohomology classes of higher degrees. We check
in the same way as in the proof of Theorem 4.4 (the second argument) that the product on
H•(b̃, h,Mλ,κc ⊗ C−λ) is compatible with that on H•(b̃, h,Mcl). Therefore we find that all of these
classes survive. Finally, we show that the generators of H1(b̃, h,Mλ,κc ⊗ C−λ) anti-commute using
the same computation as in Theorem 4.4. This completes the proof.

Finally, we describe the algebras of self-extensions of the Verma modules Mλ,κ of an arbitrary
level κ �= κc.

Proposition 6.3. For κ �= κ0 and any λ ∈ h∗ we have

Homgκ(Mλ,κ,Mλ,κ) = H0(b̃, h,Mλ,κ ⊗ C−λ) = C

and

Exti
HC(ĝκ,B̃)

(Mλ,κ,Mλ,κ) = H i(b̃, h,Mλ,κ ⊗ C−λ) = 0

for all i > 0.

Proof. The proof is the verbatim repetition of the proof of Proposition 4.2. First of all, for generic
κ and λ the module Mλ,κ is irreducible, according to the results of [KK79]. Therefore it is ñ-cofree,
hence the result.

For an arbitrary κ �= κc and λ we use the same spectral sequence as in the proof of Theorem 6.2
induced by the PBW filtration on Mλ,κ. Then the first term of this spectral sequence is the same
as for κ = κc, i.e. H•(b̃, h,Mcl). Next, we find that the first differential of this spectral sequence
differs from the first differential of the corresponding spectral sequence at κ = κc by h gr ϕ̃i

κ0
,
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where κ = κc + hκ0. But we know from the proof of Theorem 6.2 that the first differential of the
spectral sequence at κ = κc is equal to 0, and we know that ϕ̃i

κ0
is just the de Rham differential on

H•(b̃, h,Mcl) � Ω•(CRS
g∗,ω). Hence we obtain the desired assertion.
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