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The purpose of this paper is to establish some basic properties of the Wielandt
subgroup of a polycyclic group. The Wielandt subgroup of a group G is defined to be the
intersection of the normalisers of all the subnormal subgroups of G and is denoted by
(o(G). In 1958 Wielandt [9] showed that any minimal normal subgroup with the minimum
condition on subnormal subgroups is contained in the Wielandt subgroup: it follows that
the Wielandt subgroup of an artinian group is nontrivial. In contrast, the Wielandt
subgroup of a polycyclic group can be trivial; an easy example is given by the infinite
dihedral group. We will show that the Wielandt subgroup of a polycyclic group is close to
being central.

For the case of nilpotent groups, the basic properties of the Wielandt subgroup are
known. Schenkman [7] has shown that the Wielandt subgroup of a nilpotent group is
always contained in the second centre. Clearly the Wielandt subgroup always contains the
centre: it is not difficult to find examples of finite nilpotent groups in which the Wielandt
subgroup is strictly larger than the centre. However in torsion free nilpotent groups the
Wielandt subgroup always coincides with the centre (see for example Robinson [6],
Exercise 13.3.3).

We begin by observing that these results can be generalised to residually nilpotent
groups. Note that if G is a group with a subnormal subgroup N, a>(G) D N ^ co(N) and if
M is normal in G, a>(G)M/M £ o)(G/M): we will use these facts without further
comment.

LEMMA, (i) Let G be a residually nilpotent group. Then (o(G) ^
(ii) Let G be a residually finite p-group for some prime p and suppose that co(G) is

torsion free. Then co(G) = £(G).

Proof, (i) is clear. To prove (ii) suppose that x e <w(G)\£(G) and let y = G with
[;t,_y]^l. Since x = ^(G) by (i), (x,y) is nilpotent of class 2. Then for some normal
subgroup N of G of p-power index we have [x, y] $ N. Suppose that the order of yN is p".
If M is any normal subgroup of p -power index in G, we have that xM and yM generate a
metacyclic group (since xM normalises {yM)) of class at most 2 (since (x,y) has class 2).
Since [x,y] has infinite order, we can then choose a normal subgroup M^N of G of
p-power index such that the order of [*,.y]A/ is greater than p2". Since xM normalises
(yM) and (x,y) has class 2, we have [y,x]M = yap'M, with a prime to p, and then
[y,x,x]M=y"2p2lM = M, givings>n. But then [y,x]N = y"pSN = N and so [x,y]eN, a
contradiction.

If G is a polycyclic group we show that CG(w(G)) has finite index in G. For some
groups we can prove more than this: polycyclic groups are nilpotent-by-abelian-by-finite
and we show that £(G) has finite index in a>(G) for a nilpotent-by-abelian polycyclic
group G.

THEOREM 1. (i) Let G be a polycyclic group. Then CG((p(G)) has finite index in G.
(ii) Let G be a nilpotent-by-abelian polycyclic group. Then £(G) has finite index in

co(G).
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Proof, (i) If (o(G) is finite the result follows immediately and so we suppose that
(w(G) is infinite; (o(G) is then abelian (Lennox and Stonehewer [3, Theorem 6.4.13]).
Further G has a torsion free normal subgroup of finite index, T say, which is residually a
finite p-group for some prime p (Segal [8, Proposition 1.2 and Theorem 1.4]). It then
follows from the Lemma that co(G) n T < co(T) = £(T). Put W = (o(G), X = W n T and
then set C = CG(W), D = CG{X) and E = CG(W/X). Clearly D and E have finite index
in G and C^D HE: to complete the proof it will be enough to show that C = D (~1 E.
Suppose that aeDHE, weW. Then w" — wx for some xeX. Since W/X is finite,
iv" e Z for some integer n. But then w" = {wn)a = w"x" and so xn = 1. Since X is torsion
free, x = 1 and a e C a s required.

(ii) Let F denote the Fitting subgroup of G, so that GIF is abelian. Put W = eo(G),
Z = £(G) and let T denote a finite normal subgroup of G. We may as well suppose that W
is infinite and hence abelian: thus we assume W < F. If Y/T = £(G/T), then Z has finite
index in Y. To see this, observe that Y has a torsion free characteristic subgroup of finite
index, TV say. If x eN and y e G we then have [x,y] e NC\ T = 1 and soiV<Z. If Z has
infinite index in W, it follows that £(G/T) has infinite index in a>(G/T). Thus we may
assume that G contains no finite normal subgroup: in particular we may assume that F is
torsion free.

Suppose that GIF is cyclic of p-power order for some prime p. Since F is residually a
finite p-group (Segal [8, Theorem 1.4]) so is G and it follows from the Lemma that
W = Z.

Suppose that GIF is infinite cyclic. If xF generates GIF, x acts as an automorphism,
of order e say, on FIF'FP. It then follows as in the proof of Theorem 1.4(ii) of Segal [8]
that F(xe) is a residually finite p-group. Since G/F(xe) is cyclic, if Ap/F(xe) is the
Sylow p-subgroup of G/F(xe), Ap is a residually finite p-group, normal in G with G/Ap a
finite p'-group. We then have W PI Ap s <a{Ap) = £(AP) by the Lemma. Fix a prime p and
let & be the set of primes dividing G/Ap. Let A denote the intersection of all the Aq and
B denote the subgroup generated by all the Aq, where q = p or q e &. Then W DA is
contained in the centre of B and has finite index in W. The condition on the indices
ensures that B = G and hence that £(G) has finite index in W.

Finally let GIF = (AJF) x . . . x (AnIF), where each At/F is infinite cyclic or cyclic of
prime power order. We then have CCA) has finite index in <«(A) for i = 1,. . . , n and
hence Z, the intersection of the £(-<4,)> has finite index in the intersection of the co(Aj).
Since W is contained in the intersection of the a>(Aj) we have Z has finite index in W,
proving the result.

That part (ii) of the Theorem cannot be extended to polycyclic groups in general is
shown by the following example.

Let H be the nonabelian group of order 6 and let U be a free abelian group of rank 2
on which H acts faithfully and irreducibly as given in the second of the two
representations of Example 1, p. 505 of Curtis and Reiner [1]. Regarded as a Z//-module,
the tensor square of U has a quotient module V of rank 1 on which H acts as a group of
automorphisms of order 2. Now, following the recipe of Huppert [2, Hilfssatz VI.7.22],
we can construct a nilpotent group A of class 2 on which H acts as a group of
automorphisms, with Alt,{A) isomorphic to U®U and £(A) isomorphic to V as
ZH-modules. Let G be the semidirect product of A and H. Then co(G) ^ £{A). We show
that w(G) = £(i4).
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To see that £(A) < co(G), let S be a subnormal subgroup of G. If S<AH' then 5 is
even centralised by £(A). Hence suppose that 5 is not contained in AH': we have then
SA = G. Suppose that S ¥=G: then S C\A =£A. Let M be maximal in A containing S D A:
then M is normal in A and \A/M\ =p for some prime p. It follows that A'APS ¥= G and
hence A'APS/A'AP is a proper subnormal subgroup of G/A'AP. Set Ao = A/A'AP: we can
regard Ao as a Zp//-module.

If p ¥= 3, i40 is the direct sum of 2 isomorphic faithful irreducible //-modules and so the
only subnormal supplement to Ao in GIA'AP is G/A'AP. Hence we must have p = 3. But
if p = 3, Ao is the direct sum of two indecomposable Z3//-modules, each of which has a
unique maximal submodule whose quotient is nontrivial as an //-module. Again it follows
that the only subnormal supplement to Ao is the whole of G/A'AP. Thus S = G and so is
normalised by t,(A), as required.

We can iterate the Wielandt subgroup of a group G by defining a>x{G) = (o(G) and
then <u,(G)/(w,_1(G) = w(G/w,_1(G)): we set (om(G) = U (»n(G). If (on^(G)^G but
con(G) = G for some n we say that G has Wielandt length n. Another feature enjoyed by
artinian groups is that they have finite Wielandt length. In general polycyclic groups will
not be of finite Wielandt length: indeed often we will have (oa(G) =£ G. We can give a
precise answer to when a polycyclic group has finite Wielandt length.

THEOREM 2. Let G be a polycyclic group. Then <«oo(G) — G if and only if G is
finite-by-nilpotent; and if G is finite-by-nilpotent, G has finite Wielandt length.

Proof. Since G is noetherian, (O^G) = G if and only if G has finite Wielandt length.
Thus we need only show that G has finite Wielandt length if and only if G is
finite-by-nilpotent.

If G is finite-by-nilpotent then G has either a finite normal subgroup or a nontrivial
centre and hence a nontrivial Wielandt subgroup. It follows immediately from the facts
that quotients of finite-by-nilpotent groups are finite-by-nilpotent and that G is noetherian
that G has finite Weilandt length.

In the other direction, observe that if G has finite Wielandt length so does every
quotient of G. Thus it will be enough to show that, if G is not finite-by-nilpotent but
every proper quotient of G is, then cu(G) = 1. Hence suppose that G is not finite-by-
nilpotent but every quotient of G is, and that a>(G) =£ 1. We have then that G contains no
nontrivial finite normal subgroup and so the Fitting subgroup F of G is torsion free and
<t)(G) :£ F. Further G has a nilpotent-by-abelian normal subgroup H of finite index with F
properly contained in H. If H were finite-by-nilpotent we would have either H nilpotent
or H has a finite normal subgroup and so H is not finite-by-nilpotent. But then Theorem 1
tells us that £(//) has finite index in co(H). Since co(H) # 1 by assumption, we have
£(//) # 1 and so ///£(//) is finite-by-nilpotent. It then follows immediately from the fact
that a group is finite-by-nilpotent if and only if some finite term of the upper central series
has finite index (see for example the comment after Theorem 4.25 of Robinson [5]) that
H is finite-by-nilpotent, a contradiction. Thus we must have a>(G) = 1.

(I am grateful to Carlo Casolo for pointing out to me that Theorem 2 can also be
obtained as an immediate corollary of theorems of Robinson (Theorem 6.5.4 in [3]) and
McCaughan ([4, Theorem 4.1]).)
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