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We employ a linear stability analysis and direct numerical simulations to study the
characteristics of wall modes in thermal convection in a rectangular box under strong
and inclined magnetic fields. The walls of the convection cell are electrically insulated.
The stability analysis assumes periodicity in the spanwise direction perpendicular to the
plane of a homogeneous magnetic field. Our study shows that for a fixed vertical magnetic
field, the imposition of horizontal magnetic fields results in an increase of the critical
Rayleigh number along with a decrease in the wavelength of the wall modes. The wall
modes become tilted along the direction of the resulting magnetic fields and therefore
extend further into the bulk as the horizontal magnetic field is increased. Once the
modes localized on the opposite walls interact, the critical Rayleigh number decreases
again and eventually drops below the value for onset with a purely vertical field. We
find that for sufficiently strong horizontal magnetic fields, the steady wall modes occupy
the entire bulk and therefore convection is no longer restricted to the sidewalls. The
aforementioned results are confirmed by direct numerical simulations of the nonlinear
evolution of magnetoconvection. The direct numerical simulation results also reveal that
at least for large values of horizontal magnetic field, the wall-mode structures and the
resulting heat transfer are dependent on the initial conditions.
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1. Introduction

Buoyancy-driven flows of electrically conducting fluids under the influence of magnetic
fields are a common occurrence in geophysical, astrophysical and several technological
applications. Such flows are called magnetoconvection and their driving mechanism is the
temperature dependence of the fluid density, which results in spatial density variations
leading to buoyancy forces acting on the fluid. When such a fluid moves under the
influence of magnetic fields, electric currents are induced in the fluid due to Faraday’s law,
which, in turn, induce magnetic fields via Ampere’s law. These electric currents interact
with the applied and induced magnetic fields to generate a Lorentz force distribution
that acts on the fluid. Therefore, magnetoconvective flows are governed by equations of
conservation of mass, momentum and thermal energy, along with Maxwell’s equations
for electromagnetism and Ohm’s law (Weiss & Proctor 2014). Magnetoconvection is
encountered in the Sun, stars and planetary dynamos. In industries and technological
applications, magnetoconvection is typically encountered in liquid-metal batteries (Kelley
& Sadoway 2014; Shen & Zikanov 2016; Kelley & Weier 2018), cooling liquid-metal
blankets in fusion reactors (Mistrangelo, Biihler & Kliiber 2020; Mistrangelo et al. 2021)
and magnetic stirring and braking of liquid-metal melts (Davidson 1999, 2017; Lyubimov
et al. 2010).

A simplified paradigm for magnetoconvection consists of a fluid layer that is heated
from below and cooled from above (Rayleigh—-Bénard convection) with imposed magnetic
fields in different configurations. Typically, the Boussinesq approximation is employed
for modelling the aforementioned flows; this approximation assumes that the flow is
incompressible and the density variations are negligible except in the buoyancy term in
the momentum equation (Chandrasekhar 1981; Lohse & Xia 2010; Chilla & Schumacher
2012; Verma 2018). Magnetoconvection is governed by the following non-dimensional
parameters: (i) Rayleigh number Ra — the ratio of buoyancy to dissipative forces;
(i1) Prandtl number Pr — the ratio of kinematic viscosity to thermal diffusivity;
(iii)) Hartmann number Ha — the ratio of Lorentz to viscous forces; and (iv) magnetic
Prandtl number Pm - the ratio of kinematic viscosity to magnetic diffusivity. The
important non-dimensional output parameters of magnetoconvection are (i) the Nusselt
number Nu — the ratio of the total heat transport to the diffusive heat transport; (ii)
the Reynolds number Re — the ratio of inertial to viscous forces; and (iii) the magnetic
Reynolds number Rm — the ratio of induction to diffusion of the magnetic field.
In liquid-metal convection typically encountered in laboratory experiments and most
industrial applications, the magnetic Reynolds number is sufficiently small such that the
induced magnetic field is negligible compared with the applied magnetic field and is
thus neglected in the expressions of the Lorentz force and Ohm’s law (Roberts 1967;
Davidson 2017; Verma 2019). Such cases are referred to as quasi-static magnetoconvection
where the induced magnetic field adjusts instantaneously to the changes in velocity. In
the quasi-static approximation, the magnetic Prandtl number vanishes and there exists a
one-way influence of the magnetic field on the flow only.

Magnetoconvection has been studied theoretically in the past (e.g. Chandrasekhar
1954; Gershuni & Zhukhovitskii 1958, 1962; Shliomis 1963, 1964; Dunwoody 1964;
Yih 1965; Gershuni & Zhukhovitskii 1976; Chandrasekhar 1981; Houchens, Witkowski
& Walker 2002; Busse 2008) as well as with the help of experiments (e.g. Nakagawa
1957; Fauve, Laroche & Libchaber 1981; Cioni, Chaumat & Sommeria 2000; Aurnou
& Olson 2001; Burr & Miiller 2001; King & Aurnou 2015; Vogt et al. 2018, 2021;
Ziirner et al. 2020; Grannan et al. 2022) and numerical simulations (e.g. Liu, Krasnov
& Schumacher 2018; Yan et al. 2019; Akhmedagaev et al. 2020a,b; Nicoski, Yan &
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Calkins 2022; Bhattacharya et al. 2023). An application of horizontal magnetic fields
causes the large-scale rolls to become quasi-two-dimensional and align in the direction
of the field (Fauve er al. 1981; Busse & Clever 1983; Burr & Miiller 2002; Yanagisawa
et al. 2013; Tasaka et al. 2016; Vogt et al. 2018, 2021). These self-organized flow
structures reach an optimal state wherein the heat transport and convective velocities
increase significantly compared with convection without magnetic fields (Vogt et al. 2021).
In contrast, strong vertical magnetic fields suppress convection (Chandrasekhar 1981;
Cioni et al. 2000; Akhmedagaev et al. 2020a,b; Ziirner et al. 2020). It must be noted
that in a Rayleigh—Bénard system, convection commences only above a certain critical
Rayleigh number, which is Ra. ~ 1708 for the case with infinite no-slip horizontal walls
(Chandrasekhar 1981). For Ra < Rac, the heat transfer occurs purely by diffusion. The
critical Rayleigh number increases when a vertical magnetic field is imposed and scales as
Ra. ~ Ha“ in the asymptotic limit of large Hartmann numbers.

The dynamics of convection under strong vertical magnetic fields becomes more
intricate in the presence of sidewalls. Houchens et al. (2002) and Busse (2008)
analytically showed that magnetoconvection near sidewalls ceases at Rayleigh numbers
below those required to completely suppress convection in the bulk. Several numerical
and experimental studies on magnetoconvection with sidewalls have also revealed the
presence of residual wall-attached convection at Ra < Ra. (Houchens et al. 2002; Liu
et al. 2018; Akhmedagaev et al. 2020a.,b; Ziirner et al. 2020; McCormack et al. 2023).
These so-called wall modes were shown to exhibit a two-layered structure and become
more closely attached to the sidewalls with an increase of Hartmann number (Liu et al.
2018).

There are only a few studies on convection with inclined magnetic fields which
motivates the present work (Hurlburt, Matthews & Proctor 1996; Nicoski er al. 2022). The
results of Hurlburt et al. (1996) indicate that the mean flows tend to travel in the direction of
the tilt. Nicoski et al. (2022) observed qualitative similarities between convection with an
inclined magnetic field and that with a vertical magnetic field in terms of the behaviour of
convection patterns, heat transport and flow speed. However, to the best of our knowledge,
there are no studies for the case with inclined magnetic fields where the Rayleigh number
is close to but less than the critical Rayleigh number. Therefore, in the present work, we
study thermal magnetoconvection in the wall-attached convection regime and explore the
effects of additional horizontal magnetic fields on the wall modes. We use a combination
of linear stability analysis and direct numerical simulations to study the dependence of the
horizontal magnetic field strength, relative to the vertical magnetic field, on the wall-mode
structures and their impact on large-scale heat and momentum transport.

The outline of the paper is as follows. In § 2, we discuss the problem set-up, the linear
stability model and the schemes for direct numerical simulations. The linear stability
analysis and the results of direct numerical simulations are described in § 3. We conclude
in §4.

2. Numerical model

In this section, we discuss the mathematical model of our problem and the numerics
employed for the stability analysis and direct numerical simulations. A general set-up for
our problem is illustrated in figure 1. The convection cell consists of a rectangular box
having an aspect ratio of I". The aspect ratio is the ratio of the length to the height of the
convection cell. The box comprises rigid horizontal walls, with the bottom wall kept at a
higher temperature than the top wall. Gravity acts along the z direction (vertical direction),

979 A53-3


https://doi.org/10.1017/jfm.2023.1087

https://doi.org/10.1017/jfm.2023.1087 Published online by Cambridge University Press

S. Bhattacharya, T. Boeck, D. Krasnov and J. Schumacher

Cooled plate )%\
I'H y

X

Heated plate

Figure 1. A sketch of the Rayleigh—Bénard convection set-up with inclined magnetic field employed in our
present study.

and a magnetic field B is imposed along the z and the horizontal y directions. The magnetic
field does not have a component along the horizontal x direction. The vertical component
of the magnetic field (B;) is kept fixed while the horizontal y component (By) is varied
from O to 3 times the value of B,. In the forthcoming analyses, we denote R = By /B; as
the ratio of the horizontal to the vertical components of the magnetic field.

The study is conducted under the quasi-static approximation, in which the induced
magnetic field is neglected as it is very small compared with the applied magnetic field.
This approximation is fairly accurate for magnetoconvection in liquid metals (Davidson
2017). Further, we employ the Boussinesq approximation, in which the variations in the
density of the fluid are ignored except in the buoyancy term in the momentum equation.
Hence, the flow is essentially treated as incompressible. The governing equations of
magnetoconvection under these approximations are as follows:

V-u=0, 2.1)
u Vp R 5 1 .
— 4 u-Vu=——+4+0agTz+vV°u+ —(j x B), (2.2)
ot P P
aT 5
E—{—u-VT:KV T, (2.3)
Jj=0(=V¢+uxB), (2.4)
V3¢ =V - (uxB), (2.5)

where u, j, p, T and ¢ are the fields of velocity, current density, pressure, temperature
and electrical potential, respectively. Further, v is the kinematic viscosity, « is the thermal
diffusivity, p is the density, o is the electrical conductivity of the fluid and Z is the unit
vector along the vertical direction. The last term in the momentum equation (2.2) is the
Lorentz force density. Equation (2.4) is Ohm’s law. The Poisson equation (2.5) for the
electric potential is a consequence of the charge conservation condition V - j = 0.

In the following, we discuss how the aforementioned equations have been employed for
our linear stability analysis and direct numerical simulations.
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2.1. Linear stability model

We first discuss the derivation of the perturbation equations for our linear stability analysis.
Equations (2.1)—(2.5) are non-dimensionalized using the cell height H as the length scale,
k /H as the velocity scale, the temperature difference A between the two horizontal plates
as the temperature scale and B, the vertical component of the applied magnetic field.
Further, we write T in terms of 6, which is the difference between the temperature and the
linear conduction profile, i.e.

T(x,t) =0(x,t) —z. (2.6)
The non-dimensionalized governing equations are as follows:
1 [du 2 2.

o (E +(u- V)u) = —Vp+ V’u+ Rabe. + Ha; j x (e; + Rey), (2.7)

00 5
E—i—(u.V)Q:V 0 + u, (2.8)
V.u=0, (2.9)
j=-V¢+ux (e +Re), (2.10)
V.j=0. (2.11)

In the aforementioned system of equations, Ra is the Rayleigh number, Pr is the Prandtl
number and Ha, is the Hartmann number based on the vertical component of the magnetic
field. These quantities are given by

agAH3
Ra = , Pr=

v o

—, Ha;= BZH\/:. (2.12a—c)
VK K oV
The aforementioned quantities, along with R = By/B;, are the main governing parameters
for our set-up. Apart from Ra, Pr, Ha; and R, the dynamics is also governed by the
aspect ratio I". In (2.8), u, appears as a consequence of the decomposition of temperature
into the linear conduction profile and the fluctuation part 6. It is to be noted that for
the stability analysis, we take the units that are typically chosen so as to end with
a Prandtl-number-independent set of equations at the marginal stability threshold. The
characteristic units for the direct numerical simulations will differ.

The stability analysis is conducted for a convection cell which is periodic in the x
direction and consists of no-slip horizontal walls at z = £1/2 along with two no-slip
sidewalls at y = £=1"/2. All the walls are electrically insulated. Each horizontal wall is
at a constant temperature, with the bottom wall at 7 = 0.5 and the top wall at 7 = —0.5.
The sidewalls are thermally insulated with d7'/dn = 0, where 7 is the direction normal to
the wall. A sketch of our set-up is shown in figure 1.

In the present work we assume that the instability is of stationary type. It must be
noted that an oscillatory instability can appear in magnetoconvection of an infinite layer
(Chandrasekhar 1981) or in the bulk in the case of confined convection (Busse 2008);
however, this requires the condition of Pm > Pr, where Pm is the magnetic Prandtl
number. Since the present study deals with quasi-static magnetoconvection where Pm —
0, we do not expect any oscillatory instability to occur. The nonlinear terms as well as the
time derivatives in (2.7) and (2.8) are therefore neglected. The momentum and continuity
equations reduce to the Stokes problem with additional buoyancy and Lorentz force.
To avoid complications stemming from the coupling between pressure and velocity we
choose a representation for the velocity that satisfies the continuity equation automatically
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and eliminate the pressure term. The velocity field is written as the curl of a vector
streamfunction ¥,
u=Vxy, (2.13)

and the gauge condition V - ¥y = 0 is imposed to determine ¥ uniquely as in Priede,
Aleksandrova & Molokov (2010). The dependence on x is represented by the normal
mode ansatz with wavenumber B for all fields, e.g. 6(y, z) exp(iBx) for the temperature
perturbation. The gauge condition allows one to express the x component of ¥ by

1BYx(y, 2) = —0y¥y(y, 2) — O Y(, 2). (2.14)
The velocity components then read
Uy = By — -y, 2.15)
uy = —ip, + % (ayazwy + azzwz), (2.16)
u. = iy — % (ayzwy + ayazwz). 2.17)

Equations for v, and v, are obtained by taking the curl of the definition (2.13) and the
momentum equation (2.7). They are

0= V2 + w,, (2.18)
0=V2y. + ., (2.19)

0 = V2w, — ifRaf + Ha’ (_ayaz¢ o +R (—334) Yo, - i,Buy)), (2.20)
0= V2w, + Ha? (~02 + R (~0,0:9 + w, + iBu + Royur) ). @.21)

The quantities wy and w, are the y and z components of the vorticity field V x u. Equations
for the remaining quantities are

0=v2+u, (2.22)
0=V%¢ — w, — Roy. (2.23)

Equation (2.23) is obtained by substitution of Ohm’s law (2.10) into (2.11). Combined with
boundary conditions on the top wall, bottom wall and sidewalls, (2.18)—(2.23) represent a
linear eigenvalue problem for the Rayleigh number Ra that must be solved numerically.
A suitable discretization of this problem is obtained by a spectral collocation method with
Chebyshev polynomials 7},(z) = cos{n arccos(z)}. The scalar fields such as 6 are expanded
as

0(y.2) =) > 0aTi2y/I)Ti(22). (2.24)
i k

where —I"/2 <y < I'/2 and —1/2 < z < 1/2. The Poisson equations (2.20)—(2.23) and
boundary conditions are imposed pointwise at the Gauss—Lobatto collocation points:

yj = I cos(jm/Ny)/2 (0 <j<Ny), 7% = cos(kn/N;)/2 (0 <k <N,),
(2.25a,b)

where Ny + 1 and N, + 1 are the number of expansion terms with respect to y and z.
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The boundary conditions for the vector streamfunction and vorticity components are
determined with the help of (2.15)—(2.17). Zero normal velocity on the horizontal walls
requires ¥, = 0 and 9,3, = 0. On the y = 41"/2 sidewalls, the corresponding conditions
are ¥, = 0 and 9yy, = 0. The tangential velocity vanishes on the sidewalls if wy, = 0 and
0yyr; = 0;%y. On the top and bottom walls these conditions are w, = 0 and 0,y, = 9,V,.
The remaining boundary conditions for (2.22) are & = 0 on the top and bottom walls and
0y = 0 on the y = £1"/2 sidewalls. The boundary condition for the electric potential
supplementing equation (2.23) is the homogeneous Neumann condition.

Since the boundary conditions (zero normal velocity) for (2.18) and (2.19) only involve
Yy and v, respectively, one can represent the expansion coefficients of v, and ¥, by
linear invertible maps through those of w, and w, (assuming the latter are augmented by
the zero boundary values to be imposed on either ¥y, ¥, or its normal derivatives). The
expansions for v/, and v, therefore contain Ny + 3 and N, + 3 terms, respectively. The
values of ¥y, ¥, or its derivatives in (2.20)—(2.23) (and associated boundary conditions)
at the collocation points are represented through expansion coefficients of w, and w, via
these linear invertible maps. The same can be done for the electric potential, which is the
sum of a contribution from , and w,. As a result of the collocation approximation one
obtains a vector ¥ of unknowns containing the expansion coefficients of wy, w;, 6 with a
size of 3(Ny + 1)(N; + 1) and a generalized linear eigenvalue problem

AY = RaBY. (2.26)

The method was implemented in Matlab (The MathWorks Inc. 2022) using the default
double precision. Notice that wy, w, and ¢ are real variables. According to (2.15)—(2.17)
and (2.20)—(2.22), uy, u, and 6 would be purely imaginary quantities. They are considered
as real variables in the code and in this work. Problem (2.26) was solved with Matlab’s
eig routine to find all eigenvalues and eigenvectors. The routine also works with a matrix
B whose rank is smaller than the rank of A (as is the case for (2.26)). It associates the
spurious solutions that stem from equations not containing the eigenvalue Ra with infinite
eigenvalues.

2.2. Direct numerical simulations

We conduct direct numerical simulations of our magnetoconvection set-up using a
second-order finite-difference code developed by Krasnov, Zikanov & Boeck (2011)
and Krasnov et al. (2023). The governing equations are made dimensionless using the
cell height H, the imposed temperature difference A and the free-fall velocity U =
/agAH. The following non-dimensional equations are employed for our direct numerical
simulations:

(2.27)
3
a—u+u Vu——Vp+Tz+,/ V2u+H ,/ L% B). (2.28)
or +u-VI = V2T, (2.29)
— u- = .
ot +/RaPr
j=—-Vé+ (uxB), (2.30)
V3¢ =V . (u x B). (2.31)
979 A53-7
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The mesh is non-uniform with stronger clustering of the grid points near the boundaries.
The elliptic equations for pressure, electric potential and temperature are solved using
a tridiagonal solver. The diffusive term in the temperature transport equation is treated
implicitly. The time discretization of the momentum equation uses a semi-implicit
Adams—Bashforth/backward-differentiation method of second order (Peyret 2002).
A constant time step size ranging from 5 x 107> to 1 x 10~* free-fall time units was
chosen for our simulations, which satisfied the Courant—Friedrichs—Lewy condition for
our runs.

The horizontal walls are at z = £1/2 and the sidewalls areatx = £1"/2andy = £17/2.
All the walls are rigid and electrically insulated such that the electric current density j
forms closed field lines inside the cell. The top and bottom walls are held fixed at T =
—0.5 and T = 0.5, respectively, and the sidewalls are adiabatic with d7/0n = 0 (where
n is the component normal to the sidewall). All the simulations are initialized with the
linear conduction profile for temperature (which is a function of the z coordinate only)
and a random noise of amplitude A = 0.001 along the z direction for velocity. We run
the simulations initially on a coarse grid of 120 x 120 x 30 points for 100 free-fall time
units in which they converge to a statistically steady state. Following this, we successively
refine the mesh to the required resolutions (specified in § 2.3) and allow the simulations to
converge after each refinement. Once the simulations reach the statistically steady state at
the highest resolution, they are run for another 20 to 21 free-fall time units and a snapshot
of the flow field is saved after every free-fall time unit.

Since all the walls are no-slip, thin velocity boundary layers are formed adjacent to the
walls. For our simulations to be well-resolved, an adequate number of grid points need
to be present in these boundary layers. It must be noted that the boundary-layer profiles
are strongly influenced by the magnetic fields. For a purely vertical magnetic field, these
boundary layers are categorized into Hartmann layers adjacent to the top and bottom walls
and Shercliff layers adjacent to the sidewalls. The thickness of the Hartmann layers is given
by §y = 1/Ha, and that for the Shercliff layers is given by s = 1/+/Ha,. However, in our
case, the magnetic field is inclined with respect to the vertical direction; therefore, both
the horizontal walls and y = 41"/2 sidewalls will have a mix of Hartmann and Shercliff
layers. On the other hand, the x = 4=1"/2 sidewalls will have pure Shercliff layers. Thus,
we use 6 only for representing the boundary-layer thickness. For a conservative analysis,
the thicknesses of these boundary layers are estimated as follows:

1 1
min { —, ——— |, horizontal walls,
(HaZ ./RHaZ>

1 1
§ = { min (— — ), y==xI"/2sidewalls, (2.32)
/Ha, RHaZ>

1

x = £1I"/2 sidewalls.

(HaZ(1 + R2)'/4’

We ensure that a minimum of 10 points is present in the boundary layers so as to adequately
resolve our simulation runs. In the following, we describe the cases examined for our
stability analysis and numerical simulations.

2.3. Cases examined

For the stability analysis, we examine a total of 12 cases of magnetoconvection in a
bounded, horizontally extended domain of dimension I x 1 in the y—z plane. Two aspect
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Run Ha, Ra R Grid size n; ny Ny
1 100 1 x 103 0 1200 x 1200 x 300 22 89 89
2 100 1 x 10° 0.3 1200 x 1200 x 300 22 39 88
3 100 1 x10° 1 1200 x 1200 x 300 22 15 79
4 100 1 x10° 2 1800 x 1800 x 400 22 15 120
5 100 1 x10° 3 1800 x 1800 x 400 22 10 106
6 200 4% 10° 0 1200 x 1200 x 300 12 21 21
7 200 4% 10° 0.3 1200 x 1200 x 300 12 21 21
8 200 4 x 103 1 1200 x 1200 x 300 12 13 18
9 200 4% 10° 2 1800 x 1800 x 400 16 11 22
10 200 4% 10° 3 1800 x 1800 x 400 16 12 18

Table 1. Parameters of the simulations: the Hartmann number (Ha_) based on the vertical magnetic field, the
Rayleigh number (Ra), the ratio R of the magnetic field strength along the horizontal to the vertical directions,
the grid size and the number of points in the velocity boundary layers along the horizontal walls (n;), the
y = £I"/2 sidewalls (ny) and the x = £1"/2 sidewalls (n,). The Prandtl number is constant in all cases at a
value of Pr = 0.025.

ratios are considered: I” = 2 and I" = 4. For I' = 2, we consider the cases of Ha, = 50
and Ha, = 100, whereas for I" = 4, we consider only the case of Ha, = 50. For each
Ha;, analysed in our study, we vary R from O (corresponding to a purely vertical magnetic
field) to 3 in steps of 1. The numerical resolution was typically Ny, = 70, N, = 60 for
Ha, = 50 and Ny = 90, N, = 70 for Ha, = 100 with aspect ratio I" = 2. A decrease of N,
by 10 typically only resulted in a relative change of the first eigenvalue below 107>. The
generation of the matrices and the solution of problem (2.26) for a given wavenumber took
about 20 h for Ny, = 90, N, = 70 and about 6 h for Ny, = 70, N, = 60 on an Intel Xeon E5
CPU.

For the direct numerical simulations, we examine a total of 10 cases of
magnetoconvection inside a domain of dimensions I" x I' x H =4 x 4 x 1. The Prandtl
number Pr is chosen to be 0.025, which is the same as that of mercury. We choose
two Hartmann numbers based on vertical magnetic field: Ha, = 100 and Ha, = 200. For
these Hartmann numbers, the corresponding critical Rayleigh numbers (Ra,) for the case
without horizontal walls obtained using the linear stability analysis of Chandrasekhar
(1981) are

1.245 x 10°, Ha, = 100,

2.33
4.48 x 10°,  Ha, = 200. (2.33)

Rac oo =

Since we are interested in the wall-attached convection regime, we choose the Rayleigh
number to be slightly below the critical Rayleigh numbers given by (2.33). Thus, the
chosen Rayleigh numbers are Ra = 10° for the case of Ha, = 100 and Ra = 4 x 10° for
the case of Ha, = 200. For each Ha,, we choose R =0, 0.3, 1, 2 and 3. We employ
a grid resolution ranging from 1200 x 1200 x 300 points to 1800 x 1800 x 400 points,
ensuring that a minimum of 10 points are present in the velocity boundary layers. A total of
10 million CPU core-hours were employed for our simulations. Table 1 lists the important
parameters of our simulation runs, in which we also report the number of points in the
different velocity boundary layers. In the next section, we discuss the results obtained
from our stability analysis and numerical simulations.

979 A53-9


https://doi.org/10.1017/jfm.2023.1087

https://doi.org/10.1017/jfm.2023.1087 Published online by Cambridge University Press

S. Bhattacharya, T. Boeck, D. Krasnov and J. Schumacher

(a) (b) (©
(x10% (x10% (x10%
10.00 = 10.00 20.00
v [ T=00,R=0 '
Y |eeR=0 : "
‘.‘ —oR=1 \ ...
" |—R=2 12.45
Ra 5o N [TR=3 50008 10.00 \‘:E _J;.,.-d‘"ﬁ,/
3.64 3.64 7 il W
ool 1) S —— o v
2345678910 2345678910 234567280910
B B B

Figure 2. Neutral stability curves for magnetoconvection with different values of R for (a) I" = 2, Ha, = 50;
(b) I' =4, Ha, = 50; and (c) I' = 2, Ha, = 100.
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Figure 3. For Ha, = 50, I' = 2 (red squares); Ha, = 50, I" = 4 (blue circles); and Ha, = 100, I" = 2 (black
triangles): (a) critical Rayleigh number Ra., normalized with the same for infinite horizontal layer, and (b) the
wavelength of the most unstable mode at Ra,.

3. Results

In this section, we make a detailed analysis of the structure of the wall modes and their
impact on the heat and momentum transport. We first present the linear stability analysis
which is followed by a discussion of the results obtained from our direct numerical
simulations.

3.1. Linear stability analysis

In this subsection, we discuss the results from our linear stability model. We assume that
the set of finite positive eigenvalues of problem (2.26) is sorted in ascending order, i.e. the
smallest one will be referred to as the first eigenvalue, etc.

In figure 2, we plot the first eigenvalue, denoted as Rayleigh number Ra, at which
the instability sets in due to disturbances at wavenumber g for different values of R.
The minimum value of Ra is the critical Rayleigh number Ra., and the wavenumber
corresponding to Ra,. is the most unstable wavenumber. We also plot Ra for the infinite
plane layer for the corresponding Ha,, where the flow is assumed to be uniform in the
y direction. The figure shows that Ra, is smaller than that corresponding to the plane
infinite layer (Ra. o) for all R, Ha; and aspect ratios considered in this study. This clearly
implies that sidewalls destabilize the magnetoconvection system. Figure 3(a) exhibits the
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Figure 4. Dependence of the first three eigenvalues on the wavenumber B for I" =2 and Ha; = 50 with

(@R=0,0)R=1,(c)R=2and (d)R=3;for ' =4 and Ha, =50 with(e) R=0,(f/)R=1,(g) R=2

and (h) R = 3; and for I" =2 and Ha, = 100 with () R=0, (j) R=1, (k) R =2 and (/) R = 3. Also shown

are the neutral stability curves (dashed blue lines) for the corresponding infinite horizontal convection layer

(I' = 00) with a purely vertical magnetic field (R = 0). For the infinite plane layer, the flow is assumed to be
uniform in the y direction.

dependence of Ra. on R for different aspect ratios and strengths of the vertical magnetic
field. It is evident from this figure that for R < 1, the critical Rayleigh number increases for
all aspect ratios. For the larger-aspect-ratio box (I" = 4), Ra, continues to increase with R
beyond R = 1 and saturates at R = 2. On the other hand, for the smaller-aspect-ratio box,
the critical Rayleigh number starts to decrease with R for R > 1, a trend that does not seem
to depend on Ha;.

In figure 3(b), we exhibit the plots of the most unstable wavelength A versus R. The most
unstable wavelength is calculated as

27

Be’
where . is the most unstable wavenumber. The figure shows that A, like Ra., exhibits
a non-monotonic variation with R and lies between 1.1 and 1.6 for the entire range of
parameters considered in our study. For small values of R, A decreases with R and for the
larger-aspect-ratio box, it saturates at R = 2. For the smaller-aspect-ratio box, A increases
with increasing R beyond R = 2.

We now examine the behaviour of the first three eigenvalues (Ra) for our cases. In
figure 4, we plot the variations of these eigenvalues with . The neutral stability curves
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Figure 5. Influence of (@) aspect ratio and (b) vertical Hartmann number on the stability curves for the first and
second eigenvalues as a function of the ratio of the horizontal to vertical magnetic fields at fixed wavenumber

B =4.

for the infinite plane convection layer for the corresponding Ha, are also shown as dashed
curves. For R = 0, it can be seen in figure 4(a,e,i) that the minimum of the third eigenvalue
(represented by green triangles) overlaps with that of the neutral stability curve for the
plane convection layer. This indicates that the third eigenvalue corresponds to the onset of
bulk convection for different wavenumbers. The figure also indicates that minimum of the
third eigenvalue, which corresponds to the critical Rayleigh number for convection in the
bulk, increases with R. This indicates that the bulk convection is further suppressed as
the horizontal magnetic field increases.

The first and second eigenvalues (denoted by black squares and red circles, respectively)
correspond to wall-attached convection, and their minima are less than that for the third
eigenvalue (corresponding to bulk convection). These eigenvalues nearly overlap for small
horizontal magnetic fields but begin to diverge at large horizontal magnetic fields. These
variations are shown more explicitly in figure 5 in which we exhibit the variations of
the first two eigenvalues with R for § = 4 (near the most unstable wavenumber). It is
evident from the figure that the eigenvalues diverge visibly for R > R. ~ 1.5 for ' =2
and for R > R, ~ 2.5 for I' = 4. It is interesting to note that the value of R for which the
eigenvalues begin to diverge does not seem to depend on Ha,.

We now examine the spatial structure of the wall modes, i.e. the eigenfunctions that
correspond to the first and second eigenvalues. The eigenfunctions are normalized such
that the maximum of the vertical velocity becomes equal to unity.

In figure 6, we exhibit the contour plots of the temperature perturbation 6 on the vertical
y—z plane corresponding to the first and second eigenvalues for § = 4, I" = 2 and different
Ha, and R. Figures 6(a—d) and 6(i—[) correspond to the first eigensolutions for Ha, = 50
and Ha; = 100, respectively, whereas figures 6(e—h) and 6(m— p) correspond to the second
eigensolutions. The figure shows that as the horizontal magnetic field strength is increased,
the wall modes get elongated and tilt along the direction of the resultant magnetic field. In
fact, for R > 2, the wall modes are no longer confined adjacent to the sidewalls; instead,
they occupy almost the entire bulk and interact with each other as explained later in this
section.

Figure 6 also shows that there are two types of spatial structures corresponding to
the first two eigensolutions. The first type consists of a hot plume (6 > 0) adjacent to
the y = —I"/2 sidewall and a cold plume (@ < 0) adjacent to y = I"/2 sidewall; the
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Figure 6. Eigenvector field from the linear stability analysis. Contours of the temperature deviation 6 are
shown. For B =4, I' =2 and Ha, = 50: isocontours of 6 corresponding to the first solution for (a) R = 0,
by R=1, (¢) R=2 and (d) R=3. For =4, I'=2 and Ha, =50: isocontours of 6
corresponding to the second solution for (¢) R=0, (f) R=1, (¢9 R=2 and (h) R=3.
For B=4, I'=2 and Ha,=100: isocontours of 6 corresponding to the first solution
for ) R=0, (j)) R=1, (k) R=2 and () R=3. For =4, I'=2 and Ha, = 100:
isocontours of 6 corresponding to the second solution for (m) R=0, (n) R=1, (o) R=2 and
(MR=3.

corresponding eigensolution is referred to as antisymmetric solution (see figure 6a).
The second type consists of cold (or hot) plumes adjacent to both the sidewalls; the
corresponding eigensolution is referred to as symmetric solution (see figure 6¢). For R <
1.5, there is only a marginal difference between the symmetric (Ray) and antisymmetric
(Ra,) eigenvalues. As exhibited in figure 7, this difference is less than 0.5 % for R < 0.8
and is approximately 10 % at R = 1.5 for the case of Ha, = 50 and I" = 2. Thus, for
R < 1.5, there is nearly an equal preference for symmetric and antisymmetric structures
to develop at the onset of convection. However, these eigenvalues deviate significantly
once R exceeds the threshold R, &~ 1.5, above which the eigenvalue corresponding to the
symmetric solution becomes significantly smaller. This implies that there is a stronger
preference for the symmetric structures to develop at the onset of convection for R > R..
In this regime of R, the symmetric eigensolution comprises a large plume developed
by the merging of two cold (or hot) plumes adjacent to the opposite walls as visible
in figure 6(c,d,k,[). On the other hand, as seen in figure 6(g,h,0,p), the antisymmetric
eigensolutions for R > R, comprise a cold plume extending on the top of a hot plume
(or vice versa) extended from the opposite wall, resulting in two convection rolls on
top of each other. Our observations imply that a clear separation of the symmetric and
antisymmetric solutions occurs when the wall modes adjacent to the opposite walls for
symmetric solutions start interacting with each other. The merging of the plumes and the
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Figure 7. Ratio of the difference between the critical Rayleigh numbers for antisymmetric solution (Ra,) and
the symmetric solution (Ray) to the critical Rayleigh number of the symmetric solution. The inset exhibits a
magnified version of the plot with R ranging from O to 0.8. Parameters are Ha; = 50, I' =2 and g = 4.
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Figure 8. Eigenvector field from the linear stability analysis. Contours of the temperature deviation 6 are
shown. For Ha, =50, § =4 and I" = 4: isocontours of 6 corresponding to the first eigensolutions for
(ag)R=0,(c) R=1, (¢) R=2 and (g) R = 3, and corresponding to second eigensolutions for (b) R = 0,
dR=1,(f)R=2and (h)R=3.

resultant formation of a merged roll result in increased heat and momentum transport and
hence in a decrease of the critical Rayleigh number.

Figure 8 exhibits the contour plots of 6 on vertical y—z midplane corresponding
to the first and second eigensolutions for I"' =4, B =4 and Ha, = 50. This figure
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Figure 9. Results of direct numerical simulations for the vertical velocity component. Isosurfaces of u; = 0.01
(red) and u; = —0.01 (blue) for Ha, = 100 with () R=0, (b)) R=03,(c) R=1,(d) R=2and (¢) R =3,
and for Ha, =200 with (/) R=0,(g) R=03, (W R=1,()R=2and (j)R = 3.

again shows that the wall modes tend to elongate along the direction of the resultant
magnetic field. Similar to the I” = 2 cases, the two eigenvalues correspond to symmetric
and antisymmetric solutions, respectively. The wall modes are symmetric for the first
eigensolution and antisymmetric for the second. It can be recalled from figure 5(a) that
the first and second eigenvalues for the I" = 4 box begin to diverge at a higher value of R
compared with the I" = 2 box. A clear separation occurs near R. ~ 2.5; this is because,
owing to the larger aspect ratio of the box, the plumes adjacent to opposite walls are able
to interact and merge only at higher tilts, and hence at larger R. The merged plume is
exhibited in figure 8(g) which displays the contours of 6 corresponding to the symmetric
solution for R = 3.

Our analysis suggests that the non-monotonic behaviour of Ra. and wavelength A with
respect to R is due to the increasing interaction of the plumes on opposite sidewalls.
As long as the opposite plumes do not merge, an increase in the horizontal magnetic
field component further stabilizes the magnetoconvection system with Ra, increasing and
the wavelength A decreasing with R. The system gets destabilized due to the merging
of the opposite plumes and the variations of Ra, and A with R get reversed. In the
next subsection, we discuss the results of direct numerical simulations of the nonlinear
evolution of magnetoconvection.

3.2. Results of direct numerical simulations

In this subsection, we analyse our steady-state direct numerical simulation results and

examine the structures of the wall modes, their role in heat and momentum transport and
the effects of initial conditions on the formation of the wall modes.

3.2.1. Structure of the wall modes
We use our numerical data to study the spatial convection structures for Ha; = 100 and
Ha, = 200 with R ranging from 0 to 3.

In figure 9, we exhibit the isosurfaces of u, = £0.01 for all our runs. In figure 10,
we display the contours of u;, > 0.01 (red) and u, < —0.01 (blue); these contours give
a visualization of the upwelling and downwelling plumes, respectively. These figures
show the presence of wall-attached convection with suppressed fluid flow in the bulk. The
structure of the wall modes for R = 0 is consistent with that observed in recent numerical
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Figure 10. Results of direct numerical simulations for the wall modes. Contours of u; > 0.01 (red) and u; <
—0.01 (blue) along with the vector plots of B on x = 0 midplane for Ha, = 100 with (a) R =0, (b)) R =1,
(c) R=2and (d) R = 3, and for Ha, = 200 with (¢) R=0, (f) R=1, (g) R=2 and (h) R = 3. The wall
modes align themselves along the direction of B.

simulations (Liu et al. 2018; Akhmedagaev et al. 2020b; McCormack et al. 2023) and
experiments (Ziirner et al. 2020; Grannan et al. 2022) of thermal convection with strong
vertical magnetic fields. However, the wall modes do not appear to oscillate or move along
the sidewalls unlike those observed in rotating convection (see e.g. Horn & Schmid 2017,
Zhang et al. 2020; Schumacher 2022). Consistent with the results of the stability analysis
in the previous subsection, these wall modes become elongated and align themselves along
the direction of the resultant magnetic field as the horizontal magnetic field is increased.
Figures 9 and 10 also show that with the exception of the case with Ha, = 100 and R = 3,
the wall modes are antisymmetric, that is, the plumes are upwelling (or downwelling)
adjacent to y = —1"/2 wall and downwelling (or upwelling) adjacent to y = I"/2 wall.
The wall modes occupy the entire bulk for R = 3, consistent with the stability analysis of
the I" = 4 box. For the aforementioned field ratio, the wall modes for the Ha, = 100 case
are symmetric and the plumes adjacent to the opposite walls merge to form a large plume
as displayed in figures 9(e) and 10(d).

It can also be observed in figure 9 that there are slight irregularities in the wall-mode
structures. These irregularities seem to be associated with small temporal fluctuations
(~1%) in integral quantities that remain after our simulations reach an apparently
stationary state. These fluctuations indicate that the wall modes are still evolving, albeit
slowly. However, it is important to note that we could not observe any noticeable change
in the structures of the wall modes over the time span of our simulations. Any change in
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Figure 11. Variations of the wavelength A,,,, of the wall modes with R. The wavelength tends to decrease
with an increase in the horizontal magnetic field.

the spatial arrangement of the modes is likely to be visible only after the simulations are
run for several times the diffusion time scale, which is ~10° free-fall time units. Hence,
our solutions can be considered to be effectively steady.

We estimate the wavelength of the wall modes by visual inspection of the vertical
velocity isosurfaces in figure 9. We consider only those wall modes that are adjacent
to y = £1"/2 sidewalls; these walls are not parallel to the resultant magnetic field. The
estimation of the wavelength is done as follows. We count the number of upwelling (or
downwelling) plumes adjacent to both y = —I"/2 and y = I"/2 sidewalls and calculate
their average as N,. The wavelength A,,,, of the wall modes is given by

r

Aym = 171]. (3.2)

We plot the estimated A, versus R in figure 11. The figure shows that A, tends
to decrease as the horizontal magnetic field increases and saturates at large R. It can
be recalled that a similar trend was observed in the variation of the most unstable
wavelength with R in our stability analysis in § 3.1. Further, the wavelength corresponding
to Ha; = 200 is smaller than that for Ha, = 100 except for R = 3. This trend is similar
to that of the threshold wavelength in the bulk which decreases with increasing vertical
magnetic field strength (Chandrasekhar 1981). However, it must be kept in mind that since
the Rayleigh numbers considered in our direct numerical simulations are higher than the
threshold Rayleigh number above which the wall modes appear, there is always a chance
for secondary modes with smaller wavenumbers to develop.

3.2.2. Heat and momentum transport

We now explore the influence of the wall modes on heat and momentum transport. We
compute the Nusselt number (Vi) and the Reynolds number (Re) using our numerical data
as follows:

Nu =1+ ~RaPr{u,T)y, 3.3)
Ra

Re = EUrms, (3.4)
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Figure 12. Plots of (a) the non-dimensional convective heat flux Nu — 1 and (b) the Reynolds number Re

versus R. For R < 1, the heat and momentum transport decreases as R is increased.
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Figure 13. Spatial distribution of kinetic energy E and the convective heat flux u,T. Plots of 2(E), ; = (u% +
u? +u?)y . for (@) R=0, (b)) R=0.3,(c) R=1, (d) R=2 and (¢) R = 3. Plots of (u.T)y,, for (f) R =0,
(99 R=03,(h) R=1, (i) R =2 and (j) R = 3. Here, (-), , represents averaging over the x—z plane.

where Upps =/ (u2 +u§ +u?)y is the root-mean-square velocity and (-)y denotes

volume averaging. The second term on the right-hand side of (3.3) is the normalized
convective heat flux. We plot the normalized heat flux and the Reynolds number versus
R for all our runs in figures 12(a) and 12(b), respectively. The figures show that for R < 1,
both Nu and Re decrease with R. This is consistent with our conclusion from the stability
analysis in § 3.1 that for small values of R, an increase in the horizontal magnetic field
results in the stabilization of the magnetoconvection system. There is, however, no clear
trend in the variations of Nu and Re for R > 1.

Having studied the trends of the global heat and momentum transport with R, we now
explore the spatial variation of heat and momentum transport for different regimes of R.
In figure 13(a—e), we plot twice the kinetic energy £ = (u)% + uf + u?) /2, averaged over
the x—z plane, versus y, which is the direction parallel to the horizontal magnetic field.
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Figure 14. Spatial distribution of kinetic energy E and the convective heat flux u,T. Plots of 2(E), , = (uf +
u% + ug)y,Z for (a) R=0,(®)) R=0.3,(c) R=1, (d) R=2 and (e¢) R = 3. Plots of (u,T), , for (f) R=0,
(@)R=0.3,(h)R=1, (i) R =2 and (j) R = 3. Here, (-)y.z represents averaging over the y—z plane.

For R = 0, there are two sharp peaks close to y = —2 and y = 2 for both Ha, = 100
and Ha, = 200; these peaks correspond to the wall modes. The bulk region lies between
these two peaks. The bulk consists of several smaller peaks and the kinetic energy in this
region is much less compared with the near-wall regions. As R is increased, the heights
of the near-wall peaks decrease and of those in the bulk increase. Thus, the distribution
of kinetic energy along y becomes more uniform as R is increased. It is a known fact that
in magnetohydrodynamic flows, the Lorentz force tends to modify the flow field so as to
minimize the gradients of velocity along the direction of the magnetic field (Davidson
2017). Thus, in our case, as R is increased, the Lorentz force generated due to the y
component of the magnetic field becomes strong and suppresses the gradients of velocity
along y.

In figure 13(f—j), we plot the local convective heat flux u, T, averaged over the x—z plane,
along y. Although the volume-averaged heat flux is positive in thermal convection, the
local heat flux for R = 0 fluctuates between positive and negative values as one proceeds
along y. These fluctuations even out as R is increased, and for R = 3, the local heat flux
remains positive throughout with very small gradients along y. Again, this is due to the
strong Lorentz forces generated by the horizontal component of the magnetic field which
suppresses the gradients of velocity along the magnetic field’s direction.

In figure 14(a—e), we plot twice the kinetic energy, averaged over the y—z plane, versus
x, which is the direction perpendicular to the horizontal magnetic field. In the absence
of horizontal magnetic field (R = 0), the variation of 2(E), , versus x is similar to that
of 2(E),. ; versus y due to the symmetry of the problem. Again, there are two sharp peaks
corresponding to the wall modes close to x = —2 and x = 2 for both Ha, = 100 and Ha, =
200. However, unlike (E), ., the values of (E), . at the peaks recede only marginally as
R is increased from O to 2. As the wall modes extend fully into the bulk at R = 3, the
aforementioned peaks recede sharply with the value of 2(E), . at these peaks being close
to the values at the peaks in the bulk. It must be noted that (E)y , continues to fluctuate as
it is varied with x at R = 3 and does not smoothen out unlike (E)y ..

Figure 14(f-j) exhibits the variations of the local convective heat flux u,T, averaged
over the y—z plane, along x. The figure shows that (u,T)y . fluctuates between positive
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Figure 15. Determination of the near-wall region for our analysis from the results of our direct numerical
simulations for R = 0. Variation of the Nusselt number Nug averaged over successively smaller concentric
volumes with the sidewall-normal distance ry. The width of the near-wall region is given by the point of
the first minimum (represented as black dashed vertical line for Ha, = 100 and blue dashed vertical line for
Ha; = 200) in the Nug profile.

and negative values. It is clear from the figure that for the Ha, = 100 case, the spatial
fluctuations increase with increasing R. This is because, as discussed before, the gradients
along the y direction are reduced as R is increased. Therefore, for large R, if the gradients
along z are also small, any quantity averaged over the y—z plane will fluctuate between the
quantity’s two extremes. The case of R = 3 for Ha, = 100 consists of plumes from the
opposite y = £1" walls merged with each other; therefore, the gradients of the velocity,
temperature and heat flux along the z direction are small. Thus, (u,T), , exhibits strong
fluctuations along the x direction at R = 3.

For Ha, =200 and R <2, (u,;T), . follows a similar trend in that its fluctuations
increase with increasing R. However, for R = 3, its fluctuations get suppressed and (u,7T),, .
is mostly positive. Now, let us recall that unlike in the case of Ha, = 100, the structures
for the case of Ha, = 200 are antisymmetric. Thus, although the gradients along the y
direction are small, there are fluctuations along the z direction for Ha, = 200 due to the
presence of upwelling and downwelling plumes on top of each other. An averaging over
the y—z plane cancels out the opposing effects of the upwelling and downwelling plumes,
thus resulting in the suppression of fluctuations of (u;T)y, ;.

Finally, we analyse the contributions of the bulk and near-wall regions to the total kinetic
energy and heat flux of the system. Towards this objective, we define the near-wall region
as follows. For R = 0 and for both Hartmann numbers, we determine Nug, which is the
Nusselt number averaged over successively smaller concentric volumes § = I'" X [ry, " —
ry] x 1. In this definition, ry is the normal distance from the y = 41"/2 sidewalls, c.f. (3.3).
We plot Nug versus ry in figure 15. The figure shows that Nug initially decreases with ry
up to a point of local minima and then begins to increase with ry. The distance between
the point of the local minima and the sidewall is taken as the width §,, of the near-wall
region. These widths are computed to be §,, = 0.37 for Ha, = 100 and §,, = 0.33 for
Ha, = 200. It is to be noted that §,, = 3.7§ for Ha, = 100 and é,, = 4.76 for Ha, = 200,
where §, computed using (2.32), is the thickness of the boundary layers formed near the
sidewalls. The aforementioned relationship of the thickness of the near-wall region with
the boundary-layer thickness is close to that observed by Liu et al. (2018), who reported
8y = 3.474. Finally, we point out that although we compute the values of §,, for R = 0,
these values are assumed to hold for all R.
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Figure 16. Results of direct numerical simulations. Relative strengths of the bulk and boundary-layer
contributions to the total kinetic energy &£ for (a) Ha, = 100 and (b) Ha, = 200 and to the total heat flux
‘H for (¢) Ha; = 100 and (d) Ha, = 200. The bulk contributions to kinetic energy and heat flux increase with
increasing R.

The total kinetic energy £ and the convective heat flux 7 can be expressed as the sum
of their bulk and near-wall contributions. Therefore,

&= 5bulk + gnw, (35)
H = Hpuk + Huw, (3.6)
where &, and &, are, respectively, the bulk and near-wall contributions to the total

kinetic energy and Hp, and H,,, are, respectively, the bulk and near-wall contributions
to the total heat flux. The total and bulk contributions to these quantities are defined as

| (T2 pri2 g1
E=- / / (M)ZC + u)Z + uf) dzdydx, 3.7
2)rplJ-rpl-p '
| T/2=8s pT/2=80 [1)2
Epulk = ~ / / (@} + uj + u?) dzdydx, (3.8)
2 J-rp+s, J-rp+e, J-12
rj2 orj2 plj2
H =/ / u;T dzdydx, (3.9)
—rp2J-rpJ-1p
rj2—8, pI/2—8, rl1/2
Hpuik :f / u, T dzdydx. (3.10)
—I/2+8,, J -T2+, J—1/2

We compute the relative strengths of the bulk and near-wall kinetic energies and heat
fluxes using our numerical data and plot them versus R in figure 16. For small values
of R, the bulk contribution to the total kinetic energy and heat flux is very small (less
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than 10 %). This is expected because convection is completely suppressed in the bulk at
small R. It is clear from the figure that as R increases, the bulk contributions to the total
kinetic energy and heat flux increase. This is due to the fact that the wall modes extend
further into bulk as R increases. In fact, for R > 2, the bulk and sidewall contributions
become comparable to each other because the wall modes at such high values of R
extend fully into the bulk. It is also interesting to note that for Ha, = 100, the bulk
contribution to the heat flux decreases as R is increased from 2 to 3. To explain this
anomalous behaviour, let us re-examine figure 14(j) which exhibits the plots of (u,T), .
versus x for both Ha, = 100 and Ha, = 200 with R = 3. As discussed earlier, the plot for
Ha, = 100 fluctuates strongly between positive and negative values in the bulk; however,
for Ha, = 200, (u,T)y,, is mostly positive with reduced fluctuations. Recall that this
difference in the plots’ characteristics has been attributed to the merging of the plumes
along the opposite walls for Ha;, = 100, which was not observed for Ha, = 200. Thus, for
Ha, = 100, the net heat flux in the bulk gets reduced because the positive and negative
fluctuations of (u,T), , tend to cancel each other out. On the other hand, for Ha, = 200,
(u;T)y,, remains mostly positive and hence adds up to a larger net heat flux in the bulk.

3.2.3. Effects of initial conditions

The direct numerical simulations of magnetoconvection for R = 3 resulted in different
structural arrangements of the convection plumes for Ha, = 100 and Ha; = 200. On the
one hand, we obtained a symmetric arrangement of the plumes adjacent to the opposite
walls merging with each other for Ha, = 100. On the other hand, an antisymmetric
arrangement of the plumes was obtained for Ha, = 200 with the upwelling and
downwelling plumes on top of each other. In this subsection, we explore the sensitivity
of these results to initial conditions.

We conduct two more direct numerical simulations of magnetoconvection for R = 3;
one with Ha, = 100, Ra = 10°, and the other with Ha, = 200, Ra = 4 x 10°. However,
we change the initial conditions in this set of simulations as follows. The results of the
previous simulation of Ha, = 200 are taken as the initial condition for the new simulation
of Ha, = 100. In the same way, the results of the previous simulation of Ha, = 100 are
taken as the initial condition for the new simulation of Ha, = 200. Both these simulations
were allowed to run for 20 free-fall time units after reaching the steady state. Henceforth,
we refer to the previous set of simulations as IC1 and the new set of simulations of R = 3
as IC2.

We examine the structure of the wall modes for the new set of simulations by plotting
the vertical velocity isosurfaces for u, = £0.01 in figure 17(a,c). The figure shows that
the simulation of Ha, = 100 with the new initial conditions yields an antisymmetric
arrangement of structures with upwelling and downwelling plumes on top of each other.
This is unlike the result of the simulation with previous initial conditions which resulted
in a symmetric arrangement of structures with merged plumes. Similarly, the simulation
of Ha, = 200 with the new initial conditions yields symmetric structures with merged
plumes, unlike the case with previous initial conditions which resulted in an antisymmetric
arrangement of structures. Our results indicate that that the solution of magnetoconvection
with R = 3 for Ha, = 100 and 200 is non-unique, and the arrangement of the wall modes
depends on the initial conditions.

We now explore the impact of the arrangement of the plumes on the global heat and
momentum transport. In figure 18, we replot the computed values of Nu — 1 and Re for
our runs with the previous initial conditions and also add the plots of these quantities
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Figure 17. Results of direct numerical simulations with initial conditions IC2. Isosurfaces of u; = 0.01 (red)
and u, = —0.01 (blue) for R = 3 and (a) Ha, = 100 and (c) Ha, = 200. For comparison, the vertical velocity
isosurfaces using results of the simulations of R = 3 with initial conditions IC1 are shown for (b) Ha, = 100
and (d) Ha; = 200.
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Figure 18. Results of direct numerical simulations including those using the new initial conditions (filled
markers) along with those using the previous initial conditions (open markers). Plots of (a) the non-dimensional
convective heat flux Nu — 1 and (b) the Reynolds number Re versus R. The heat and momentum transport for
the case of Ha, = 200, R = 3 is significantly more for IC2 compared with IC1.

computed using the results of our simulations with new initial conditions. The figure shows
that for Ha, = 200, the Reynolds and Nusselt numbers computed using the solutions of
simulations with new initial conditions are significantly higher than those corresponding
to the previous initial conditions. On the other hand, for Ha, = 100, the Reynolds and
Nusselt numbers computed using the solutions of simulations with new initial conditions
are lower, albeit marginally, than those corresponding to the previous initial conditions.
The aforementioned observations clearly indicate that the solutions that are symmetric
consisting of merged plumes have higher heat and momentum transport. This is because
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merged plumes give rise to larger convection rolls which, in turn, result in more efficient
transport of heat and momentum. It is worth noting that for Ha, = 200, the increase of
Reynolds number at R = 3 due to the merged plumes is so significant that its value is
larger than that for R = 0.

Our results indicate that the non-unique nature of the solutions for R = 3 has a profound
effect on the heat and momentum transport, especially for Ha, = 200. However, we must
remember that as mentioned in § 3.2.1, the wall modes are still evolving albeit at a very
slow rate. Therefore, we may still observe a discernable change in the wall-mode structure
if the simulations are made to run for several diffusive time units (~10° free-fall time
units), which brings up the possibility of our solutions ultimately becoming independent
of initial conditions. Unfortunately, we were unable to run our simulations for such a long
time due to limited computational resources. We conclude in the next section.

4. Summary and conclusions

In this paper, we systematically examined the effects of strong inclined magnetic fields
on wall-attached magnetoconvection using a combination of linear stability analysis
and direct numerical simulations. The linear stability analysis was conducted for lower
Hartmann numbers whereas the direct numerical simulations were performed for higher
Hartmann numbers, both at aspect ratios 2 < I' < 4. The ratio R = B, /B; of the outer
imposed horizontal to vertical magnetic field was varied from 0 to 3.

The linear stability analysis revealed that the critical Rayleigh number varies
non-monotonically with the relative strength of the horizontal magnetic field. The plumes
at the onset of instability get elongated along the direction of the resultant magnetic
field and extend more into the bulk as R is increased. At sufficiently high R, the plumes
extend fully into the bulk. The linear stability analysis further revealed the existence of
non-unique solutions at the onset of convection at low R. One eigensolution corresponds
to a symmetric arrangement of hot or cold plumes adjacent to the opposite sidewalls,
whereas the other eigensolution corresponds to an antisymmetric arrangement of hot or
cold plumes. For the symmetric solution, when the opposite plumes extend sufficiently
into the bulk at a large R, they merge into a single large plume. Below this critical value
of R = R,, the symmetric and antisymmetric eigensolutions overlap; however, at R > R,
these solutions start to diverge with the symmetric eigensolution being more unstable than
the antisymmetric solution. The critical Rayleigh number increases with R for R < R, and
decreases with R for R > R..

The direct numerical simulations of the fully nonlinear regime reinforced the
observation from the linear stability analysis that the wall modes get elongated along the
direction of the resultant magnetic field and extend further into the bulk as R is increased.
The heat and momentum transport was observed to decrease with R for R < 1 but did not
show any visible trend for R > 1. The fluctuations of the local heat flux and kinetic energy
along the direction of the horizontal magnetic field get suppressed as R is increased. Since
the wall modes extend more into the bulk as R is increased, the relative contributions to the
total heat transport and kinetic energy by the near-wall regions decrease with an increase
of R.

The analysis from direct numerical simulations further revealed that at least for R = 3,
the solutions are dependent on the initial conditions. The solutions for R = 3 can consist
of either an antisymmetric arrangement of upwelling and downwelling plumes on top of
each other, or a symmetric arrangement of merged upwelling or downwelling plumes.
The solution with merged plumes corresponds to higher heat and momentum transport
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because the merged plumes give rise to larger convection rolls and hence more efficient
heat transfer.

Our present work provides important insights into the dynamics of wall-attached
convection under inclined magnetic fields which will be a typical situation in most
applications. Our work may find applications in several industrial flows such as cooling
blankets in fusion reactors. Although we worked on a small set of parameters, we expect
our results to hold for higher Rayleigh numbers as well. In the future, we plan to conduct
a similar analysis for fluids at different Prandtl numbers.
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