17

Quasi-free states

Suppose that we have a state @ on the polynomial algebra generated by the
fields ¢(y) satisfying the CCR or CAR relations. For simplicity, assume that
is even, that is, vanishes on odd polynomials. Clearly, this state determines a
bilinear form on Y given by the “2-point function”

Y xY 3 (y,y2) = Y(ow1)d(ys2)). (17.1)

We say that a state v is quasi-free if all expectation values

'L/)((Zs(yl)""b(ym))v Yy Ym €V, (17.2)

can be expressed in terms of (17.1) by the sum over all pairings.

This chapter is devoted to a study of (even) quasi-free states, both bosonic and
fermionic. This is an important class of states, often used in physical applications.
Fock vacuum states belong to this class. It also includes Gibbs states of quadratic
Hamiltonians.

Representations obtained by the GNS construction from quasi-free states will
be called quasi-free representations. They are usually reducible. Many interesting
concepts from the theory of von Neumann algebras can be nicely illustrated in
terms of quasi-free representations.

Quasi-free states can be easily realized on Fock spaces, using the so-called
Araki—-Woods, resp. Araki—-Wyss representations in the bosonic, resp. fermionic
case. Under some additional assumptions, in particular in the case of a finite
number of degrees of freedom, these representations can be obtained as follows.
First we consider a Fock space equipped with a quadratic Hamiltonian. Then we
perform the GNS construction with respect to the corresponding Gibbs state.
Finally, we apply an appropriate Bogoliubov rotation.

The last section of this chapter is devoted to a lattice of von Neumann alge-
bras generated by fields based on real subspaces of the one-particle space. The
most interesting result of this section gives a description of the commutant of
such an algebra. The proof of this result uses Araki-Woods, resp. Araki—-Wyss
representations together with the modular theory of von Neumann algebras.

We will extensively use the terminology of the theory of operator algebras, in
particular the modular theory of W*-algebras; see Chap. 6.
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424 Quasi-free states

17.1 Bosonic quasi-free states

In this section we discuss bosonic quasi-free states. They can be introduced in
two different ways: by demanding that n-point functions can be expressed by the
2-point function, or by demanding that their value on Weyl operators is given
by a Gaussian function. We choose the latter approach as the basic definition,
since it does not involve unbounded operators.

In the literature, in the bosonic case, the name “quasi-free states” is often
used to designate a wider class of states, which do not need to be even. For such
states the “l-point function”

Yoy—v(e(y), ye, (17.3)

may be non-zero and fixes a linear functional on ). Quasi-free states are then
determined by both (17.1) and (17.3). Gaussian coherent states considered in
Subsects. 9.1.4 and 11.5.1 are examples of non-even quasi-free states. It is easy
to see that an appropriate translation of the fields (see Subsect. 8.1.9) reduces
a non-even quasi-free state to an even quasi-free state. Therefore, we will not
consider non-even quasi-free states.

17.1.1 Definitions of bosonic quasi-free states
Let (), w) be a pre-symplectic space, that is, a real vector space ) equipped with
an anti-symmetric form w. Recall that CCRV!())) denotes the Weyl CCR alge-
bra, that is, the C*-algebra generated by operators W (y) satisfying the (Weyl)
CCR commutation relations; see Subsect. 8.3.5.

Definition 17.1 (1) 4 state v on CCRY'(Y) is a quasi-free state if there
exists 1 € Ls(Y,Y*) (a symmetric form on YY) such that

Y(W(y) =e 2V, ye. (17.4)

(2) If Yoy— W™(y) e U(H) is a CCR representation, a normalized vector
WU € 'H is called a quasi-free vector if

Y(W(y) = (TW™(y)¥), ye,

defines a quasi-free state on CCRYV! ().

(3) A representation Y > y— W7 (y) € U(H) is quasi-free if there exists a cyclic
quasi-free vector in H.

(4) The form n is called the covariance of the quasi-free state v, and of the
quasi-free vector W,

For a quasi-free state 1» on CCRVY! (), let (H,, 7y, Q) be the corresponding
GNS representation. Then, clearly, Q, € H,y is a quasi-free vector for the CCR
representation Y 3 y — my (W (y)) € U(Hy).

The covariance defines the representation uniquely:
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Proposition 17.2 LetY > y — Wi(y) € U(H;), i = 1,2, be quasi-free CCR rep-
resentations with cyclic quasi-free vectors ¥; € H;, both of covariance n. Then
there exists a unique U € U(Hy,Ha) intertwining W' with W? and satisfying
Uy = U,.

Let us note the following important special subclasses of quasi-free represen-
tations:

(1) If the pair (2n,w) is Kédhler, the corresponding quasi-free representation is
Fock; see Thm. 17.13.

(2) Let w = 0. Then 7 can be an arbitrary positive definite form (see Prop. 17.5
below). Without loss of generality we can assume that ) is complete w.r.t.
the scalar product given by 7. Let V := Y* | so that V is a real Hilbert space
with the scalar product n~!' and the generic variable v. Then the Hilbert
space H can be identified with the Gaussian L? space L2 (V,e*%”'”_l”dv),
W (y) are the operators of multiplication by e, and the function 1 is the
corresponding quasi-free vector.

The following proposition follows from Prop. 8.11:
Proposition 17.3 FEvery quasi-free representation is regular.

We recall that the space H*™ associated with a CCR representation W7 is
defined in Subsect. 8.2.2. (It is the intersection of domains of products of field
operators.)

Proposition 17.4 A quasi-free vector ¥ for a CCR representation W7 belongs
to the subspace H°>™. Moreover,

(Tlo™ (1) (12)¥) = y1-ny2 + %y1 ‘WY, Y1,Y2 €Y. (17.5)

Proof We remove the superscript 7 to simplify notation. For any y € ),
(U]et? @) = e~ T, (17.6)

Hence, ¥ is an analytic vector for ¢(y). It follows that, for any n, ¥ € Dom ¢(y)",
hence ¥ € H*>.
To prove the second statement, we differentiate (17.6) w.r.t. ¢ to get

(V]6(y)*¥) = yuy,
which, using linearity and the CCR, implies (17.5). O
Proposition 17.5 Let n € Ly(Y,Y*). Then the following are equivalent:

(1) Yoym— e~ 2V s a characteristic function in the sense of Def. 8.10, and
hence there exists a quasi-free state satisfying (17.4).

(2) nc + %wc >0 on CY, where nc,we € L(CY,(CY)*) are the canonical
sesquilinear extensions of n,w.
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(3) lyr-wyal < 2(yrmy1) = (yamy2)®, 1,2 € V.
For the proof we will need the following fact:
Proposition 17.6 Let A = [a;;], B = [bjr] € B(C"), with A, B> 0. Then
lajrbjr] =:C > 0.
Proof Writing A and B as sums of positive rank one matrices, it suffices to

prove the lemma if A and B are positive of rank one. In this case C is also
positive of rank one. O

Corollary 17.7 Let B = [b;,] € B(C") with B > 0. Then [e"*] > 0.

Proof of Prop. 17.5. We work in the GNS representation and denote by ¥ the
corresponding quasi-free vector.
(1) = (2). Using linearity, we deduce from (17.5) that

(¥]p(w)* ¢(w)¥) = w-ncw + %E-wcw, w e CY. (17.7)

It follows that the Hermitian form nc + %wc is positive semi-definite on CY,
which proves (2).

Conversely, let y1,...,y, € V. Set
i

2ijyka j,k:17...,’l’b.

bjk = yj Yk +

Then, for A,..., \, € C,
E ijjk)\k = w-ncw + %E-wcug w = Z )\jyj e CY.
1<j.k<n j=1

By (2), the matrix [b;1] is positive. By Corollary 17.7, the matrix [e%*] is positive,
and hence the matrix [e~2% %5 b;re~ 29 19t ] is positive. Thus

n
E e 7 (W =)k —u;) o b5 Wy Y 3
jk=1

n
= E e~ TV MY it o= 3 N A > 0.
Jk=1

Hence, by Def. 8.10, Y > y — e 7Y is a characteristic function.
(2) < (3). We note that taking complex conjugates (2) implies that

1
:I:iw(c <mnec, on CY,
or equivalently
[ L
[w1 wews| < 2(W1 nowr )2 (Wencws )2,  wy,wy € CY.

For w; = y; € Y, this implies (3).
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Conversely, if (3) holds, then

2y wy2 < Yy nyr + Y2 1Yo,
which, setting w = y; + iy, implies that w-ncw + %Ew(cw > 0. O

Let v be a quasi-free state on CCRWeyl(y), n its covariance and J°P' be the
completion of ) w.r.t. . Clearly, we can uniquely extend the pre-symplectic form
w to VP! so that it still satisfies the condition of Prop. 17.5 (3). We can also
extend the state ¥ uniquely to a quasi-free state on CCRweyl(yCPI). Similarly, if
W™ is a quasi-free CCR representation over ) satisfying (17.4), we can extend
it uniquely to a quasi-free CCR representation over VP!, Therefore, it will not
restrict the generality to consider only quasi-free states and representations over
Y complete w.r.t. 1. Note, however, that w may be degenerate on VP!, even if
it is non-degenerate on ).

Proposition 17.8 Let Y 5y — W7 (y) € U(H) be a CCR representation. Let
W € H be a unit vector. Then the following are equivalent:

(1) W is a cyclic quasi-free vector.
(2) W~ is regular, ¥ € H*>™ and, for yi,y2,... € Y,

(\I]|¢7T (yl) U ¢7T (y2m—1)“11) = O7
(\I’Id)ﬂ(yl)"'qbﬂ(me)\I/) = Z jiilll(\P|¢W(y‘7<2j*1))¢ﬂ(ya(2j))q/)~

o €Paira,,

Proof (2) = (1). Let y € Y. Since the number of elements of Pairy,, equals

2% 2,;’;!1, we have
(Vo)™ w) =0, (Vo)™ ¥) = -2 ),
for
yny = (P]6° (y)0). (17.8)

Using the CCR, we see that the symmetric form 7 satisfies condition (2) of Prop.
17.5. Moreover, W is an entire vector for ¢(y), and

g = (-1)m 1 T
(\Ij|elfﬁ(l/)\1;) = Z ( Qm) %(y'ﬁy)m =¢e gl .

Hence, ¥ is a quasi-free vector.
(1) = (2). Let ¥ be a quasi-free vector. For y1,...,y, € Y, t1,...,t, €R, we
have, using the CCR,

no i =
,I;Il eits o(y;) — exp ( _ 5 Z tjtkyj’wyk) exp (lztj¢(yj)).

J 1<j<k<n j=1
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Hence,
i s i 1
(\P‘ I elli? (“)\I’) = exp (—5 Z tjtkyj'w?ﬂc) exp (—5 Z tjtkyj'nyk)
1<j<k<n 1<j,k<n
i 1 o
= exp (— > tite(ynuk + §yj-wyk)) exp (—5 Zt?yj-nyj)- (17.9)
1<j<k<n j=1

From (17.7), we have

(W16(0;) (i )T) = w;ms + -

o Yi Wk == Tjk-

Expanding the r.h.s. of (17.9), it follows that i" (\I/| I (b(yj)\ll) is the coefficient

of t; ---t, in the product of the two formal power series

Zp' 2 (Z”k”) sz| o (thyjny,),

or equivalently in the formal power series

Zp! (Zt tkrjk) .

peEN i<k

If n is odd, this coefficient vanishes. If n = 2m, the only contributing term is

1 (—1)" m
o (bt

j<k

which yields the coeflicient

LY I To(2j-1)0(2j)

o €Pairg,, J

as claimed. O

One could alternatively use the polynomial CCR algebra to describe bosonic
quasi-free states. If we want to do this, there is a minor conceptual problem: these
algebras are not C*-algebras, hence strictly speaking the standard definition of
a state is no longer valid. Fortunately, it is easy to extend the notion of a state
to an arbitrary x-algebra by introducing the definition given below.

Definition 17.9 Let A be a unital x-algebra. A linear map v : A — C is called
a state if for any A € A we have Y(A*A) >0 and ¥(1) =1

Note that, given a state on an arbitrary x-algebra, the GNS construction can
be repeated verbatim from the C*-algebraic theory.
The following definition is parallel to Def. 17.1 (1):
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Definition 17.10 A state 1 on CCRpOl(y) is quasi-free if
1/)(¢(y1) T (b(ymel)) =0,

¢(¢(y1)"'¢(y2m)) = Z Hw((b(ya(?jfl))qb(ya@j))-
o €Pairg,, j=1
Clearly, there is an obvious one-to-one correspondence between quasi-free
states on CCRP®()) and quasi-free states on CCRV*! ().

17.1.2 Gauge-invariant bosonic quasi-free states

Let (Y, w) be a symplectic space equipped with a pseudo-K&hler anti-involution
j. The algebra CCRWeyl(y) is then equipped with the one-parameter group of
charge automorphisms, denoted U(1) 3 6 — uy, defined by

ug (W(y)) = W(ey).

Definition 17.11 A state ¢» on CCRY'(Y) is called gauge-invariant if it is
mvariant w.r.t. ug, that is,

Y(W(y)) = v (W(y)), yel, 0cU(1). (17.10)

In what follows we consider a gauge-invariant quasi-free state 1) with covari-
ance 7). Clearly, its gauge-invariance is equivalent to (7,j) being Ké&hler. (See
Prop. 1.95 for a similar statement).

Let us stress that the fact that the two pairs (w,j) and (7, j) are pseudo-Kéhler
does not imply that the triple (w,n,j) is pseudo-Kéhler.

Let us introduce the holomorphic space Z associated with the anti-involution
j. Recall that C)Y = Z @ Z. The sesquilinear forms wc and n¢ can be reduced
w.r.t. the direct sum Z @ Z. Thus we can write

wz 0 nz 0
- , - , 17.11
A R a7
where 7z is Hermitian and wz anti-Hermitian. Note that the condition nc +
%wc > 0, which by Prop. 17.5 is necessary and sufficient for 7 to be the covariance
of a quasi-free state, is equivalent to

nz £ %wz > 0. (17.12)

If the pair (w,j) is Kéhler or, equivalently, iwz > 0, then (17.12) is equivalent to
nz > twz.

Until the end of the subsection we assume that (), w) is a pre-symplectic space
and 1) is a quasi-free state on CCRV®!()) with covariance 7. As explained in
Subsect. 17.1.1, without loss of generality we can suppose that ) is complete for
the metric given by 7. We will see that under very general conditions there exists
a Kahler anti-involution on ) that makes ¢ gauge-invariant.
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Theorem 17.12 (1) Assume that dimKerw is even or infinite. Then there
exists an anti-involution j such that v is gauge-invariant for the charge sym-
metry given by j.

(2) If w is symplectic, then the anti-involution j described in (1) is unique if we
demand in addition that it is Kahler on the symplectic space (Y, w).

Proof By Prop. 17.5, we see that w is a bilinear form on the real Hilbert space
(Y,n) with norm less than 2. Hence, there exists b € B,()) (a bounded anti-
symmetric operator on )) with ||b|] < 1 such that

Y1-wys = 2y1-nbys. (17.13)

Set Vg := Kerb and Vyey := y;é. Since b = —b*, b preserves V., and we can set
breg 1= b|yreg. From (17.13) we see that Vs and Vs, are orthogonal for w, and
that (Vreq,w) is symplectic. Consider the polar decomposition breg =: —jreg |breg|
of byeg. Then both w‘)’reg’j“’g) and (w|yreg,jmg) are Kahler. Since dim Y, is
even or infinite, there exists an orthogonal anti-involution js; on Vs;. We now
set j := jreg @ jsg, Which has the required properties. O

In the proof of the following theorem we will use the material developed in a
later part of this section.

Theorem 17.13 The GNS representation associated with 1 is

(1) factorial iff w is non-degenerate on Y,
(2) irreducible iff (2n,w) is Kahler.

Proof Set M = 7, (CCRYVY!()))”. We easily see that m,, (W (y)) is not propor-
tional to the identity for y € Y\{0}. If y € Kerw, then m, (W(y)) € MNIM’.
Therefore, if 9 is a factor, then w is non-degenerate. This proves (1) =-.

Let us now discuss the GNS representation m, when w is non-degenerate. Let
b and j be the operators constructed in the proof of Thm. 17.12. Recall that
b:=(2n)"lw € B,(Y) and b= —j|b|. Let Z be the corresponding holomorphic
subspace. We have

i 1 .
7’]2—50.)3:773—§ng3:775(]1—|1)2|). (17.14)

If we treat our CCR representation as a charged representation in the terminol-
ogy of the next subsection, then (17.14) can be interpreted as the density p; see
Def. 17.15.

We split Y as Yy @ Vs, where

V= Ty (P, Vs = Tpy uy (B))Y,

and note that ), and )% are orthogonal for  and w. For ¢ = 1,2 we set w; = w|yv ,

N = ’7|y-7 ji = j|y . We denote by 1; the quasi-free state on CCRY®!());) with
covariance 7;, and by Z; C Z the holomorphic subspace associated with j;. We
set p; == p|zi.
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Note that w; are non-degenerate, and that the state i on CCRweyl(y) can
be identified to ¥ @ ¥y on CCRYY!(V) @ CCRY™!()%). Therefore, the GNS
representation associated with v is unitarily equivalent to the tensor product of
the GNS representations associated with vy and 5.

We have p; = 0. Hence, (211, w) is Kéhler and the GNS representation asso-
ciated with 1 is the Fock representation associated with j;.

Consider the Araki-Woods representation associated with ps (see Subsect.
17.1.5). By Thm. 17.24 (4), the vacuum {2 is a vector representative for 1. By
(17.14), Ker p2 = {0}, hence Q is cyclic by Thm. 17.24 (6). Thus the Araki-
Woods representation is the GNS representation for .

We have M = B(I's(Z;)) ® CCR,, | (see Def. 17.23). Since by Thm. 17.24 (7),
1® CCR,, , C M, we obtain that

B(Is(21)) ® B(I's(22 @ Z,)) € B(I's(21)) ® (CCR,4, 1 UCCR,, +)"
c (MmuMm)”,

hence 91 is a factor. This proves (1) <.

Now note that the Kahler property implies that w is non-degenerate. On the
other hand, the irreducibility implies the factoriality, which by (1) implies that
w is non-degenerate. Therefore, to prove (2) we can assume the non-degeneracy
of w.

By the discussion above, the GNS representation associated with v is equal
to the tensor product of the Fock representation associated with (V1,w1,j1)
and of the Araki-Woods representation associated with (25, ps), where py > 0.
Every Fock representation is irreducible, while an Araki-Woods representation
for a non-zero particle density is not (see Thm. 17.24 (7)). Therefore, the GNS
representation associated with 1) is irreducible iff Yo = {0} ie. (2n,w) is Kéahler.
This proves (2). a

17.1.3 Quasi-free charged representations

The following subsection is essentially a translation of the previous subsection
from the terminology of neutral CCR representation to that of charged CCR
representations, which seems more convenient in the context of gauge invariance.

Let (Y,w) be a charged symplectic space. That means the symbols ) and w
slightly change their meanings compared with the previous subsection: ) is now
a complex space and w is a charged symplectic form. To go back to the framework
of the previous subsection we need to take the space Vg, the realification of ),
and equip it with the symplectic form y;-wrys := Rey;-wys, the real part of the
charged symplectic form.

Clearly, )V is equipped with a pseudo-Kéhler anti-involution — the imaginary
unit. Therefore, all the definitions of the previous subsections make sense. We will
write CCRWCYI(JJ), resp. CCRpOl(y) to denote the algebra CCRWCYI())R), resp.
CCRP°!(Yr) equipped with the charge symmetry induced by U(1) 5 6 — e,
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Note that we have a minor notational problem. Throughout our work, we
consistently used the letter ¢) to denote charged fields. In this chapter this letter
is taken (and denotes a state). Therefore, we will use a different letter to denote
charged fields — they will be denoted by the letter a, as annihilation operators.
In particular, the algebra CCRP°!()) is generated by the operators a(y), a*(y),
y € V. Clearly, we can define the concepts of a gauge-invariant state and of a
quasi-free state on CCRP®/()).

We also have the corresponding notions on the algebra CCRY®!()), generated
as usual by W(y), y € V. There is a one-to-one correspondence between gauge-
invariant quasi-free states on CCRV*¥!()) and CCRP°!()) that can be derived
from the formal relation

Wiy) = exp ((1/V2)(a*(v) +aly)) )-

However, when discussing charged CCR relations we prefer to use the polynomial
algebra.

Proposition 17.14 (1) A state 1 on CCRPY(Y) is gauge-invariant if

w(a*(yl)"'a*(yn)a(wm)"'a(wl)):07 n#ma Y13 Yn, Wy ..., W1 €y~

(2) It is quasi-free if in addition, for any y1 ..., Yn, Wy,...,w; € Z,

"l}(a*(yl)"'a*(yn)a(wn>"'a(w1)> = Z ﬁlw(a*(y‘i)a(wﬂ(j)))'

oc€ESy ’=

Definition 17.15 If v is a gauge-invariant quasi-free state on CCRP°Y(Y), the
positive semi-definite Hermitian form p on Y defined by

(y2lpyr) == v (a*(n)aly2)), w1,y2 €Y,

is called the density associated with . If iw is positive definite, we will also use
the alternative name one-particle density.

Recall that in the framework of neutral CCR relations one introduces the holo-
morphic space Z. Charged CCR relations amount to identifying the space ) with
Z as explained e.g. in Subsect. 8.2.5. Under this identification, the Hermitian
form iw is transformed into iwz, and the density p into nz — fwz (see (17.11)).
Therefore, (17.12) implies the following proposition.

Proposition 17.16 A Hermitian form p € Ly (), V™) is the density of a gauge-
imvariant quasi-free state iff

p=0, p+iw=>0.
Assume that

YVoy—a*(y) € Cl(H) (17.15)
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is a charged CCR representation. We have the obvious analogs of Def. 17.1 (2)
and (3):
Definition 17.17 (1) ¥ € H is called a gauge-invariant quasi-free vector if U €
H™ and
w( “(y1) - a”(yn)a(wr) -+ a(wn))
(‘If|a”(y1) a‘”*(yn) (wm)"'a‘”(wl)\p)v ylv"'7yTL7w’rrL,~--7wl€y7

defines a gauge-invariant quasi-free state on, CCRP! ().
2) A charged CCR representation (17.15) is called gauge-invariant quasi-free 1
g gaug
there exists a cyclic gauge-invariant quasi-free vector in H.

Recall that with every charged CCR representation (17.15) we can associate
a unique regular neutral CCR representation

Yroy—W"(y) e U(H) (17.16)
such that
W7 (y) = exp ((/V2) (@™ (9) + 0" (1) ).

It is clear that a vector ¥ is gauge-invariant quasi-free w.r.t. W7 iff it is such
w.r.t. a™*. Likewise, the representation W7 is gauge-invariant quasi-free iff a™*
is.

17.1.4 Gibbs states of bosonic quadratic Hamiltonians
Density matrix

Let 0<~+ <1 be a self-adjoint operator on a Hilbert space Z with
Ker(1 —v) = {0}. We associate with v the self-adjoint operator p, called the
one-particle density, defined by

pi=y—"" v=plp+1)~" (17.17)

We assume in addition that v is trace-class. This is equivalent to assuming that
p is trace-class. Note the following identity:

TrT(y) = det(l — )" = det(1+ p).
Thus I'(v) det(1 — ) is a density matrix (see Def. 2.41).
Definition 17.18 The state 1, on B(FS(Z)) is defined by
¥y (A) :=Tr AT(y) det(1 — ), A€ B(I(2)).

We identify Z with Re(Z @ Z) using the usual map z %(z +z). We can

faithfully represent the Weyl CCR algebra CCRV*¥!(2) in B (Ts(2)). Note that
we have a natural charge symmetry on B(I's(Z)) leaving invariant CCRY!(2),
implemented by U(1) > 0 s eV,
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Proposition 17.19 The state v, restricted to CCRweyl(Z) is gauge-invariant
quasi-free. We have

Uy (W) =exp (— 1(:12) — 3 (lo2)) = e (— 3 (17 22)), =€ 2.

I—y
The “2-point functions” are
%( (21)a(z)) = Z2|P21
Py (alz1)a*(22)) = |ZZ (21]p22),
(U8 (CL(Zl)a(ZQ)) ( (z1)a* (29 ) 21,29 € Z.
Proof We can find an o.n. basis (e, es, ... ) diagonalizing the trace-class oper-

ator 7. Using the identification

I(2) ~ & (T.(Ce;), Q), (17.18)

i=1
we can confine ourselves to the case of one degree of freedom, which is a well-
known computation involving summing up a geometric series. O

Suppose now that 7 is non-degenerate. In this case, the state v, is faithful. If
in addition we fix 8 > 0 and v = e %" for some operator h bounded from below,
then

T(7) det(1 — ) = e A4 /Ty AL (),
Thus, in this case, 1, is the Gibbs state at the inverse temperature 3 for the

dynamics generated by the Hamiltonian dI'(h).

Standard representations on Hilbert—-Schmidt operators

Consider the Hilbert space B> (FS(Z)). It will be convenient to introduce an
alternative notation for the Hermitian conjugation: JB := B*.

Recall the representations of B(I'y(Z)) and B(I's(Z)) on B?(I'\(Z)) intro-
duced in Subsect. 6.4.5:

m(A)B = AB, m(A)B:=BA*, Be B*(I\(2)), AecB(I(2).

Clearly, Jm(A)J* = m (A).
Thus we can introduce two commuting charged CCR representations,

Z 32— m(a*(2)) € CL(B*(Ts(2))), (17.19)
Z3z0 m(a*(2)) € CL(B*(Ts(2))) . (17.20)

They are interchanged by the operator J:

Jm(a*(2))J* = m (GT(Z))

The vector

= det(1—)7T(y?)
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is gauge-invariant quasi-free for the representations (17.19) and (17.20) and the
one-particle density p. Both (17.19) and (17.20) are gauge-invariant quasi-free
charged CCR representations.

Standard representations on the double Fock spaces

Note the following chain of identifications:
B*(Ty(2)) =T\ (2) ®
~T(2)®

We denote by Ty : B?(I's(Z)) — I's(Z ® Z) the unitary map given by (17.21).
Introduce the anti-unitary map

)

(2
?) (2o 32). (17.21)

ZOZ3(2,%2) — €(21,%) = (22,71) EZD 2. (17.22)

Proposition 17.20 T,JT; =T'(e).

By applying Ty to (17.19) and (17.20), we obtain two new commuting charged
CCR representations

Z 3z Tim(a*(2)) T = a*(2,0) € CU(Ts(Z & 2)), (17.23)
Z3z Tym(a (z))T* =a*(0,2) € CL(T(Z D 2)). (17.24)

%

They are interchanged by the operator I'(e):

T(e)a*(z,0)T'(e)* = a(0,%).
Again using a basis diagonalizing «, as in (17.18), the double Fock space on the
right of (17.21) can be written as an infinite tensor product,
é (T(Ce; & Ce;), Q). (17.25)
We have T, ¥, = 2, where

1

Q,‘, = gg (1 — ,yi)%efy?a*(e,)a*(g,j)ﬂ
R |

is a gauge-invariant quasi-free vector for the representations (17.23) and (17.24),
and the one-particle density p. Clearly, both (17.23) and (17.24) are gauge-
invariant quasi-free CCR representations.

Note that if we set

1
c= [0 702 cBXZe 2, 28 3Z), (17.26)

then
Q, =det(1 - cct)iere’(OQ,

so this is an example of a bosonic Gaussian vector introduced in (11.33), where
it was denoted (2.
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Araki-Woods form of standard representation

Using the infinite tensor product decomposition (17.25), we define the following
transformation on I'y(Z @ 2):

1 1

R, i= @ (1—q)fe % @ @D ((1 — ;)7 1) e le)e@) - (17.27)
i=1

Theorem 17.21 R, is a unitary operator satisfying

Ry¢(21, @R = 6((p+ 1) 21 + p? 20,5771 + (5 + 1)7 5),
Rya(z1, )R = a((p + ]1)%21 + p? 2, 0)

+a* (0,577 + (5 + 1)F5),
Rya*(z1, )R, = a* ((p+ ]1)%21 + p%ZQ,O)

R, T'(e)R} =T\(e),
RQ, =0,
R,dT(h, ~B)R: = dT'(h, 7).

Proof Let ¢ be defined as in (17.26). Using

P —cc’) =T((1-7) & (1-7)),
we see that

R, :=det(l — cc*) e 20" (OD(1 — ec*)Ter®(@),

Thus R, is an example of an operator whose properties we studied in detail
in Sect. 11.3. Thus all the identities that we need to show follow from the fact
that R, is a unitary operator implementing a positive symplectic map given in
(11.50). 0

By applying R, to (17.23) and (17.24), we obtain two new commuting charged
CCR representations

Z3z—a},(2) = Rya*(2,0) R}

=a*((p+1)72,0) +a(0,777) € CU(Ts(Z2 @ 2)),
Z>3%Zw—a} (%) = R,a*(0,2) R

= a(p2l’z70) +a*(0,(p+ 11)52) eCUI(Z® Z)).

They are interchanged by the operator I'(e):

L(e)al 1 (2)l(e)" = af ,(2).
We have R, =, hence the Fock vacuum (2 is a gauge-invariant quasi-free
vector for the representations ay, and a} ,, and the one-particle density p. Both
a’ ; and af ; are gauge-invariant quasi-free CCR representations. They are special
cases of Araki—Woods CCR representations, which we will consider in the next
subsection.
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17.1.5 Araki—Woods representations

In this subsection we will see that @}, and @}, can be defined more generally,

as compared with the framework of the previous subsection.
Let Z be a Hilbert space. We introduce the operators v and p as at the begin-
ning of Subsect. 17.1.4, except that we do not assume that they are trace-class.

Definition 17.22 For z € Dom p% we define the following closed operators on
I\(Z @ 2), called the Araki-Woods creation operators:

ali(z) :=a" ((p—|— ]l)%z,()) +a (O,E%E> ,
al . (2) :==a" (p%z, 0) +a (0, (p+ ﬂ)%E) .

For completeness, let us write down the adjoints of a: | /r(z), called the Araki—
Woods annihilation operators:

) = a (o DF20) +a (0.5).
el = (20 4 0.5+ 1)
We also have the Araki-Woods Weyl operators:
Woa(2) i= exp ((l/\/i) (a7.(2) + aw(z))) =W ((]1 + ,0)5z,ﬁ53) ;
W, +(Z) := exp ((1/\/5) (a2 .(2) + a%r(z))) - W (p‘]fz, (1 +ﬁ)5f) .
Definition 17.23 The von Neumann algebra generated by
W) = =€ Domp%} resp. {W,.(2) : z¢€ Domﬂ%}

will be denoted by CCR, 1, resp. CCR, ;, and called the left, resp. right Araki-
Woods CCR algebra.

Theorem 17.24 (1) The map
Z3z—a})(2) e B(I(Z & 2))

is a charged CCR representation. In particular,

[ay1(21), 07 1(22)] = (21]22)1,
[07 1(21), 07 1(22)] = [ay.1(21), a5.0(22)] = 0.

It will be called the left Araki-Woods (charged CCR) representation.
(2) The map

Z3z—d,(z) e BI(Z® 2))
is a charged CCR representation. In particular,

[0+ (1), 03.,(22)] = (a[2)1,
02 4 (1), 03,1 (22)] = [as,4(71), 05,4 (22)] = 0.
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It will be called the right Araki-Woods (charged CCR) representation.
(3) Set

Then
Jaz (2) ) = a3 (),
Jea, 1(2)Js = ay . (2).

4) The vacuum € is a bosonic quasi-free vector for a’ | with the 2-point func-
7,1
tions equal to

(Qfay 1(21)a} 1(22)Q) = (21l(p+ Dz2) = (2|1 =) '),
(QaZ 1(21)ay1(22)Q) = (22]pz1) = (22lv(X—7) " 21),
(Qlay1(z1)ay,1(22)) = (Q|a:7l(zl)af/,_’1(22)ﬂ) = 0.

(5) CCR,,1 is a factor.

(6) Kery = {0} iff Q is separating for CCR., 1 iff Q is cyclic for CCR, . If this
is the case, the modular conjugation for Q is equal to Js and the modular
operator for Q is A=T(y®7!).

(7) We have

CCR! , = CCR, .

1T

Proof (1)—(4) follow by straightforward computations. Let us prove (5).

We check that [W, 1(z1), W, :(Z2)] = 0 for 21,20 € Dom p?, which implies that
CCR,, C CCR/ .

Clearly, (CCR, 1 UCCR, ;)" is equal to {W(w), w € £}, for

€= Span{((p—|- D)5z +pF o, piz + (P + 11)%5) , 21,22 € Domp%}.

Clearly, € is dense in Z @ Z. Recall that, by Thm. 9.5, Weyl operators on a Fock
space depend strongly continuously on their arguments. Therefore, {W(w), w €

Y ={Ww), we Zze&Z}" = B(I,(Z2®Z)). Thus
(CCR,1 UCCR!,)" > (CCR, 1 UCCR,,)" = B(Iy(Z & Z)),

7,1

which implies that CCR,, ; is a factor.
Let us prove the = part of (6). Assume that Kery = {0} and set 7/(A) =
D(y,7 )" AL(y,771) 7. We have

T (Wsa(2)) = Wya(v'2),

hence 7' is a W*-dynamics on CCR, ). We claim that 2 is a (7,1)-KMS vector
on CCR, . In fact, we have

(Q|W%1(21)W%1(’Vit22)9) _ e—i—F(t,m ,zz),
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for

v+1 v+ 1 "
Fit.2) = ( )+ ( )+ (s
(t, 21, 22) 2’1|]1_72'1 + 22|]1—’YZZ + (zily

it 2
+ (Z2|7 11— 721)’
which proves the (7,1)-KMS condition for the Weyl operators. By linearity, it
holds also for the *-algebra of finite linear combinations of W/, 1(z) and, by Prop.
6.64, for CCR,, ;.

Applying then Prop. 6.65 to the factor CCR, |, we obtain that (2 is separating
for CCR, 1.

We denote by H the closure of CCR, ;£2. We would like to show that H =
I\(Z ® Z), which means that Q is cyclic for CCR, ;. As a byproduct of this
proof, we will develop the modular theory of CCR, ;.

Clearly, H is invariant under CCR, 1, € is cyclic and separating for CCR,
restricted to H. Let us compute the operators S, A and J of the modular theory

for {2 and CCR, restricted to H.
Let us set

2y )
z
1T—x 2

Hy = Span{W,,(2)Q : z € Domp%} =Span{V. : z € Domp%}7
for
U, = o0 (D)7 2579
We have
T(y,7 )", = W, (17.29)

which implies that the self-adjoint operator I'(y,57 ') preserves H. Moreover,
the r.h.s. of (17.29) extends analytically in ¢ to t = —i/2. This shows that ¥, €
Dom'(v,5 )7 and

——1\1 ia*(p%z (ﬁ+ﬂ)%?)
(v, )29, =e ’ Q.

Moreover,
(17.30)

Clearly, H; is dense in H.
A := Span{W, 1(z) : z € Domp%}

is a *-algebra x-strongly dense in CCR, ) and H; = A€Q; therefore, by Subsect.
6.4.2, H; is an essential domain of S. Therefore, we can extend (17.30) by density
to the whole H, using that J is isometric. We obtain

S=JI(v7")?] (17.31)

H
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Since Kery = {0}, the range of I'(y,5~1)? |H is dense in H. Using (17.31), this
implies that Js preserves H. Thus

S = JS|HF(77771)% |H

is the polar decomposition of S, defining the modular operator and modular
conjugation. Next we see that

Wi () Wi ()2 =W ((p+ D21+ phs, pha + 5+ i) @
Therefore, CCR,, 1 J;CCR,, 1§ is dense in I's(Z & Z). Since CCR,1J;CCR, 12 C
H, this proves that H = I';(Z @ Z), and hence 2 is cyclic for CCR, ;. This proves
the = part of (6). The proof of the <= part of (6) will be given after the proof
of (7).

Let us now prove (7). Assume first that Kery = {0}. By the = part of (6), we
can apply the Tomita-Takesaki theory to (CCR.,1,Q) and obtain that CCR! | =
JsCCR, 1 Js. By (3), we have J;CCR, 1J; = CCR, ;.

For a general v, we write Z = Z; & 2, for Z; = Ker. Then v, = ’y|zl is
injective. Using the exponential law of Subsect. 3.3.7, we have

(28 Z2) ~T(2Z) @I(2 & 2Z1) @ Ts(Zp),
Wyi(2) = W(z) @ Wy, 1(21) @ 1,
W,2(Z) 1o W, +(21) ® W(z),

and hence

CCR,, ~ B(T\(2))) ® CCR,, , @ C1,

CCR,, ~ C1® CCR,, , ® B(I's(Z)), (17.32)

which shows that CCR! ; = CCR,, and completes the proof of (7).
From (17.32), we see that if Kery # {0}, Q is neither cyclic nor separating.
This proves the < part of (6). O

17.1.6 Quasi-free CCR representations as
Araki—Woods representations

Recall that in Thm. 17.12 we showed that every neutral quasi-free CCR, repre-
sentation over a symplectic space can be reinterpreted as a charged quasi-free
CCR representation over a charged symplectic space with iw positive definite.
Under minor technical assumptions, such representations are unitarily equivalent
to Araki-Woods representations. This is described in the theorem below.

Theorem 17.25 Let (Y, w) be a charged symplectic space such that iw is positive
definite on Y. Let

Yoy—a(y) € Cl(H)
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be a charged CCR representation with a cyclic gauge-invariant quasi-free vector
W. Let p be given by

Tropy2 = (Y]a™ (y2)a™ (11)¥), y1,p2 €.

Assume that Y is complete for the scalar product 2p + iw. Let Z be the completion
of Y w.r.t. iw. Note that p can be interpreted as a positive self-adjoint operator
on Z such that Y = Dom p%. Set v = p(1+ p)~L. Then there exists a unique
isometry U : H — I's(Z ® Z) such that

Uv = Q,

17.33
Ua™(y) =a;,(y)U, ye. ( )

17.1.7 Free Bose gas at positive temperatures

In this subsection we would like to describe in general terms how quasi-free
bosonic states usually arise in quantum physics. We will also discuss various
mathematical formalisms used in this context.

Let h be a positive self-adjoint operator on a Hilbert space Z. Consider a
quantum system described by the Hamiltonian H := dI'(h) acting on the Hilbert
space I's(Z). Note that (] - ) describes the ground state of the system. On the
algebra B(T's(Z)) we have the dynamics

m(A) = A Ae B(Ty(2)), teR.

We also have a natural charged CCR representation Z 35 z— a*(z) €
Cl(T's(£)) and the corresponding neutral CCR representation Z > z — W (z) =

exp(iL\/gam) € U(Ts(Z)). They satisfy
m(a*(2)) = a*(e""z), T (W(z)) =W(e""z), z€Z.

Suppose that we consider the above quantum system at a positive temperature.
Let 8 > 0 denote the inverse temperature. If

Tre 7" < oo, (17.34)
we can consider the Gibbs state given by the density matrix
e PNy o= AT (R), (17.35)

Positive-temperature systems are especially interesting for infinitely extended
physical systems. For such systems e is rarely trace-class — in fact, typically,
h has a continuous spectrum, which rules out (17.34). Therefore, the formalism
based on the Gibbs state with the density matrix (17.35) breaks down.

As a typical example of such a system we can consider the (non-relativistic)
free Bose gas. Its one-particle Hilbert space and the one-particle Hamiltonian
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are
Z:=L*R?Y, h:=-A. (17.36)

Clearly, in this case (17.34) is not satisfied. Therefore, we need a different for-
malism to describe positive-temperature systems in this situation.

In the literature one can distinguish three approaches to positive temperatures
for infinitely extended systems:

(1) the thermodynamic limit,
(2) the W* approach,
(3) the C* approach.

Thermodynamic limit

The thermodynamic limit consists in approximating our system by a sequence of
systems in finite volume. Thus we have a sequence of one-particle Hilbert spaces
Zp, with one-particle Hamiltonians hy,. We also need to identify Z;, as a subspace
of Zy, for L; < Ly, which allows us to embed the corresponding observable
algebras B(I'(21,)) € B(I'(Zy,)). Typically, for finite L, the condition

Tre " < 0 (17.37)

is satisfied, and so we can use the corresponding Gibbs state. Then we expect that
for a fixed Ly and a large class of observables A € B(I'(Zy,)), the expectation
value

Tr Ae—ﬂdl“(hL )/Tre—GdF(ILL )

converges to a limit as L — oco.

In the case of (17.36), we typically take Zp := L?([~L,L]?), and hy is the
Laplacian with some conditions on the boundary of the box [—L, L]%. For many
purposes the choice of boundary conditions should not matter. The Dirichlet
or Neumann boundary conditions seem more relevant physically, whereas the
periodic boundary conditions might be more convenient mathematically.

Note that this approach involves a significant amount of arbitrariness. One
needs to introduce a lot of additional structure, which in the end is irrelevant.

W* approach

We can describe temperature states by using the Araki-Woods representations.
In fact, consider the space I'y(Z @ Z). For z € Dom(e’"/?), define

ay(2) = a* (1 — e "")752,0) 4+ a(0, (" — 1)~%%), (17.38)
that is, the Araki-Woods representation for the Planck density (e’* — 1)~!. Then

Dom(e’"/?) 3 2z — aj(z) € CUT(Z @ Z))
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is a charged CCR representation. The von Neumann algebra generated by (17.38)
will be denoted by CCRg. Set

L:=dI' (h® (-h)).
Then
Th(A) ="t Ae™" A€ CCRy, tER,
is a W*-dynamics on CCRy and L is its Liouvillean. The state
wg = (QAQ), A e CCRg,

is a B-KMS state for the W*-dynamics 75.

Thus we obtain a family of W*-dynamical systems (93, 73) equipped with
the state wj. One can argue that all of them describe the same physical system
and differ only by the temperature. In concrete situations, one can derive the
family (93,75, ws) using the thermodynamic limit.

Note that the W* approach does not involve any additional structure (unlike
the thermodynamic limit). It is often used in the mathematical physics literature.
Implicitly, it is also widely used in the theoretical physics literature.

C* approach

Consider the C*-algebra CCRV*Y!(2), where Z is equipped with the symplectic
structure Im(-|-), as well as the charge symmetry z + ez, 6 € [0, 2[. Define the
dynamics on CCRY*!(2) by setting

T (W(2)) == W(ez), z€2Z, teR.

It is easy to see that, for any § €]0,0c], there exists on CCRV!(Z) a unique
state -KMS for the dynamics 7. It is given by

ws (W (2)) = exp (—i <z mz>) , z€Z.

We can then pass to the GNS representation (Hg,ms,€s) and construct the
Liouvillean Lg.

In the case of 8 = co (the zero temperature), we obtain, up to unitary equiv-
alence, Hoo =I'\(Z), oo (W(2)) = W(z2), Qoo = and Lo, = H. This is the
quantum system that we started with at the beginning of the subsection.

In the case § < oo (positive temperatures), we obtain the Araki-Woods rep-
resentation for v = e~?" described in (17.38).

The main advantage of this approach is its conceptual and mathematical ele-
gance. Its starting point is a single system, and various temperature states arise
naturally by the application of a general principle.

This approach has also a serious disadvantage. The choice of the algebra of
observables CCRV®!(Z) is rather arbitrary. In principle, one could replace it
by another x-algebra related to the CCR over Z, e.g. one of those described
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in Sect. 8.3. The choice of the CCR. algebra does not have much relevance as
long as the dynamics is free (that is, as long as it is described by Bogoliubov
transformations). The problem becomes more serious when we try to consider a
system with a non-trivial interaction. Then, in concrete situations, it is usually
not easy to find a C'*-algebra preserved by a given dynamics, and the C* approach
is difficult to apply.

17.2 Fermionic quasi-free states

In this section we describe the theory of fermionic quasi-free states. It is in many
ways parallel to that of bosonic quasi-free states. Therefore, each subsection
about fermionic quasi-free states has its counterpart in the previous bosonic
section.

17.2.1 Definition of fermionic quasi-free states

Let (), v) be a real Hilbert space. Recall that CARC” () denotes the CAR C*-
algebra over ), that is, the C*-algebra generated by ¢(y), y € ), satisfying the
CAR relations; see Subsect. 12.5.2.

Definition 17.26 (1) A state ¥ on CARC () is called quasi-free if
7/)(¢(y1) te ¢(y2m —1)) = Oa

1/1(¢>(3/1) ) ~~¢(y2m)) = Z sgn(o) H 1/1(¢(ya(2j—1))¢(ya(2j))),

o €Pairyy, j=1

for ally;,ys,--- €Y, meN.
(2) If Y 3y — ¢" (y) € Bh(H) is a CAR representation, ¥ € H is called a quasi-
free vector if

¢(¢(y1)¢>(yn)) = (\I/|¢ﬂ(y1)"'¢ﬂ(yn)\p)v Yi,---sYn €Y, mEN,

defines a quasi-free state on CARC” ().

(3) A CAR representation ¢™ on a Hilbert space H is quasi-free if there exists a
cyclic quasi-free vector in 'H.

(4) The anti-symmetric form 3 € L,(Y, V") given by

B = 2000, 0))), v €, (17.39)

is called the covariance of the quasi-free state v, and of the quasi-free vector
v,

For a quasi-free state 1) on CAR®” ()), let (Hy,my, ) be the corresponding
GNS representation. Then clearly Qy € Hy is a quasi-free vector for the CAR
representation Y 3 y — 7y (¢(y)) c By (’Hu)

The covariance defines the representation uniquely:
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Proposition 17.27 Let Y >y ¢'(y) € By(H;), i = 1,2, be quasi-free CAR
representations with cyclic quasi-free vectors ¥; € Hy, both of covariance 3. Then
there exists a unique U € U(Hy,Hs) intertwining ¢* with ¢* satisfying UV, =
0.

Let us note the following important special subclasses of quasi-free represen-
tations:

(1) If the pair v and % (3 is Kahler, the corresponding representation is Fock; see
Thm. 17.31.

(2) If 8 =0, the corresponding representation is unitarily equivalent to the
real-wave (or tracial) representation, discussed already in Subsects. 12.4.2
and 13.2.1.

From the CAR it follows that

(D(y1)d(y2)) = y1-vys + %yl By, Y1, y2 €. (17.40)

(17.40) implies the following proposition:
Proposition 17.28 Let € L,(Y,V*). Then the following are equivalent:

(1) There exists a quasi-free state ¥ such that (17.40) holds.
(2) ve+3Bc >0 on CY
(3) ly1-By2| < 2(y1-vy1)2 (y2vy2)?, y1,y2 € V.

Proof The equivalence of (2) and (3) is shown as in Prop. 17.8. To prove (1) =
(2) we compute

Y(¢* (w)p(w)) = Wrew + %E-ﬂcw >0, weCY.

Let us prove (3) = (1). We fix 8 € L,(Y,Y*) satisfying (3). From Def. 17.26,
we obtain a linear functional 1) on the x-algebra generated by the ¢(y), y € V.
It clearly suffices to show that v is positive. To check this we may assume that
Y is finite-dimensional.

Using Corollary 2.85 we can find an o.n. basis (eq,..., e, fi,..., f1) of Y
such that

Bezj—1 = Ajeaj, Beaj = —Ajezj1, Bf;i =0,

for Ay,..., A > 0. Condition (3) for 5 is equivalent to [Arl],..., |[An] < 2.

Assume first that dim Y = 2n. Then, allowing some A; to be equal to 0, we can
assume that m = n. We set ¢; = ¢(e;) and use the Jordan-Wigner representa-
tion of CAR(R?") on ®"C? defined in Subsect. 12.2.3. We note that if |\| < 2,
then

C11-M2 0
PN=351 0 142
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satisfies
p(A) >0, Trp(\) =1, (17.41)
Tr(p(N)o1) = Tr(p(N)oz) =0,  Tr(p(A)os) = —A/2.
We set
p=pA) @@ p(An).
We will prove that
Y(A) = Tr(pA), A€ CAR(R®"), (17.42)
which implies that i is positive.
We first see that
Tr(ppaj—1¢2;) = —iX; /2, Tr(pp;dr) =0 if |j— k| >2, (17.43)
hence
Y(0(y1)d(y2)) = Tr(pp(y1)d(y2)), 1,52 € V.
We claim now that
Tr(pgs, - ¢, ) =0, if k is odd. (17.44)

We can assume, using the CAR, that i1 < --- < 4. Let 4; be one of the indices. If
[ =25 — 1, then the j factor of ¢;, - - - ¢;, is equal to —io9, except if 4,41 =14 + 1,
and if [ = 24, the j factor of ¢;, ---¢;, is equal to ioy, except if 4,1 =14, — 1.
It follows from (17.41) that Tr(p¢i, - - - ¢, ) = 0, except when for each 1 <[ <k
one has 4,1 =14, + 1 or 4,1 = 4; — 1. This condition is not satisfied if k is odd,
which proves (17.44). We claim that

m

Tr(pgi, -+ biy,, ) = Z sgn(o) H Te(pdi, ;1) iy ) ) (17.45)

o €Pairg,, j=1

which combined with (17.44) implies (17.42).

The same argument as above shows that the lh.s. of (17.45) is zero if
(i1,...,%2mm) is not a collection of pairs (25 — 1,25). The same holds for the
r.h.s., since in this case, for all o € Pairy,,, at least one of the factors vanishes.
It remains to consider the case when

(i1, v eviom) = (291 — 1,241, s 29 — 1, 290),
for j1 < --+ < jp,. In this case
bi, - iy, = (i)t - (i3 )
and hence the Lh.s. of (17.45) equals

Tr(p¢i1 T ¢i2m, ) = H(_i/\jk )/2

k=1
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Since the only pairing contributing to the r.h.s. is (25 —1,245),...,
(24m — 1,2jm ), we see using (17.43) that (17.45) holds.

Assume now that dim) is odd. Then we set Yy = )Y @& R, and consider the
(reducible) representation of CAR(R*"*1) in ®"*!1C? obtained from the Jordan—
Wigner representation of CAR(R?("*1)). We are then reduced to the previous
case. This completes the proof of the proposition. O

17.2.2 Gauge-invariant fermionic quasi-free states

Suppose that the real Hilbert space (),v) is equipped with a K&hler anti-
involution j. As in Subsect. 1.3.11, CAR® (Y) is equipped with the one-
parameter group of charge automorphisms, denoted U(1) 3 6 — g, and defined
by

Uy (p(y)) = ¢(ey).

Definition 17.29 A state 1 on CAR® () is called gauge-invariant if it is
invariant w.r.t. ug.

Consider a fermionic gauge-invariant quasi-free state with covariance 3.

Let us introduce the holomorphic space Z associated with the anti-involution
j, so that CY = Z @ Z. The sesquilinear forms vc and B¢ can be reduced w.r.t.
the direct sum Z @ Z. Thus we can write

Ve = [VOZ VOZ] , fBc= [602 ﬂoz} ; (17.46)

where vz is Hermitian and [z anti-Hermitian. Note that the condition
ve + %ﬁc > 0, which by Prop. 17.28 is necessary and sufficient for 8 to be a
covariance of a quasi-free state, is equivalent to

Vs + %ﬁz > 0. (17.47)
Until the end of this subsection we assume that (), v) is a real Hilbert space

and 1 a quasi-free state on CAR®” () with covariance 8 € Ly (Y, V).

Theorem 17.30 (1) Assume that Ker § is even- or infinite-dimensional. Then
there exists an anti-involution j such that ¢ is gauge-invariant for the com-
plex structure given by j.

(2) IfKer 3 = {0}, then the anti-involution j given by (1) is unique if we demand
in addition that (3,]) is Kdhler.

Proof By Prop. 17.28, there exists an anti-symmetric operator b such that [|b]| <
1 and

y1-By2 = 2y1-vbya,  y1,y2 € V.
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Let Vg == Kerb and Vieg = y;é. On Ve we use the polar decomposition

bre{-’.‘ = _‘bl‘eg |jreg = _jreglbreg|7
so that j..g is a Kéhler anti-involution on Y., both for v Y and (3 Yo If
rog rog
dim Y, is even or infinite, we can extend j.., to a Kahler anti-involution on
Y, v). O

The following theorem is the fermionic analog of Thm. 17.13 (2).

Theorem 17.31 The GNS representation associated with 1 is irreducible iff
(v, 1) is Kdihler.

17.2.83 Charged quasi-free CAR representations

The following subsection is essentially a translation of the previous subsection
from the terminology of neutral CAR representation to that of charged CAR
representations, which seems more convenient in the context of gauge invariance.

Let (y, (|)) be a complex Hilbert space. On Vg, that is, on the realification
of Y, we introduce the real scalar product v := FRe(:|").

Clearly, Y is equipped with a Kahler anti-involution — the imaginary unit.
Therefore, all the definitions off the previous subsections make sense. In par-
ticular, the CAR algebra CARS” (Vr) is equipped with a charge symmetry and
we can define the notion of a gauge-invariant state. We will write CAR®” (V) to
denote the algebra CAR®” (Jg) equipped with this charge symmetry.

As in the bosonic case, we will denote charged fields using the letter a,
and not the usual 1. Clearly, CARY ()) is generated as a s*-algebra by
a(y) = 3(o(y) —i8(iy)), y € V.

Proposition 17.32 (1) A state ¢ on CARC*Q}) is gauge-invariant if

Y(a(y1) @ (ya)a(wn) - alwi)) = 0, n#m, yi-. Yo, W, .. w1 €Y.

(2) It is quasi-free if in addition, for any y1 ..., Yn,Wy,..., w1 €Y,

n

G(a* () a*(y)a(wy) - alwr)) = Y sgn(o) [[ (e w)alws)))-

c€ES, j=1

Definition 17.33 If ¢ is a gauge-invariant quasi-free state on CARC*())), the
positive Hermitian operator x on Y defined by

(y2|xy1) = T/)(a*(yl)a(y2)), y1,y2 €V,
is called the one-particle density of .

Recall that in the framework of neutral CAR relations one introduces the
holomorphic space Z. Charged CAR relations amount to identifying the space )
with Z, as explained e.g. in Subsect. 12.1.7. Under this identification, the scalar
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product on Y is transformed into 2vz and the Hermitian form defined by the
one-particle density x is transformed into vz — 53z. Therefore, (17.47) implies
the following proposition.

Proposition 17.34 A Hermitian operator x € By (Y) is the one-particle density
of a gauge-invariant quasi-free state iff
0<x<1
Suppose now that

Yoy ad*(y) € B(H) (17.48)

is a charged CAR representation.

Definition 17.35 (1) U € H is called a gauge-invariant quasi-free vector if

d)(a*(yl) eat yn)a(wm) T a(wl))
= (\I'\aﬁ*(yl) ceed™ (yp)a" (W) - aw(wl)‘ll), YlyeoosYnyWiyeno, Wy €V,
defines a gauge-invariant quasi-free state on CARC*(J)).

(2) A charged CAR representation (17.48) is gauge-invariant quasi-free if there
exists a cyclic gauge-invariant quasi-free vector in 'H.

Recall that with every neutral CAR representation over a unitary space we
associate a charged CAR representation Y 3 y — a™*(y) € B(H), such that

¢" (y) = a"" (y) +a" (y).

It is clear that a vector ¥ is gauge-invariant quasi-free w.r.t. ¢™ iff it is such
w.r.t. a™*. Likewise, the representation ¢™ is gauge-invariant quasi-free iff a™* is.

17.2.4 Gibbs states of fermionic quadratic Hamiltonians
Density matrix

Let 0 < v be a self-adjoint operator on a Hilbert space Z. We associate with ~y
the self-adjoint operator 0 < x < 1, called the one-particle density, defined by

X =v14+)"" y=x0-x)"" (17.49)

Note in passing that replacing v with v~ is equivalent to replacing x with 1 — x.

We assume in addition that ~ is trace-class. This is equivalent to assuming
that x is trace-class. Note the following identity:

TrT(v) = det(1 + ) = det(1 — x) .

Thus T'(y) det(1 +~)~! is a density matrix.
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Definition 17.36 We define the state 1, on B(Fa(Z)) by
Py (A) := Tr AT(y) det(T1++)7!, A e CARY (2).

We identify Z with Re(Z @ Z) using the usual map z — (z,%z). We can faith-
fully represent the algebra CARC (Z) in B(T.(2)).

Proposition 17.37 The state v, restricted to CARC"(2) is gauge-invariant
quasi-free. We have

¥y (a7 (21)a" (22)) = (22|x21),
(

P (a™ (21)a™ (22)) = (21]22) — (21]x22),
Yy (a™(21)a" (22)) = ¥ (a™*(21)a"*(22)) = 0, 21,20 € 2.

Proof We can find an o.n. basis (ej, ez, ... ) diagonalizing the trace-class oper-
ator 7. Using the identification

T.(2) ~ ® (Ta(Ce),Q), (17.50)

i=1
we can confine ourselves to the case of one degree of freedom. O

Suppose now that vy is non-degenerate. In this case, the state 1), is faithful. If
in addition we fix 8 € R, we can write v = e~#" for some self-adjoint operator
h. Then

T(y)det(14~)"! = e—ﬁdr(h)/Tre—ﬂdF(h).

Thus in this case 1), is the Gibbs state for the dynamics dI'(h) at the inverse
temperature (.

Standard representations on Hilbert—Schmidt operators

Consider the Hilbert space B*(I'y(Z)). As in the bosonic case, we will use an
alternative notation for the Hermitian conjugation: JB := B*.

We will use the representations of B(I',(Z)) and B(I'.(Z)) on B?(I'.(Z))
introduced in Subsect. 6.4.5:

m(A)B = AB, m(A)B:=BA*, Be B’ (T.(2)), AcB(l.(2)).

Again, Jm(A)J* = m(4).
Thus we can introduce two commuting charged CAR representations

Z3zem (@) € B(B*(I.(2))), (17.51)
Z35zw m(a*(2)) € B(B*(Ia(2))). (17.52)

They are interchanged by the operator J:

Jm(a*(2))J* = m (m)
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The vector
U, = det(1+7) *T(y7)

is gauge-invariant quasi-free for the representations (17.51) and (17.52), and the
one-particle density . If v is non-degenerate, then both (17.51) and (17.52) are
gauge-invariant quasi-free CAR representations.

Standard representations on double Fock spaces

We need to identify the complex conjugate of the Fock space T',(Z2) with the
Fock space over the complex conjugate I',(Z). Recall that in the bosonic case
this is straightforward. In the fermionic case, however, we will not use the naive
identification, but the identification that “reverses the order of particles”, con-
sistent with the convention adopted in (3.4). More precisely, if z1,...,2, € Z,
then the identification looks as follows:

T.(2)272 ®a - ®a2n — Zn Q- Qa7 €TW(2). (17.53)

(Thus this identification equals A times the naive, “non-reversing” identification.)
Note the following chain of identifications:

B*(Ta(2)) ~Tu(2) @ Tu(2)
~T,.(2)® Z) (2D 2). (17.54)
We denote by T, : B*(I'y(Z)) — the unitary map given by (17.54).

Proposition 17.38 T,JT; = AF(e).
Proof Consider z1,...,z,,wy,...,w, € Z and
B=la @ @ 2)(w) @, wy| € B (Ta(2)).
This corresponds to
VI +m)lz @, @z @0 W1 @ B Wi

= \/mzl ®a"'®azn ®awm ®a"'®a@1 era(Z@Z)
On the other hand,

B* = |’LU1 Ra - Qa wm)(zl Ra " Ra Z'n,|

corresponds to

\/mwl Ra *° Ra Wy ®am
= /(n+m)wi ®, -+ @ Wy, @4 Zp s -+ ®a 7
n(n—1) , m(m—1) __ —
= (_1)%+%+nm \/mzl ®a e ®d Zn ®a W, ®a e ®a wq

=Al(e)y/(n+m)!21 ®a - D 2n R Wiy D -+ - @p Wi,
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where at the last step we used I'(e)z; = Z;, I'(e)w; = w; and

n(n—1)

m(m—1)
2 + 2

(n+m)(n+m—1) )

+nm = 3

O

By applying T, to (17.51) and (17.52), we obtain two new commuting charged
CAR representations

Z3 2z Tam(a*(2))T; =a*(2,0) € B(TW(Z0 2)), (17.55)
Z57 0 Tam(a*(2))TF = Aa*(0,2)A € B(Tu (2 ® 2)). (17.56)

They are interchanged by the operator AT'(e):
AT (e)a*(z,0)T'(e)*A* = Aa*(0,2)A, z€ Z.

Again using a basis diagonalizing -y, as in (17.50), the double Fock space on the
right of (17.54) can be written as an infinite tensor product

(Ta(Ce; @ Ce;),9). (17.57)

I®8

We have T,V = (2,, where
1
Py —L 20 )a* (€
0, = 3 s)tol e
is gauge-invariant quasi-free for the representations (17.55) and (17.56), and
the one-particle density x. Clearly, both (17.55) and (17.56) are gauge-invariant

quasi-free CAR representation.
Note that if we set

Cc = 0 1 75
_75 O

Q, = det(1l + c¢*¢)Tere ()Q,

€BX(Z® 2,20 2), (17.58)

then

so this is an example of a fermionic Gaussian vector introduced in Def. 16.35,
where it was denoted €.

Araki-Wyss form of standard representation
Using the infinite tensor product decomposition (17.57), we define the following
transformation on ', (Z & Z):

1

v a*(e")a*(a')r((l + ’Yi)%ll)eﬂ?a(“")“(g

—

o=

R B - s
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Theorem 17.39 R, is a unitary operator satisfying

Ryg(z1, B R = ¢((1—x)7 2 + X720, X 7 + (1-X)*7),
Rya(z, @) R: = a((1—x)F 21 + x7 22.,0)

+a* (0, X771 + (1 - X)),
Rya* (21, Z)R: = a* (1 - Xx) 721 + x¥ 22,0)

+a(0,x* 7+ (1-%X)7%), (21,%2) € Z® Z,

R, T(e) Ry = T(e),
RQ, =Q,

R,dT(h, —h)R: = dT'(h, —F).

Proof Let ¢ be defined as in (17.58). Using

P(I+cc) =T((1+7) @ 1+7)),

we see that

*

R, :=det(1 4 cc*)~1er® (OD(1 4 ec*)~rez0(e),

Thus R, belongs to a class of operators that we know very well and we can
easily show the properties mentioned in the theorem: it is the unitary operator
implementing a j-positive orthogonal transformation given in (16.63). O

By applying R, to (17.55) and (17.56), we obtain two new commuting charged
CAR representations

They are interchanged by the operator AT'(e):
AT (e)al ,(2)T(e)"A* = af ,(Z), z€ Z.

We have R,€), =, hence the Fock vacuum € is a quasi-free vector for the

representations a’ | and aZ ., and the one-particle density x. Thus, if v is non-

7,1 v,
degenerate, then both are gauge-invariant quasi-free CAR representations. They
are special cases of Araki-Wyss charged CAR representations, which we consider

more generally in the next subsection.

17.2.5 Araki—-Wyss representations

In this subsection we will see that Araki-Wyss representations can be defined
more generally, as compared with the framework of the previous subsection.
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Let Z be a Hilbert space. We assume that we are given the operators v and
linked by the relation (17.49). This time we drop the condition that ~ is trace-
class. We assume only that - is positive, possibly with a non-dense domain, and
0<x<1

Note that Dom~y = Ran(1 — x) = Ker(1 — x)*. We have Kery = Ker y, and
set Kery~! :=Ker(ll — x), which amounts to setting (z|yz) = +oc for z ¢

Dom~.
Definition 17.40 For z € Z, we define the Araki-Wyss creation operators on
I.(Zo2):
. i _1_
ay(z) =a ((]l X)2z O) —|—a(0 X2 z),

al . (z) = (—a(x?z, 0) +a*(0,(1— X)%E))I
= A(a(x%z, O) +a* (0, (1- Y)%E))A = Aa,-1(2)A.

For completeness let us write down the adjoints of Araki-Wyss creation oper-
ators, called Araki—Wyss annihilation operators:

a3(2) = a((1 = X)¥2,0) +a* (0,X).
a,.5(2) = (@ (x? 2,0) — (0. (1-%) 7))

1
= A(a"(x}2,0) +a(0,(1-0F2))A = Aai-i (2)A.

We also have Araki-Wyss field operators:

1

611(2) 1= a2 1(2) +ay0(2) = B((1 - 0)F2,XP2),.
01.6(2) 1= 03,(2) + a3.0(2) = —i0(ixF 2,11 - X)F2)]
= 86(xF 2, (1= 0)F2)A = Ad, - (2)A.

(See (3.30) for identities concerning A.)

Definition 17.41 The von Neumann algebras generated by {a;l(z) t Z € Z},
resp. {afhr (Z): z€ Z} will be denoted by CAR, 1, resp. CAR, ;. and called the
left, resp. right Araki-Wyss algebras.

Clearly,
CAR, , = ACAR, 1A

Theorem 17.42 (1) The map
Z3z—aj (2 )GB(Fa(Z@?))
is a charged CAR representation. In particular

[ay1(21), a5 (22)]+ = (21]22),
[a} 1(21), a5 1 (22)]+ = [ay,1(21), ay,1(22)]+ = 0.

It will be called the left Araki-Wyss (charged CAR) representation.
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(2) The map
Z3z—d ,(z) e BT.(Z& 2))
is a charged CAR representation. In particular
[ay.:(21), a3 . (22)]4 = (21]22),
[a:,r(zl)va:,r(@)h = [a%r(zl)va”/ar(ZZ)h =0
It will be called the right Araki-Wyss (charged CAR) representation.
(3) Set
Ja 1= AT'(e). (17.60)
Then
Jua? ()], = a2 ,(3),
Jaty 1(2)Ja = ay 1 (Z).

(4) The vacuum Q is a fermionic quasi-free vector for al  with the 2-point func-
tions

(Qlay1(z1)ay 1 (22)Q) = (21](1 = x)22) = (21| (T +7) " 22),
(Qlad 1(z1)ar1(22)Q) = (z2xz1) = (22ly(M+7)"21),
(Qlaq1(21)aq1(22)Q) = (QlaZ ) (21)a% 1 (22)Q) = 0.
(5) CAR,, is a factor.
(6) Kery = Kery™t = {0} (equivalently, Kery = Ker(1—x)={0}) iff Q is
separating for CAR, 1 iff Q is cyclic for CAR, 1. If this is the case, then
Jo and A =T (y@75™1) are the modular conjugation and modular operator
for (CAR, 1,Q).
(7) We have

CAR!, = CAR,,,. (17.61)

(8) If x =41 (or, equivalently, v =1), then the Araki-Wyss representation
coincides with the real-wave representation and CAR, ) coincides with

CAR" " (2).

Proof Ttems (1) to (4) follow by straightforward computations.
The proof of (5) uses Prop. 6.44. First note that

[¢7,1(Z1)7 (b'y,r(zQ)} = 0.
Consequently CAR, | and CAR, , commute with one another. Therefore,
(CARVJ U CAR&O” D CAR,M U CAR%r.

It is easy to see that €2 is cyclic for CAR, ; U CAR, ,, which means that Condition
(1) of Prop. 6.44 is satisfied for the vector .
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Set
b(z) = ay (1= x)?2) +a} , (X*%)
=a(z,0) + (—a xz) +a*(0,(1— y)%y%z)) (1—-1),
(

For Condition (2) of Prop. 6.44, the set £ is defined as
L:={b(z) : z€ Z}U{b(z) : z€ Z}.

Suppose that ¥ is annihilated by all elements of £. All of them anti-commute
with I; therefore they separately annihilate the even and odd parts of W, i.e.
Uy = 1(1+1)¥. We have

b(2)¥, =a(z,0¥, =0,
b(Z)¥, =a(0,2)¥, =0

Therefore, W, is proportional to 2, the Fock vacuum. Moreover,
b(2)U_ = <a((]1 —2y)2,0) +a* (0, (1 — y)%y%z))\p_ —0,
b(E)U_ = (a*((]l —)txtz,0) = a(0, (1 - 2@2))@, —0. (17.62)

Define Z; := Ker(x — %]1), and Z; 1= Zi, so that Z = Z; @ Z;. We can rewrite
(17.62) as

(a(wl,O) +a(0,(1—x) bt (1 - QX),%))\L =0, w €2,

(a*((]l —)EXE (=14 2y) " wy, 0) + a(o,m))\p_ —0, w €2,
a*(O,EU)\IL = a*(’LU(),O)\I/, =0, wy€Zy. (1763)

By Lemma 16.46, ¥_ can be non-zero only if dim Z; is finite. If this is the
case, by Thm. 16.36 and arguments of Subsect. 16.3.5, W_ is proportional to a
fermionic Gaussian vector tensored with an even ceiling vector. In any case, this
means that W_ is even. But we know that ¥_ is odd. Hence, ¥_ = 0.
Therefore, ¥ is proportional to 2. Hence, Condition (2) of Prop. 6.44 is satis-
fied. This proves that CAR, ; is a factor and ends the proof of (5).
Let us now prove (6). Assume that Kery = Kery~! = {0}. Set

m(A):=T(yey ) Al(ye7~ ")~

We first see that 7/(¢,1(2)) = ¢,.1(7''2), hence 7' preserves CAR,; and is a
W*-dynamics on CAR,, 1. Next we check that € is a (7, —1)-KMS vector. This is
straightforward for the field operators ¢- 1(z). For products of field operators we
use the identities of Prop. 17.32. By Prop. 6.64 we extend the KMS condition to
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CAR,, 1. Applying Prop. 6.65 to the factor CAR, 1, we obtain that 2 is separating
for CAR, .

We denote by H the closure of CAR,, 1§2. The vector 2 is cyclic and separating
for CAR,, ; restricted to H. Therefore, we can compute the operators that belong
to the modular theory for (2, as operators on H.

We fix an o.n. basis {f;j}jes of Z. Since Kery =Kervy~' = {0}, we can
moreover assume that f; € Dom vz NDom~y~z. Clearly, the family {e;}ic; =
{f;,if;};jes is an o.n. basis of Z for the Euclidean scalar product Re(:|-). Set

1

Hy = Span{ g[ ¢7,71(67§>Q, L CcI ﬁnite}.
7 1

Clearly, H; is a dense subspace of H. We will prove that
S=J,0(y®&5 )7 on H,. (17.64)
Let (eq,...,e,) be a finite family in {e; };e; and
@ = 11 6,a(e)0

We have

1 n(n-1)/2 &
SP = [I Py ()2 = (—1) ,1:11 ¢y 1(€i)S2

Note that

® = 11 (a*(u;) + a(u;)) L,

n
i=1

for u; = ((1— Xﬁei,y%eﬁ-). To compute I'(y & 5~ ')z®, we apply Prop. 3.53 (1).
We obtain

)

)=

F(yevy)
n

= 11 (a"(xFer (1= %)Fe) +a(x (1= e X(1-0)"Fa0) )2

and hence
MOr(ye7 e
= 11 (@ (1= e xHE) +a(x(1- ) Fer, XHI - 0)e) )2,
Using (3.30), we finally get that
AT(OT(vo7 ')r

= (1002 0 (0 (@ =0 e XHE) — a(u(l - ) e, XA - X)) )2
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Hence, to prove that S® = J,I'(y ® 771)%43, it remains to check that
I (o (1= x)Fes, XHer) +a((1-x)F e x0e) )2
i=1
3

= [ (a*((ﬂ—X)%euy%a)_a(X(ﬂ_X)_%ezay_%(ﬂ_Y)a))Q

i=1

(17.65)

We can Wick-order both sides of (17.65) by moving annihilation operators to
the right until they act on €. For the Lh.s., we pick terms coming from the
anti-commutation relations that are products of

LK) = (A - Fel-0fa)_+(Xakia),
= (eilex) z — (eilxer) z + (exlxei) z -
For the r.h.s., we obtain identical terms with L(4, k) replaced with
j “Tel(l=x)Ter) — (v 7(1-%)elxrer
R(i, k) = — (x(ll —x)"7e|(l=x) ek)z (x (1 —X)elx ek)§

= —(exles) z — (eilxer) z + (exlxei) z -

Therefore,
L(Za k) - R(% k) = 2Re(e7|6k) = 251k

This ends the proof of (17.64).

By Prop. 6.59, we know that the closure of § |H1 equals S. Moreover, we easily
see that I'(y @7_1)% preserves H and is essentially self-adjoint on H;. Since
J, is isometric, (17.64) implies that S = J,I'(y ® 7~ 1)?, as an identity between
closed operators on H. It also proves that the modular conjugation is given by
Ja|,, and the modular operator is given by I'(y,57")|,,-

Now,

Gya(z1) - Dy 1(20) Jay 1 (Wi ) - By 1 (w1) Q2
= ¢ya(21) - Dy1(20) Dy r (Wi ) - - - By 2 (W1)EL.
This easily implies that CAR, 1J,CAR, 19 is dense in T',(Z & Z). But
CAR, 1J,CAR, 1 C H,

hence H is dense in I', (Z @ Z), which proves that (2 is cyclic. This ends the proof
of the = part of (6), as well as giving the formulas for the modular conjugation
and the modular operator.

We first prove (7) under the assumption that Kery = Kery~! = {0}. By the
= part of (6), we know that Q is cyclic and separating for CAR, ;, and J, is
the modular conjugation for 2. Applying the modular theory, we have CAR;_I =
J.CAR, 1J, = CAR, ; by (3).

To prove the general case, we will invoke some of the results to be proven only
in the next section. Set Zy, = Ker y, 2 = Ker(1 — x), and write

Z=Z20DZ D 2. (17.66)
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We set
V= {((]1— X)%z,y%i) Dz € Z},
which is a closed real subspace of W = Z @ Z. From (17.66) we obtain
V=V, @&V Vs,

for
Vo = {(20,0) : 20 € 2o}, Vo ={(0,Z2) : 22 € 25},
Vi = {((H_Xl)%zhﬁ%%) Dz € Zl}.
We have, with the notation in Subsect. 17.3.1,
Vi = {(0,z0) : 2 € 20}, WP = {(29,0) : 25 € 25},
e = {(X%Zh(ﬂ—ﬁ) Z1) : oz € 21}-

With the notation of Subsect. 17.3.5, CAR, ; is identified with CAR(V), hence
(7) follows from Thm. 17.61.
It remains to prove the < part of (6). If Ker x # {0}, then

rol—

I.({0} & Z) L CAR, 2

and a.,1(z9)2 = 0 for zy € Zy, hence Q is neither cyclic not separating for CAR, ;.
Similarly, if Ker(1 — x) # {0}, then I', (2, @ {0}) L CAR, ,Q and a7 1(22)Q =
0 for z, € Z,. This completes the proof of (6). O

17.2.6 Quasi-free CAR representations as Araki—Wyss
representations

Every quasi-free charged CAR representation can be realized as an Araki-Wyss
representation.

Theorem 17.43 Let Z be a Hilbert space. Let
Z35z—a""(z) € B(H)

be a charged CAR representation with a gauge-invariant cyclic quasi-free vector
W. Let x be defined by

Z1-XZ22 = (\If|a’”‘(22)a7T(2'1)\11)7 21,29 € Z.

Then, for v := x(1 — x)~!, there exists an isometry U : H — Ty (Z & Z) such
that

Uv =,
Ua™(z) = a},(2)U, z€ 2.
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17.2.7 Free Fermi gas at positive temperatures

This subsection is parallel to Subsect. 17.1.7 about the free Bose gas. We start
with h, a positive self-adjoint operator on a Hilbert space Z. Consider a quan-
tum system described by the Hamiltonian H := dI'(h) on the Hilbert space
T2 (Z2). Clearly, (€] - Q) describes the ground state of the system. On the algebra
B(T'2(Z)) we have the dynamics

TH(A) = A A€ B(T.(2)), teR

We also have a natural charged CAR representation Z 3 z — a*(z) € B(I'\(Z)
and the corresponding neutral CAR representation Z 3z ¢(2) =
a*(z) 4+ a(z) € By (T'a(Z)). They satisfy

' (a*(2)) = a*(""z), T'(p(2)) = B(e""z), z€ Z.

Suppose that we consider the above quantum system at a positive temperature.
Let 8 > 0 denote the inverse temperature. If

Tre " < oo, (17.67)
we can consider the Gibbs state given by the density matrix
e AT /Ty AT (R, (17.68)

Again, the formalism based on the Gibbs state with the density matrix (17.68)
breaks down at infinite volume, for instance in the case of (17.36).

As in the case of the Bose gas, we distinguish three possible formalisms for
infinitely extended systems:

(1) the thermodynamic limit,
(2) the W* approach,
(3) the C* approach.

The general framework of the thermodynamic limit in the Fermi case is analo-
gous to that in the Bose case. Therefore, we do not describe it separately.

W* approach

The W*-approach to free Fermi systems is also analogous to that for Bose sys-
tems. We just replace Araki-Woods representations with Araki—-Wyss represen-
tations. Let us, however, describe this in detail, apologizing to the reader for
almost verbatim repetitions from the bosonic case.

Consider the space I',(Z @ Z). For z € Z, define

a(z) = a* (1 +e ") "72,0) +a(0, (1 + ")~ 732). (17.69)
Then

Z3z—aj(z) e B(Tu(Z & 2))
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is a charged CAR representation. In fact, it is the Araki-Wyss representation
for the Fermi-Dirac density (1 +¢e?")~!. The von Neumann algebra generated
by (17.69) will be denoted by CARg. Set

L:=dl' (h® (-h)).
Then
T(tf(A) =el Ae7 A e CARy,
is a W*-dynamics on CARg. The state
wg(A) == (QAQ), A e CARg,

is a B-KMS state for the W*-dynamics 73.

C* approach

Again, the C* approach for fermions follows the same lines as the C* approach
for bosons. There is, however, a difference: there exists a natural choice of a
C*-algebra, which seemed not to be the case for bosons.

Consider the C*-algebra CAR®” (Z), where Z is equipped with the Euclidean
structure $Re(:|-), as well as the usual charge symmetry. Define the dynamics
on CAR®" (Z) by setting

' (a*(2)) == a*("2), z€ Z.

It is easy to see that, for any € [—o00, 0], there exists on CAR®” (Z) a unique
state G-KMS for the dynamics 7. It is the gauge-invariant quasi-free state given
by

wg(a(z1)a*(z2)) = (z1|(M+ e M) 7 2), 21,2 € 2.

We can then pass to the GNS representation, obtaining (Hg,ms,{3), and the
Liouvillean Lg.

In the case of 8 = co (the zero temperature), we obtain, up to unitary equiv-
alence, Hoo =I'\(Z), oo (W(2)) = W(z2), Qoo = and Lo, = H. This is the
quantum system that we started with at the beginning of the subsection.

In the case —oco < 3 < oo (positive temperatures), we obtain the Araki-Wyss
representation for v = e~?" described in (17.69).

Note that in the fermionic case the C*-algebraic approach is better justified
than in the bosonic case. The algebra CARC*(Z) can be viewed as a natural
algebra to describe observables of a fermionic system. Because of the boundedness
of fermionic fields, it is more likely that we will be able to define a dynamics on
this algebra, even in the presence of non-trivial interactions.
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17.3 Lattices of von Neumann algebras on a Fock space

Let W be a complex Hilbert space. With every real closed subspace V of W
we can naturally associate the von Neumann sub-algebra M(V) of B(Ts,,(W))
generated by fields based on V. These von Neumann sub-algebras form a complete
lattice. Properties of this lattice are studied in this section. They have important
applications in quantum field theory.

The material of this section is closely related to the Araki-Woods and Araki—
Wyss representations. In fact, the algebras CCR,, | and CAR, ; coincide with the
algebras M(V) for appropriate real subspaces V inside Z @ Z.

17.3.1 Pair of subspaces in a Hilbert space

In this subsection we consider one of the classic problems of the theory of Hilbert
spaces: how to describe a relative position of two closed subspaces.

Suppose that ) is a real or complex Hilbert space and P, Q are closed sub-
spaces in ). Let p, resp. ¢ be the orthogonal projections onto P, resp. Q.

Proposition 17.44 (PN Q) + (P+ N Qt) = Ker(p — q).

Proof The C part is obvious.
Lety € Y.If (p — q)y = 0, then y = py + (1 — q)y, where py = qy € PN Q and
(1—p)y = (1—q)y € P+ N Q*. This shows the D part. O

Proposition 17.45 The following conditions are equivalent:
(1) Ker(p — q) = {0}.

(2) PnQ=PLtn ot ={0}.

(3) PN Q={0} and P+ Q is dense in Y.

Proof The equivalence of (1) and (2) follows by Prop. 17.44.
The equivalence of (2) and (3) follows by

{0} =(P+Q)*t =Ptnot.

Definition 17.46 We say that a pair (P, Q) is in generic position if
PNQ=Prngt=Ptngog=P*ng=1{0}.
Set m :=p+ q— 1, n := p — q, which are bounded self-adjoint operators. The

following relations are immediate:

2

n® =1-—m?

=p+q—pqg—qp,
nm =-—mn =qp—pq, (17.70)
—I<m<1,-1<n<1.
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Proposition 17.47 (P, Q) are in generic position iff
Kerm = Kern = {0}. (17.71)
If this is the case, we also have
Ker(m £ 1) = {0}, Ker(n+1)={0}. (17.72)
Proof The following identities follow from Prop. 17.44:
Kern = Kerp N Ker g + Ker(1 — p) N Ker(1 — q),
Kerm = Kerp N Ker(1 — ¢) + Ker(1 — p) N Kergq.
This yields (17.71). We also obviously have
Ker(n — 1) = Ker(1 — p) N Kerg, Ker(n 4+ 1) = Kerp N Ker(1 — q),
Ker(m — 1) = Ker(1 — p) N Ker(1 — g), Ker(m + 1) = Kerp N Kerg,
which proves (17.72). O
The following result is immediate:
Proposition 17.48 Set
Vo= (PNQ+PLnQt+PLno+PNnQY)",
Po:=PN0, Qo:=2QNh.
Then the following direct sum decomposition holds:

Y=PNQaPtNnotaPtNnoa PNt a,
P=PnQae {0} & {0} &PnQtamp,
Q=PNnQe {0} oPtnoa {0} @ Q.

Moreover, the pair (Py, Qp) is in generic position in Y.

Theorem 17.49 Let (P, Q) be a pair of subspaces in generic position. Then the
following is true:

(1) There exists a unitary (orthogonal in the real case) involution €, a subspace
Z of Y such that Z+ = €Z, and a self-adjoint operator x on Z satisfying

0<x<3l,
(-0t « e2)
{(X%Z»E(H—X)%Z) Dz € Z}

2) Set p:= x(1—=2x)"t. Then
(2) Set p:= x(1-2x

)

P
Q.

p >0,
{((]1+p)%z,ep5’z) : z € Domp: } =P
{(p%z,e(ﬂ—kp)%z) : zEDompZ}:Q.

)=

b
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Proof We introduce the polar decompositions of n and m:
n=|nle =¢ln|, m=k|m|=|mlk.

Clearly, €, x are unitary/orthogonal operators satisfying €2 = x? = 1. Moreover,
using (17.70) we obtain

KE = —€K, €M = —me, KN = —nkK. (17.73)
Set
Z := Ker(k — 1) = Ran Ijg 1{(m).
We have
€2 = Ker(k + 1) = Ran ) _; o/(m),
hence eZ = Z+.

Let 1z be the orthogonal projection from ) onto Z. Clearly,
Iz = Tjp(m), elze=1~1z=1_(m).

We claim that P is the closure of pZ. Indeed, P is closed and contains pZ.
Let y € PN (pZ)*. Then

0= (ylplzy) = (ylzy) = || 1zy|?,
hence y € Z+. Therefore, using ¢ = m + 1 — p, we obtain

(ylqy) = (ylmy) < 0.

Hence, qy =0, and so y € Q. Remember that y € P, hence, by the generic
position, y = 0.
Set x := $1z(1 —m). Clearly, 0 < x < 1. Using p = 2241 we obtain

m—+ 1 e|n|
1 ="y, 4 0y
plz 9 z+ 5 1z
1 1—m?)>
:m;— ﬂz-i-e( 2m) 1

= (M- +ead@-vF) 1=
Thus
pZ = ((ﬂ—xﬁ +ex5) (1-x)? 2. (17.74)
The operator

(H—X)%llz +exilz
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is an isometry from Z into ). Therefore,
((]1 0+ EX%) z (17.75)

is closed. (1 — )7 Z is dense in Z. Therefore, (17.75) is the closure of (17.74).
We proved that P is the closure of pZ. Hence, (17.75) equals P. This completes
the proof of the first identity of (1).
To prove (2), we note that every z € Z can be written as

z=(1+2p)72z, 2 €Domp’.
We then have

(L= X)Fz+extz=(1+p)7z +ep?a,
XPz+e(l—x)7z=p?z +e(l+p)?z,

which immediately implies (2). O

17.3.2 Real subspaces in a Hilbert space

This subsection is devoted to another classic problem, closely related to the
previous subsection: how to describe the position of a closed real subspace in a
complex Hilbert space. This analysis will then be used in both the bosonic and
the fermionic case.

Let (W, (-|-)) be a complex Hilbert space. Then (Wg, Re(:|-)) is a real Hilbert
space and (Wg, Im(:|-)) is a symplectic space. Clearly, if V C W is a real vector
space, V¥ NiV and V + iV are complex vector spaces.

Definition 17.50 IfU C W, then we have three kinds of complements of U:

Ut ={wew : (vjw) =0, veul,
U :={weW : Re(v|lw)=0, vel},
iUPP = {w eW : Im(v|lw)=0, ve L{} = (iU)PeP.
UL, UP™P | resp. U™ will be called the complex orthogonal, the real orthogonal,
resp. the symplectic complement of U.

Clearly, UP“'? and iAP°"P are closed real vector subspaces of W. If V is a
complex vector subspace, then VPP = jyperp = YL

Let V be a closed real subspace of W. Let us remark that (iV)PeP = i(V)Pe'P,
Moreover, i(iVPerP)PerP =),

Definition 17.51 We will say that ¥V C VW is in generic position if

ViV =V Niveer = {0}
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Proposition 17.52 The following conditions are equivalent:

(1) V is in generic position.

(2) (V,1V) is in generic position in Wg.

(3) (V,iVPe'P) s in generic position in Wrg.

The following result is an analog of Prop. 17.48:

Proposition 17.53 Let V be a closed real subspace of W. Set
Wy =V NIiVPeP 4 (1Y N YPeP) Yy := VY NiYPerp,
Wi =V nNiy, W_ 1= VPP NjPPerp,
Wo = Wy + W_ + W), Vo i =VNW,.

Then the following is true:

(1) W—, W, Wy, Wy are closed complex subspaces of W.
(2) The following direct sum decompositions hold:

W=W eW,. ®W_ e&W,,
V=V @W; @ {0} & W,
iveere =V @ {0} ® W_ @ V)7,

where V'Y is the real orthogonal of Vy inside W.

(3) WinVY =W, niVPer? =Y, =iVP? where V'Y is the real orthogonal
complement of Vy inside W, .

D) Wenv =W, W, nivrer = {0}.

B) W_nv={0}, W_niyrer =y_,.

(6) WoNV =V, Wy NiVPer? = VYY" - Moreover, V, is in generic position
m Wo .

In other words, given a closed real subspace V C W, one can decompose W
into four complex subspaces such that V decomposes into subspaces which are
respectively complex, in generic position, Lagrangian and zero.

We can define the operators m, n for the pair of subspaces V, VPP as in the
previous subsection. They are self-adjoint in the sense of the real Hilbert space
Wr. m is linear, whereas n is anti-linear on W. Therefore, k is unitary and € is
anti-unitary. We can use 6| - as the (external) conjugation and identify €Z with
Z. This gives a unitary identification

W~ Zo Z.
Note that
6(21,22) = (22,51)

and €Y = iYPerP,

https://doi.org/10.1017/9781009290876.018 Published online by Cambridge University Press


https://doi.org/10.1017/9781009290876.018

17.8 Lattices of von Neumann algebras on a Fock space 467

Now Thm. 17.49 (1) can be reformulated in the following way, which is adapted
to the Araki-Wyss representation:

{((ll—x)%z,yiz) : zeZ}:V,

{(x%z (1-%)%%) : z€ Z} = fyperr, (17.76)

Thm. 17.49 (2) can be reformulated as follows, which is adapted to the Araki-
Woods representation:

{((]l-i-p)%zgﬁ%z) : ZEDomp%}:V’

{(o72(14+7)%2) : = € Dompt } =ivrere, (7.77)

In the following proposition, which follows immediately from (17.76) and
(17.77), for typographical reasons we will write 7z for Z, where z € Z. We con-
sider W as a Kahler space with the Euclidean, resp. symplectic form given by
Re(:]), resp. Im(-|-). It is equipped with an anti-involution and conjugation

.7i110 707'_1
=10 =l T oo |

We also have the operators y and p on Z. Recall that the notion of a j-positive
orthogonal transformation was defined in Def. 16.8.

Proposition 17.54 Let V be a closed real vector subspace of a complex Hilbert

space W in generic position.

(1) Define the operator r, on W by

L@ !
ol X @-wr

Then r, is a j-positive orthogonal transformation on W commuting with e,
and r,Z =Y.
(2) Define the operator r, : Dom(p?) & Dom(pz) — W by

(@+p)r  prr

Ts = _1 _
prr (14p)*

Then s is a positive symplectic transformation on W commuting with €, and
rsDom(pz) = V.

Note that the transformations rg, resp. r, yield the Bogoliubov rotations imple-

mented by the operators (17.27) and (17.59), which were used in Subsect. 17.1.4,
resp. 17.2.4 to introduce the Araki—-Woods, resp. Araki-Wyss representations.
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17.3.3 Complete lattices

In this subsection we recall some definitions about abstract lattices. They provide
a convenient language that can be used to express some properties of a class of
von Neumann algebras acting on a Fock space.

Definition 17.55 Let (X, <) be an ordered set. Let {x; : i € I} be a non-empty
subset of X. One says that uw € X is a largest minorant of {x; : ¢ € I} if

(1) i € I implies u < x;,
(2) v < a; for alli € I implies v < u.

If {x; : i €I} has a largest minorant, then it is unique. The largest minorant
of a set {x; : i€ I} is usually denoted by _/\I Z;.
1€
We define similarly the smallest majorant of {x; : @ € I}, which is usually
denoted by 4\/1 T
(A

One says that (X, <) is a complete lattice if every non-empty subset of X

has the largest minorant and the smallest majorant. It is then equipped with the
operations A\ and V.

Definition 17.56 One says that the complete lattice (X, <) is complemented if
it is equipped with a map X > x — ~x € X such that

(1) ~(~a) = o,
(2) x1 < a9 implies ~xo <~ aq,
(3) ~ N x; =V ~x;.

iel iel

The operation ~ will be called a complementation.

Let us give some examples of complemented lattices that will be useful in the
sequel.

Example 17.57 (1) Let W be a topological wvector space. Then the set
Subsp(W) of closed vector subspaces of W equipped with the order C is a
complete lattice with

AVi=nNV, VV= ( b)) Vi)d.

iel iel iel iel

(2) If W is a (real or complex) Hilbert space, then the map V +— V1 is a com-
plementation on (Subsp(W), C).

(3) If W is a complex Hilbert space, then (Subsp(WWr),C) denotes the lattice of
closed real subspaces of W. Then V +— VPP and V +— iVP'P are complemen-
tations on this lattice.

(4) Now let H be a Hilbert space and vN(H) be the set of von Neumann algebras
in B(H) equipped with the order C. Then (VN(H),C) is also a complete
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lattice with

"

AT = 0, vm:(um) .
iel i€l iel

The map M — M is a complementation on (VN(H), C).

17.3.4 Lattice of von Neumann algebras on a bosonic Fock space

Let W be a complex Hilbert space. We identify W with Re(WW @ W) using w +—
%(ug@); see (1.29). Consider the Hilbert space I's(W) and the corresponding
Fock representation W 3 w — W (w) € U(Ts(W)).

Definition 17.58 For a real subspace V C W, we define the von Neumann

algebra
M,(V) = {W(w) : weV}' c B[, (W)).

Using von Neumann’s density theorem and the fact that W € w — W(w) is
strongly continuous (see Thm. 9.5), we see that M, (V) = M, (V). Therefore, in
the sequel it suffices to consider closed real subspaces of W.

Theorem 17.59 (1) M;(V1) = M (Va) iff Vi = Va;
) Vi C Vo implies M (V1) C M (Va);
W) = B(T.(W)) and M0, ({0}) =
M (VierVi) = VierM(Vi);
M (NierVi) = NierM(Vi);
M(V) = M (ivrerr);
M (V) is a factor iff V NiyPe? = {0}.

3

(2
(3) M
(4)
()
(6)
(7)

Proof To prove (1), let V1, V2 be two distinct closed subspaces. We may assume
that Vo ¢ Vi, and hence iVy“"? ¢ iVY“'P. For w € iV “"P\iVY*'? | we have W (w) €
M (V1)\IM, (V). This implies that M, (V1) # Dy (Va)’, which proves (1).

(2) and (3) are immediate, as are the D part of (4) and the C part of (5). The
C part of (4) follows again from the strong continuity of w — W (w). If we know
(6), then the D part of (5) follows from the C part of (4). (7) follows from (1),
(5) and (6).

Thus it remains to prove (6). Assume first that V is in generic position in W.
Then, using Thm. 17.49 and identifying eZ with Z, we obtain a decomposition
W = Z & Z and a positive operator p on Z such that

{((]ler)% ﬁ%7> : ZEZ}:V.

This implies that 9t (V) is the left Araki-Woods algebra CCR, ;. By Thm. 17.24,
we know that the commutant of CCR, ; is CCR, . But, again by Thm. 17.49,

{(p%er (]1+ﬁ)%§> Dz € Z} = ipPerr,
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Therefore, CCR, ; coincides with 9t,(iV°'P). This ends the proof of (6), if V' is
in generic position.
For an arbitrary real subspace V, we write as in Prop. 17.53:

W=W, W, dW, &W_,
V=W,a&V, &V & {0},
iveere = {0} @ V)P @V @ W,

where V) is in generic position and W; = CV);. Using the exponential law, we
have the unitary identifications

B(T(W)) ~ B(I\(Wy)) ® B(I\(Wy)) © B(Ts(Wr)) ® B(Ts(W-)),
M (V) =~ B(Is(Wy)) @ M (V) @ M(Vy) @ 1,
M (IVPeP) =~ 1@ M (V) @ M (V1) @ B(Ds(W-)).

Since Vy is in generic position in Wy, M (V)" = M (1V)'?). Since Wy = CVy,
using the real-wave representation of Sect. 9.3, we see that 9, (V1) = M (V).
Therefore, MM (V)" = M, (iVP'P), which completes the proof (6). O

We can interpret Thm. 17.59 as the fact that the map V +— 9(V) is an order
preserving isomorphism between the complete lattice of closed real subspaces
of W and the complete lattice of von Neumann algebras (V) C B(Is(W)),
preserving the operations A, V, and the complementations given respectively by
the symplectic complement and the commutant.

17.3.5 Lattice of von Neumann algebras on a fermionic Fock space

In this subsection we consider the fermionic analog of Thm. 17.59. Again let
W be a complex Hilbert space, and let us identify W with Re(WW @ W) using
w — (w,W); see (1.29). Consider the Hilbert space I'y (W) and the corresponding
Fock representation W 3 w — ¢(w) € By, (Ta(W)).

Definition 17.60 For a real subspace ¥V C W, we define the von Neumann
algebra

M, (V) := {p(w) : we VY C BT.(W)).

As usual, set A = (—1)VV=1)/2,
Note first that, by the norm continuity of W 3 w — ¢(w), we have 9, (V) =
9, (V). Therefore, in the sequel it suffices to consider closed real subspaces of

W.

Theorem 17.61 (1) m&(Vl) = EDTa‘(Vg) ZﬁVl = VQ,
(2) V1 CVy implies M, (V1) C M, (Va),

(3) M (W) = B(I's(W)) and M, ({0}) = C1,

(4) M. (VierVi) = VierMa (Vi),

https://doi.org/10.1017/9781009290876.018 Published online by Cambridge University Press


https://doi.org/10.1017/9781009290876.018

17.8 Lattices of von Neumann algebras on a Fock space 471

(5) Ma(NierVi) = NierMa(Vi),
(6) M, (V) =AM, (IVPP)A.

The proof of Thm. 17.61 is very similar to the proof of Thm. 17.59. The
main additional difficulty is the behavior of the fermionic fields under the tensor
product, which is studied in the following theorem.

Theorem 17.62 Let W;, i = 1,2, be two Hilbert spaces and W = W, & W,. Let
us unitarily identify Ty (W) with Ty(W1) @ T'a(Wa) by the exponential law (see
Subsect. 3.3.7). Let V; C W, be closed real subspaces. Then

"

M, (V1 & Va) = (M (V)@ T+(—1)V @V D2, (Vo) (=) #8) 7 (17.78)
M. (V1 & {0}) =M (V1) @ I ( )
M. (W1 & Vs) ~ B(Ta(W1)) @ Mo (V2); (17.80)

AN, (Vi @ Wh)A =~ A9, (V)AL © B(T.(Wa)); (17.81)
A, ({0} & Vo)A ~ 1@ Ay, (Va)As. ( )

Proof Clearly, for v; € Vp,
d(v1,0) =~ ¢(v;) @ 1.
Therefore, (17.79) holds. By Thm. 3.56, for vy € V5, we have
$(0,v2) = (=1)" @ d(v) = (1M EV L@ p(vz)(—1)M 2.
Therefore,
M, ({0} @ Vo) ~ (—1)V1 N2 1 @ 9, (Vo) (—1) V102, (17.83)

Now (17.79) and (17.83) imply (17.78), which implies

M, (V1 @ Wo) = (1)1 N9, (V1) @ B(Ta(Wa)) (—1)N1 &Nz, (17.84)

Noting that A ~ (=1)M®N2 A} @ Ay, (17.83) implies (17.82), and (17.84) implies
(17.81). O

Proof of Thm. 17.61. 'To prove (1), let V1, Vs be two distinct closed subspaces.
We may assume that Vo ¢ Vi, and hence iV} ¢ VPP, For w € iV “P\iVy*'P,
using (3.30), we have Ap(w)A € M, (V1) \IM, (V2)'. This implies that M, (V1) #
M, (V2)', which implies (1). (2) and (3) are immediate. The proof of (4), (5) are
similar to the bosonic case, given (6).

It remains to prove (6). Assume first that V is in generic position in W. By
Prop. 17.53, we can write

W =Wy, ® W,

V=V,eV,
jpyperp — iV(I))erp ® Vl,
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where V) is in generic position in Wy and iV]“'? = CV;, where the orthogonal
complement is taken inside W. Again using Thm. 17.49, we obtain a decompo-
sition Wy = Z @ Z together with a self-adjoint operator 0 < y < %]1 such that
Ker y = Ker(x — 1) = {0} and

{(I-X)?24%XZ : z€Z} oWV =V,

{X%z—i— (1 —Y)%E Dz € Z} @V =iVPUr,

Then we are in the framework of Thm. 17.42, which implies that 9, (V) =
A, (VPP A.L
For an arbitrary V, we write

W=W,eoW,oW, eW_,
V=W, oW oW &{0},
ivPer? = {0} @ i(Vy @ V1 )PP @ W_,
where V), V; are as above. Using Thm. 17.62, we have the unitary identifications
B(T.(W)) = B(T.(Wy)) ® B(Ta(Wy © CW)) @ B(T2(W-)),
M (V) = B(La(Wy)) @M (Vo & V1) @ 1.

Let Nyi, resp. Nygj— be the number operator on T',(Wy & W), resp T'n(Wy @
Wi @ W_). We define Ay, resp. Ap;— in the obvious way. The commutant of

M, (V) is
M (V) ~ 1M (Vo ® V1) @ B(La(W-))
= 1@ AgtMa(i(Vo & V1)P"P)Ag1 @ B(Ta(W-))
~ 1 X A01_§)ﬁa(i(V0 D Vl D {0})perp)A01_
~ A9, (IVPEP)A,
again using Thm. 17.62. O

17.3.6 FEven fermionic von Neumann algebras

We continue within the framework of the previous subsection.
Definition 17.63 For a real subspace V of W, we introduce the even part of the
fermionic von Neumann algebra M, (V):

Mo(V) = {AeM (V) : [AI = A} =M, (V)N {I}.

Recall that we described the commutant of 9, (V) in terms of the symplectic
complement: M, (V) = A9, (iVP'P)A. If we are interested just in the even part
of the commutant, the role of the symplectic complement can be to some extent
taken by the real orthogonal complement:

Proposition 17.64 We have M, (V) N{I} = M, o(VPP).
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Proof Write
M. (V) N{IY =AM, (VPP)AN{T}
= A9, ((VPP) N {I})A = ADM, o ((VPP)A.

Every element of 9, ¢(iVP*'P) is the strong limit of even polynomials in ¢(v),
where v € iVP*"P. Since

Ag(ivy)p(iva)A = ¢(v1)9(va2), wv1,v2 €V,

we have

A, o (VPPN = M, o (VPEP).

17.4 Notes

In the physics literature, quasi-free states go back to the early days of quantum
theory. The Planck law and the Fermi-Dirac distribution belong to the oldest
formulas of quantum physics — in the terminology of this chapter they describe
the density of a thermal state for the free Bose, resp. Fermi gas.

In the mathematical literature, quasi-free states were first identified by Robin-
son (1965) and Shale-Stinespring (1964). Quasi-free representations were exten-
sively studied, especially by Araki (1964, 1970, 1971), Araki—Shiraishi (1971),
Araki-Yamagami (1982), Powers—Stoermer (1970) and van Daele (1971). Appli-
cations of quasi-free states to quantum field theory on curved space-times were
studied in Kay—Wald (1991), where a result essentially equivalent to Thm. 17.12
was proven.

Araki-Woods representations first appeared in Araki-Woods (1963). Araki—
Wyss representations go back to Araki-Wyss (1964).

It is instructive to use the Araki-Woods and Araki—-Wyss representations as
illustrations for the Tomita—Takesaki theory and for the so-called standard form
of a W*-algebra as in Haagerup (1975); see also Araki (1970), Connes (1974),
Bratteli-Robinson (1987), Stratila (1981) and Derezitiski-Jaksi¢-Pillet (2003).
They are quite often used in recent works on quantum statistical physics; see
e.g. Jaksié—Pillet (2002) and Dereziriski-Jaksi¢ (2003).

The relative position of two subspaces in a Hilbert space was first investigated
by Dixmier (1948) and Halmos (1969). The study of a position of a real subspace
in a complex Hilbert space is an important ingredient of the version of the
Tomita—Takesaki theory presented by Rieffel-van Daele (1977).

The theorem about the lattice of real subspaces of a Hilbert space and the
corresponding von Neumann algebras on a bosonic Fock space were first proven
by Araki (1963); see also Eckmann—Osterwalder (1973). The analogous theorem
about von Neumann algebras on a fermionic Fock space was apparently first
given in a review article by Dereziniski (2006).
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Most of the chapter closely follows Dereziniski (2006). The proof of the facto-
riality of algebras CAR,  is due to Araki (1970).

The use of Araki-Woods and Araki—-Wyss representations in the description
of quantum systems at positive temperatures was advocated in papers of Jaksi¢—
Pillet (1996, 2002); see also Derezinski-Jaksié¢ (2001).
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