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Predicting particle segregation has remained challenging due to the lack of a general
model for the segregation velocity that is applicable across a range of granular flow
geometries. Here, a segregation-velocity model for dense granular flows is developed by
exploiting force balance and recent advances in particle-scale modelling of the segregation
driving and drag forces over the entire particle concentration range, size ratios up to 3
and inertial numbers as large as 0.4. This model is shown to correctly predict particle
segregation velocity in a diverse set of idealised and natural granular flow geometries
simulated using the discrete element method. When incorporated in the well-established
advection–diffusion–segregation formulation, the model has the potential to accurately
capture segregation phenomena in many relevant industrial applications and geophysical
settings.
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1. Introduction
A classic problem in fluid mechanics is the terminal velocity of a spherical particle in an
otherwise quiescent viscous liquid. A balance of weight, buoyancy and Stokes drag, which
depends on the velocity of the particle, yields the terminal velocity. While the result is
affected by nearby particles, adjacent walls, etc., the essence of the problem resides in the
force balance on the particle.

In this paper, we consider the analogous problem in granular shear flow and use it to
determine the segregation velocity in mixtures of two particle species having different
sizes. To do this, we use a force balance of the particle weight, the segregation force and
the granular drag force to determine the terminal velocity, or, equivalently, the segregation
velocity, of an intruder particle in a granular flow and then extend this to the segregation
velocity in mixtures of two particle species. However, the construction of the equivalent
‘granular terminal-velocity’ problem requires a crucial addition compared with the fluid
problem. An intruder particle in a granular system will move only if energy, e.g. in the form
of vibration or shear, is added to the system. In the case of shear, which is considered here,
the local shear profile in the intruder vicinity affects the forces acting on it. Furthermore,
the buoyancy force on a particle in a granular medium differs somewhat from that for a
particle in a fluid. The forces related to shear and buoyancy can be expressed in terms of a
‘segregation force’ that includes both kinematics- and gravity-dependent terms (Jing et al.
2021). Last, the relationship between the drag force and the particle velocity in a granular
flow has recently been clarified to be Stokesian in character (Tripathi & Khakhar 2013;
Jing et al. 2022). Thus, a force balance of the particle weight, the segregation force and
the granular drag force can be used to determine the segregation velocity for an intruder
particle over a wide range of granular flow conditions.

More generally and more significantly, the granular terminal velocity of an intruder
particle can be connected to the problem of particle-size segregation in a flowing mixture
of small and large particles with arbitrary finite concentrations. In the mixture, small
particles fall through interstices between large particles to lower parts of a flowing layer,
thereby forcing large particles upward and resulting in the spatial segregation of initially
mixed small and large particles (Gray 2018; Umbanhowar, Lueptow & Ottino 2019). If
segregation of two particle species is viewed as one of the two species migrating relative
to the other within the bulk flow (Bridgwater, Foo & Stephens 1985; Savage & Lun
1988), the segregation velocity of each species can be thought of as a granular terminal-
velocity problem. In this case, the segregation-force and drag-force models need to be
extended from the single-intruder limit to mixtures of arbitrary species concentrations.
Such extensions bridging particle-level forces and continuum models of the segregation
velocity are the focus of recent work (Rousseau et al. 2021; Tripathi et al. 2021; Duan
et al. 2022, 2024; Sahu et al. 2023), leading to the emergence of a new physics-based
approach to segregation-velocity modelling. The present paper aims to complete this new
approach and demonstrate its general applicability using a wide range of granular flow
configurations.

Modelling particle-size segregation in the continuum framework usually involves
solving the spatial and temporal evolution of particle concentration via an advection–
diffusion–segregation equation, first suggested by Bridgwater et al. (1985), which differs
from a standard advection–diffusion formulation in that a closure relation is needed for
the segregation velocity (Gray 2018; Umbanhowar et al. 2019; Thornton 2021). Therefore,
how to model the segregation velocity is the central question of most recent segregation
theories. Several different approaches have been used to understand, model and predict
the segregation velocity. In one approach, the segregation velocity is determined directly
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from discrete element method (DEM) simulations (Umbanhowar et al. 2019), which
empirically connect the local segregation velocity with flow kinematics (shear rate),
species concentration and relative particle properties (size ratio and density ratio). Despite
the semi-empirical nature of this approach, it has proved effective in capturing segregation
fluxes (Fan et al. 2014; Schlick et al. 2015a; Jones et al. 2018), density- or shape-induced
segregation (Xiao et al. 2016; Zhao et al. 2018; Duan et al. 2021) and fluid effects in
segregation (Cui et al. 2022), as well as segregation involving both gravity- and shear-
gradient-related driving mechanisms (Fan & Hill 2011a; Liu et al. 2023; Singh, Liu &
Henann 2024). The drawback of such empirical segregation-velocity models is the lack of
a universal model suitable for a wide range of particle properties and flow configurations.

The segregation velocity can also be extracted from particle-species-specific momentum
equations (force balance at the continuum level) in a flowing mixture (Gray 2018; Thornton
2021). In this framework, the intrinsic pressure gradient of a particle species drives
segregation and is counteracted by interspecies drag and diffusive remixing (Gray &
Thornton 2005; Gray & Chugunov 2006; Bancroft & Johnson 2021), which is a departure
from mixture theory (Atkin & Craine 1976). Key to such approaches for segregation-
velocity models is the closure relation for pressure partitioning and interspecies drag.
Despite progress in kinetic-theory-based segregation models for collisional granular flows
(Jenkins & Mancini 1987; Jenkins & Yoon 2002; Larcher & Jenkins 2015; Neveu et al.
2022), developing closures from first principles remains challenging for size-bidisperse
dense granular flows, where multiple, enduring frictional contacts are common. A variety
of approaches and assumptions have been used to account for pressure partitioning and
drag in dense granular flows (Gray & Thornton 2005; Fan & Hill 2011b; Marks, Rognon
& Einav 2012; Gajjar & Gray 2014; Hill & Tan 2014). Experiments have also been used
to directly measure the segregation velocity of single intruder particles and mixtures
undergoing shear (van der Vaart et al. 2015; Trewhela, Ancey & Gray 2021). Alternatively,
a variety of approaches using virtual springs tethered to a single intruder particle or groups
of particles have been used to provide insight into the forces on particles (Guillard, Forterre
& Pouliquen 2016; Bancroft & Johnson 2021; Jing et al. 2021; Liu & Müller 2021; Duan
et al. 2022, 2023, 2024). In all cases, the challenge is to develop a general closure model for
the segregation velocity that is applicable over a broad range of granular flow geometries.

In this paper, we develop such a general closure model for the segregation velocity,
exploiting recently established segregation-force and drag-force models at the particle
level (Jing et al. 2020, 2021, 2022) along with their extensions to mixtures of arbitrary
concentrations (Duan et al. 2022, 2024). The approach follows the fluid terminal-velocity
analogue by using a force balance of the particle weight, the segregation force and the
granular drag force to determine the segregation velocity in mixtures of two particle
species. Since the segregation-force and drag-force models are characterised based on
particle-resolved simulations (i.e. DEM simulations) with measurable parameters, they
serve as first-principle closures for the species momentum-balance equations at the
continuum level and produce segregation-velocity predictions matching simulation results
for size-bidisperse granular flows across a diverse set of flow geometries.

2. Equations of motion
Several models are combined to extract the segregation velocity. In this section, we outline
these models and provide details on how to combine them to estimate the segregation
velocity under a wide range of flow and particle conditions.
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Figure 1. (a) A DEM simulation example of large (4 mm, blue) and small (2 mm, red) spheres in a
uniform shear flow with streamwise velocity u(z), top wall velocity U = u(H) where H is the height of
the top wall above the stationary bottom wall, overburden pressure P0 and downward gravity (negative z-
direction), partitioned into 2.5dl high layers (shading) for characterising depth-varying segregation velocity.
Here, large particles rise while small particles sink. The segregation direction varies in the different flow
configurations analysed later. (b) Force balances on a large particle and a small particle corresponding to (2.1)
and species-specific vertical segregation velocities, wi .

2.1. Particle force balance in a mixture
Consider an incompressible flow of a size-disperse mixture of two species, such as the
simple shear flow shown schematically in figure 1(a). The two particle species have
volume concentrations ci , where i = l, s for large and small particles, respectively, and
cs + cl = 1. We neglect vertical acceleration terms, which is reasonable for the relatively
slow segregation observed in many common granular flows including heap, chute and
rotating-tumbler flows (Gray 2018; Umbanhowar et al. 2019), though not necessarily all
flows (such as some high-speed geophysical flows).

A force balance at the particle level in the vertical (gravitational, g) direction for
an individual non-accelerating particle with mass mi in the flowing mixture, shown in
figure 1(b), includes the segregation force, F S

i , the weight, mi g, and the drag force, F D
i

such that (Jing et al. 2022)

F S
i − mi g + F D

i = 0. (2.1)

Much like in the analysis of terminal velocity in a fluid, the segregation velocity in
granular flows appears in the drag force, F D

i , as we will show shortly. Thus, with an
appropriate model for the segregation force, F S

i , and a model for the dependence of the
drag force, F D

i , on the segregation velocity, we can use (2.1) to calculate the segregation
velocity. The key is having appropriate models for F S

i and F D
i on an individual particle in

the flowing mixture, which are described shortly.
Using force balance at the particle level, i.e. (2.1), differs somewhat from the continuum

description of segregation using the mixture theory framework. Within this framework, the
momentum balance for each species along the segregation direction (negative z-direction)
in a simple shear flow scenario can be expressed as (Gray & Thornton 2005; Tunuguntla,
Weinhart & Thornton 2017)

− ∂pi

∂z
− ρi g + βi = 0. (2.2)

Here, −∂pi/∂z = ni F S
i is the partial pressure gradient, where pi is the partial pressure

of species i , and z is in the direction of gravity, and ρi is the density of species i . The
interspecies momentum exchange is βi = ni F D

i , where ni = ciφ/Vi represents the particle
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number density, φ is the bulk solid volume fraction, and Vi denotes the individual particle
volume of species i . Combined with the bulk pressure gradient ∂p/∂z = −φρg, where it
is assumed that both species have the same density ρ, the ratio of the pressure contribution
of species i to the bulk pressure p, or normal stress fraction, is fi = pi/p = ni F S

i /φρg =
ci F S

i /mi g in the simplified case where F S
i remains constant with depth. Prior studies

adopting the momentum-based approach have often assumed a quadratic-dependence or a
particle-size or volume-weighted dependence of fi on ci (Marks et al. 2012; Tunuguntla,
Bokhove & Thornton 2014; Gray & Ancey 2015; van der Vaart et al. 2015; Rousseau et al.
2021; Trewhela et al. 2021), along with a linear drag model (Gray & Thornton 2005).
While these approaches have been proposed for species concentration profiles in specific
scenarios, the approach we use here matches direct DEM measurements of fi (Duan et al.
2022), and using (2.1) allows us to consider the segregation velocity of not only mixtures
but also intruders for a wide range of granular flow conditions and geometries.

2.2. Segregation force, F S
i

Determining the segregation force F S
i at finite concentration starts with the segregation

force on a single intruder, F S
i,0 (subscript 0 indicates the single-intruder limit of species i ,

ci → 0). Here, F S
i,0 can be modelled with two additive terms, one related to gravity and the

other to flow kinematics. Inspired by the observations of Fan & Hill (2011a,b), the flow
kinematics term was initially scaled with the shear stress gradient (Guillard et al. 2016)
but was later linked to the shear rate gradient (Jing et al. 2021; Singh et al. 2024). The
segregation force can be expressed as (Jing et al. 2021)

F S
i,0 = − f g(Rd)

∂p

∂z
Vi + f k(Rd)

p

γ̇

∂γ̇

∂z
Vi , (2.3)

where superscripts g and k indicate gravity- and kinematics-related mechanisms,
respectively, Vi is the intruder particle volume, γ̇ is the local shear rate, and ρ is the density
of both the intruder and the bed particles. The gravity term is buoyancy-like, and the
kinematic term depends on the shear rate gradient in the flow. The empirical dimensionless
functions f g(Rd) and f k(Rd) depend on the intruder-to-bed-particle-diameter ratio
Rd = di/d j (Jing et al. 2021),

f g(Rd) =
[

1 − cg
1 exp

(
− Rd

Rg
1

)] [
1 + cg

2 exp

(
− Rd

Rg
2

)]
, (2.4a)

f k(Rd) = f k∞

[
tanh

(
Rd − 1

Rk
1

)] [
1 + ck

2 exp

(
− Rd

Rk
2

)]
, (2.4b)

where Rg
1 = 0.92, Rg

2 = 2.94, cg
1 = 1.43, cg

2 = 3.55, f k∞ = 0.19, Rk
1 = 0.59, Rk

2 = 5.48 and
ck

2 = 3.63 are fitting parameters appropriate for a range of flow conditions. In applying
these functions over a range of concentrations, we need to consider both a large intruder
particle surrounded by a bed of small particles and a small intruder particle surrounded by
a bed of large particles corresponding to intruder-to-bed particle-size ratios of dl/ds and
ds/dl , respectively.

To predict the segregation force F S
i in mixtures at arbitrary non-zero concentrations,

the intruder-segregation-force model in (2.3) is extended using semi-empirical relations
for mixtures (rather than an intruder particle) based on DEM simulations (Duan et al.
2022). For large particles in a bidisperse mixture of concentration cl (Duan et al. 2024),
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F S
l = ml g cos θ + (F S

l,0 − ml g cos θ)tanh

(
ml g cos θ − F S

s,0

F S
l,0 − ml g cos θ

cs

cl

)
, (2.5a)

and for small particles,

F S
s = ms g cos θ − (F S

l,0 − ms g cos θ)
cl

cs
tanh

(
ms g cos θ − F S

s,0

Fl,0 − ms g cos θ

cs

cl

)
, (2.5b)

where θ is the angle between gravity and the segregation direction, which is generally
normal to the flow.

Equations (2.5a) and (2.5b) can be rewritten in terms of the net forces (Ti = F S
i −

mi g cos θ ) that balance the interspecies drag (2.1) such that

Tl = Tl,0tanh
(

−Ts,0

Tl,0

mlcs

mscl

)
, (2.6a)

Ts = −Tl,0
mscl

mlcs
tanh

(
−Ts,0

Tl,0

mlcs

mscl

)
, (2.6b)

where Ti,0 = Fi,0 − mi g cos θ , and Fi,0 and Fi denote the segregation forces for a single
intruder and for mixtures, respectively. The force balance in (2.1) can be rewritten for a
mixture as

Ti + F D
i = 0. (2.7)

What remains to be specified is an expression for the drag force in a mixture, F D
i , including

its dependence on the segregation velocity, which is described next.

2.3. Drag force, F D
i

As with the approach for the segregation force, we start with the drag force on a
single intruder particle within a monodisperse flow of bed particles, F D

i,0. A Stokes drag
formulation can be employed to express the drag force (Tripathi & Khakhar 2013; Jing
et al. 2022; He et al. 2025) in terms of the intruder segregation velocity relative to the
local bulk flow velocity in the segregation direction, wi,0, as

F D
i,0 = −C D

i,0πηdiwi,0, (2.8)

where C D
i,0 is the drag coefficient for a single intruder, and η is the effective bulk granular

viscosity calculated from the μ(I ) rheology as described shortly. For Stokes drag on
a spherical particle at low Reynolds number in a viscous fluid, C D

i,0 = 3. However, the
value of C D

i,0 for an intruder in a granular flow is not as simply specified. For a single
spherical intruder particle, C D

i,0 ≈ 2.1 for 1 � Rd � 5, but the precise value depends on the
flow conditions (Jing et al. 2022), specifically, the size-bidisperse mixture inertial number
(Rognon et al. 2007; Tripathi & Khakhar 2011),

I = γ̇

√
ρ

p

∑
i=s,l

di ci . (2.9)

For large intruders with Rd � 1,

C D
i,0 = [k1 − k2 exp(−k3 Rd)] + s1 I Rd + s2 I (Rρ − 1), (2.10)
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where k1 = 2, k2 = 7, k3 = 2.6, s1 = 0.57 and s2 = 0.1 are fitting parameters determined
across a wide range of flow conditions (0.6 � Rd � 5, 1 � Rρ � 20 and I � 1), and Rρ

is the intruder-to-bed-particle density ratio (Jing et al. 2022). The granular viscosity η is
estimated from the μ(I ) rheology (GDR-MiDi 2004) as

η = μeff
p

γ̇
, (2.11a)

where the effective friction coefficient is

μeff = τ/p = μs + μ2 − μs

(Ic/I ) + 1
, (2.11b)

where τ is the shear stress and μs , μ2 and Ic are granular material specific parameters.
The flows simulated in this study generally follow the μ(I ) rheology for dense flows with
the usual caveats for collisional flow at larger I than considered here and for quasi-static
flow as I → 0, see Appendix A.

The drag coefficient, C D
i,0, in (2.10) is for a single intruder particle in an otherwise

homogeneous bed of the other species. Since we are interested in the segregation velocity
of particles in a mixture, it is necessary to determine the dependence of the drag force in
a mixture, F D

i , on species concentration. Previous approaches to determine the mixture
C D

i have focused predominantly on density-bidisperse mixtures where Rd = 1 (Tripathi &
Khakhar 2013; Duan et al. 2020; Bancroft & Johnson 2021) due to the simplicity of
estimating the segregation force in terms of buoyancy. Reported values of C D

i at Rd = 1
based on this approach range from 1.7 to 3.7 depending on the volume fraction, and
C D

i is independent of ci for density-bidisperse mixtures. However, the concentration
dependence of C D

i in size-bidisperse mixtures (Rd �= 1 and density ratio Rρ = 1) has not
been considered explicitly, although Bancroft & Johnson (2021) mention it in passing.
We use simulations of controlled shear flow later in this paper (§ 4) to demonstrate that
the drag coefficient is nearly independent of the mixture concentration for the conditions
we consider here. For now, in order to proceed with the analysis, we simply assume that
C D

i ≈ C D
i,0. Hence,

F D
i ≈ F D

i,0 = −C D
i πηdiwi , (2.12)

where the mixture drag coefficient, C D
i , has been substituted for the intruder drag

coefficient, C D
i,0, and the species-specific segregation velocity in the mixture, wi , for the

intruder segregation velocity, wi,0, in (2.8).

2.4. Segregation velocity
The species-specific segregation velocity, wi , relative to the local bulk flow velocity in
the segregation direction is now easily calculated by substituting the mixture drag force
(2.12) and the segregation-force model (2.6) into the force balance (2.7) and solving for
the segregation velocities of the large-particle species, wl , and small-particle species, ws :

wl =
Tl,0tanh

(
−Ts,0

Tl,0

mlcs

mscl

)
C D

l πηdl
(2.13a)

and

ws = −
Tl,0

mscl

mlcs
tanh

(
−Ts,0

Tl,0

mlcs

mscl

)
C D

s πηds
. (2.13b)
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Recall that we assume C D
i ≈ C D

i,0, independent of species concentration ci , which we
confirm in § 4.

2.5. Effect of diffusion on segregation velocity
A final consideration is the diffusive flux of species driven by collisional diffusion and
its effect on the measured segregation velocity. The diffusion contribution is most clearly
framed in terms of the advection–diffusion–segregation transport equation based on mass
balance that has been successfully used to model segregation in flowing granular media
(Bridgwater et al. 1985; Dolgunin & Ukolov 1995; Gray 2018; Umbanhowar et al. 2019).
Within this continuum framework, the concentration of species i can be expressed as

∂ci

∂t
+ ∇ · (ui ci ) = ∇ · (D∇ci ). (2.14)

Here, ui is the diffusionless velocity, and the local collisional diffusion coefficient D is
a scalar, although in general it is a tensor. This approximation is accurate for flows with
a single dominant shear direction (Umbanhowar et al. 2019). Note that the diffusionless
velocity, ui , differs slightly from the overall velocity, which is a combined effect of both
advection and diffusion. With the usual assumptions of two-dimensional flow and gradual
development in the streamwise direction, (2.14) in the z-direction can be written as

∂ci

∂t
+ ∂(wi + w)ci

∂z
= ∂

∂z

(
D

∂ci

∂z

)
, (2.15)

or, rearranging, as

∂ci

∂t
+ ∂

[
(wi + w)ci − D(∂ci/∂z)

]
∂z

= 0, (2.16)

where w is the local vertical velocity of the bulk. Note that w = 0 in the reference frames
associated with the example flows used in this study.

When the normal component of flux for species i is measured from DEM simulation,
it is the entire quantity within the square brackets of (2.16) that is measured. In other
words, the measured normal flux (wi + w)ci − D(∂ci/∂z) is a combination of both the
total segregation flux, (wi + w)ci , and the diffusion flux, −D(∂ci/∂z). To compare the
segregation-velocity model predictions developed in this paper with DEM measurements
of the segregation velocity, the segregation flux needs to be combined with the diffusion
flux, such that the net species velocity is

wnet
i = wi − D

ci

∂ci

∂z
, (2.17)

which can be measured directly in situations where there is a concentration gradient.
Both experimental (Bridgwater 1980; Utter & Behringer 2004) and computational

(Fan et al. 2015; Cai et al. 2019; Fry et al. 2019) studies of dense granular flows suggest
that the diffusion coefficient, D, is proportional to the product of the local shear rate and
the square of the local mean particle diameter,

D = Aγ̇ d̄2, (2.18)

where d̄ =∑
ci di and A is a constant with reported values in the range 0.01–0.1 (Savage &

Dai 1993; Hsiau & Shieh 1999; Utter & Behringer 2004; Fan et al. 2014, 2015; Cai
et al. 2019; Fry et al. 2019). In this study, A = 0.046 based on diffusion coefficient data
measured from heap-flow simulations (Duan et al. 2022).
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With the exception of demonstrating that the drag coefficient for a mixture is similar
to that for an intruder particle, as noted in § 2.3, we now have all of the relationships
necessary to calculate the segregation velocity. Before addressing drag in mixtures, it is
first necessary to describe the simulation approach that we use.

3. Simulations
An in-house DEM code running on CUDA-enabled NVIDIA GPUs is used to simulate
size-bidisperse particle mixtures with species-specific volume concentration ci , diameter
di and density ρl = ρs = 1 g cm−3. Large (dl = 4 mm) and small (ds varied to adjust
the size ratio, Rd = dl/ds) particle species have a ±10 % uniform size distribution to
minimise layering (Staron & Phillips 2014) (increasing the diameter variation to ±20 %
does not alter the results). The mixture is sheared in the streamwise (x) direction
(see figure 1). Boundary conditions are periodic in x and y with length L = 35dl and
width W = 10dl , respectively. The height is H = 50dl in the z-direction, which is normal
to the flow direction (reducing H to 25dl does not alter the results). In all cases, particles
fall freely under gravity to fill the domain before flow begins. Gravity may be aligned with
the z-direction, as shown in figure 1, at an angle θ with respect to z for inclined chute flow,
or parallel to the flow aligned with x for vertical chute flow. In some cases, gravity is set
to zero; in all other cases we use g = g0 ≡ 9.81 m s−2.

The standard linear spring-dashpot model (Cundall & Strack 1979) is used to
resolve particle–particle and particle–wall contacts of spherical particles using a friction
coefficient of μ = 0.5, a restitution coefficient of 0.9, and a binary collision time of 0.15
ms. We have confirmed that our results are relatively insensitive to these values except for
very low friction coefficients (μ� 0.2) (Duan et al. 2020; Jing et al. 2020). From 26 000
to 150 000 particles are included in each simulation, depending on the size ratio.

The segregation velocity is measured in a variety of flow configurations, including
controlled shear flows and natural uncontrolled flows. These various flow configurations
are explained in more detail in a previous paper in which we consider the segregation
force (Duan et al. 2024). The first flow conditions that we consider are controlled
shear flows in which the velocity profile is constrained to be of a certain form. The
specified velocity profile, u(z), is achieved by applying a small streamwise stabilising
force kv[ u(z) − u p(z p)] to each particle at each DEM simulation time step in order
to maintain the desired velocity profile, where u p and z p are the instantaneous particle
velocity and position, respectively, and kv is a gain parameter (Lerner, Düring & Wyart
2012; Clark et al. 2018; Fry et al. 2018; Jing et al. 2020, 2021, 2022). By prescribing
a specific velocity profile, we control the shear rate and shear rate gradient, which play
direct roles in determining both the segregation force (2.3) and the drag (2.8) via the
viscosity (2.11), and hence influence the segregation velocity (2.13). The presence of
gravity results in a pressure gradient in z, which also influences the segregation force
(2.3). We consider four cases: a linear velocity profile with gravity, an exponential velocity
profile without gravity, a parabolic velocity profile without gravity, and an exponential
velocity profile with gravity. (For reference, each of these flows is shown schematically
later in the paper as insets when the results are discussed, see figure 3a.) A wide range
of inertial numbers, I , is achieved via the variation of the pressure with depth for flows
with g �= 0 and by imposing large shear rates, which can lead to wall velocities of
u(H) = U = 20 m s−1 in some cases. For the flows with gravity (linear and exponential
velocity profiles), a small overburden pressure P0 equal to the pressure at a depth of 2.5dl
(i.e. P0 = 0.05ρφg0 H , where the bulk solid fraction φ ≈ 0.55) is imposed on the upper
wall, which is free to move vertically, and which fluctuates in height by no more than
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±0.05 % after an initial rapid dilatation of the particles at flow onset. For the flows without
gravity (exponential and parabolic velocity profiles), the top wall is fixed vertically. These
different velocity profiles allow us to consider cases with no pressure gradient (when
gravity g = 0) so that the gravity-related first term of (2.3) is zero, with no shear rate
gradient (linear profile) so that the kinematics-related second term of (2.3) is zero, and
with combinations of the gravity and shear such that both the gravity and kinematics terms
in (2.3) contribute to the segregation velocity.

In addition to the controlled shear flows, we also consider four cases where the velocity
field is not directly controlled. (For reference, each of these flows are shown schematically
later in the paper as insets when the results are discussed, see figure 6). The flow
kinematics of these uncontrolled ‘natural flows’ are driven entirely by the combined effects
of gravity and boundary conditions. The walls are rough in all cases, formed from a
2.5dl thick layer of bonded large and small particles that move collectively. For the wall-
driven flows, an overburden pressure P0 equal to the pressure at a depth of H/2 (i.e.
P0 = 0.5ρφg0 H ) is imposed on the upper wall. When gravity is included for plane shear
flow and inclined chute flow, it results in a pressure gradient in z. In both wall-driven
flows, the upper wall moves at velocity u(H) = 10 m s−1 in the x-direction and the lower
wall at u(0) = −10 m s−1 in the negative x-direction. Both cases show little to no slip at
either wall. The vertical chute flow is driven by gravity, which is aligned parallel to the
rough fixed bounding walls, resulting in a generally uniform velocity at the centre of the
channel that goes to zero at the walls. In this case, there is no pressure gradient in z to drive
segregation, so any segregation in z is driven by shear gradients alone. Finally, the inclined
chute flow lacks an upper wall (free boundary) so that particles flow due to a streamwise
component of gravity. Here the pressure gradient in the segregation direction is g0 cos θ ,
where θ is the inclination angle of the base (lower wall) relative to g.

To consider segregation for each of these flow conditions, the simulation domain is
discretised into horizontal layers, each of thickness 2.5dl (1 mm) in the z-direction, for
averaging purposes (see figure 1). Decreasing the layer thickness to 1.25dl increases
averaging uncertainties but does not alter the mean values of the flow fields. Within each
layer, various local variables are measured including the streamwise velocity (u), pressure
(p), shear rate (γ̇ ) and species concentration (ci ). Subsequently, these flow measurements,
which are averaged in the x- and y-directions but vary in the z-direction, are used to
determine intermediate variables including the net gravity and segregation force acting on
each species (Ti via (2.3)–(2.6)), the local viscosity of the mixture (η via (2.11)), the drag
coefficient for each species (C D

i via (2.10)) and the diffusion coefficient (D via (2.18)).
Finally, these computed variables are used to predict the segregation velocity using (2.13)
and, where necessary, (2.17).

The predicted segregation velocities based on the model of (2.13) are compared with
the segregation velocities measured from the simulations. To characterise the segregation
velocity for each layer in figure 1, we assess the average centre of mass height for each
species relative to the mean height of all particles over a short measurement window,
calculated as

z̄i = 1
Ni

Ni∑
k∈i

zk − 1
N

N∑
k=1

zk, (3.1)

where Ni and N are the number of particles of species i and the total number of particles
in the horizontal averaging layer, respectively. The segregation distance for species i is the
offset of its centre of mass from its initial position, z̄i − z̄i,0. The segregation velocity for
species i is then measured as the rate of this offset, (z̄i − z̄i,0)/�t , where the measurement
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window is �t = 1 s, which we have shown previously is sufficiently long to provide
statistically meaningful data and short enough to capture temporally local results (Duan
et al. 2020).

To mitigate the influence of noise and kinematic acceleration on the measurements, each
simulation begins with the initial flow of mixed particles subject to equal and opposite
vertical restoring forces applied to particles of each species in each layer in figure 1. This
technique maintains the initial uniformly mixed distribution of the two particle species
and suppresses segregation while the flow develops, similar to the approach previously
employed to measure the mixture segregation force (Duan et al. 2022, 2024). The flow
is allowed to develop for 2 s with the prescribed velocity and concentration profiles
and the segregation being suppressed. During the subsequent 1 s measurement window,
the restoring forces suppressing the segregation are deactivated while primary flow field
parameters, such as streamwise velocity, pressure and particle vertical positions (zk) are
recorded at intervals of 0.01 s. The species segregation velocity is then measured as
wi = (z̄i − z̄i,0)/�t for the ensemble of each particle species in each layer, and the other
local variables (u, p, ci ) in each layer are averaged over the 1 s measurement window
for use in calculating the predicted segregation velocity from (2.13). We have shown
previously (Fry et al. 2018; Duan et al. 2020; 2022, 2024) and confirmed here that the
velocity profile is unaffected by the segregation for the short duration of the measurement
window. Furthermore, we have confirmed that the concentration profile in the bulk changes
by less than 2 % on average over the 1 s measurement window.

4. Drag force in mixtures
Before considering the segregation velocity, which is the focus of this paper, it is necessary
to address the effect of mixture concentration on the drag force, as noted in § 2.3. To
extend the intruder drag model of (2.8) and (2.10) to mixtures, we perform a series of
simulations using an approach motivated by Bancroft & Johnson (2021), where opposing
forces are applied to particles of each species. Specifically, equal and opposite applied
forces are imposed in the segregation direction to particles of each species (negative
z-direction for small particles and positive z-direction for large particles) in a
homogeneous shear flow of a mixture of large and small particles like that shown in
figure 1 with g = 0. The applied force, which is distributed across all particles of a species,
drives the particle species to segregate at a rate controlled entirely by the applied force and
the drag, which balance each other (Jing et al. 2022). In this way, (2.1) has just two terms,
the mixture segregation force, F S

i , which is equivalent to the applied force, and the mixture
drag force F D

i (since g = 0). Here, F D
i is given by (2.12) which is in terms of the effective

granular viscosity, η, and the species-specific segregation velocity, wi . By tracking the
average motion of all of the particles of each species, wi for species i is obtained. By
calculating the overall normal and shear stresses, P and τ , from interparticle collisions
(Luding 2008), η is obtained via (2.11). Using force balance (2.1) with the applied force
for F S

i , the mixture drag coefficient C D
i is estimated using (2.12) for F D

i with the measured
wi and calculated η. In these simulations, the domain is the same as the controlled shear
flows used for measuring segregation velocities. The data are recorded at intervals of
0.01 s over a 1 s window after the flow reaches a steady state.

Figure 2(a) shows the drag coefficient of large particles measured in mixtures of
particles with varying large-particle concentration, cl , in uniform shear flows with
Rd = 1.5 and 2, having a constant inertial number in each case. The values for C D

l are
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Figure 2. (a) Large-particle drag coefficient, C D
l , versus large-particle species concentration, cl , in a uniformly

sheared flow for size ratios of Rd = 1.5 at I ≈ 0.08 (blue crosses) and Rd = 2 at I ≈ 0.12 (black circles) for
g = 0. Error bars show the standard deviation of C D

l over a 1 s window for Rd = 2; error bars for Rd = 1.5
are similar but omitted for clarity. Horizontal solid black line corresponds to C D

i,0 for Rd = 2; horizontal
dashed blue line corresponds to C D

i,0 for Rd = 1.5. (b) Comparison of C D
i,0 with C D

i for varying size ratio.
The single-intruder drag coefficient, C D

i,0 is calculated from (2.10) for large (i = l for Rd � 1) (solid black
curve) and small (i = s for Rd < 1) (dashed black curve) intruder particles. The mixture drag coefficient, C D

i ,
(red curve) is calculated from (2.10) for Rd � 1 and (4.4) for Rd < 1. Both curves represent predictions for
I = 0.2. Predictions of the mixture model for I values ranging from 0 (lower bound) to 0.4 (upper bound),
which are typical of dense granular flows, are indicated by the shaded band.

nearly independent of cl except at very low cl , approaching the single-intruder limit.
Furthermore, the values for C D

l match the value for C D
l,0 (horizontal dashed line for

Rd = 1.5 and solid line for Rd = 2). Hence, the intruder drag model (2.8) for C D
l,0

provides a reasonable estimate of C D
l for mixtures at arbitrary non-zero concentrations

for the cases considered here, although further study of the dependence of drag on species
concentration, size ratio and inertial number is warranted.

Unlike the intruder drag model (2.8) that treats the drag force on the intruder, whether
it is small or large, as if it is in a sea of particles of the other size, the drag forces for
a mixture must also satisfy volume conservation when determining the species-specific
segregation velocities, wi , for a mixture. This requires that the overall drag force for all of
the large particles at a given concentration of large particles must be balanced by the drag
force for all of the small particles at the corresponding concentration of small particles,
while at the same time volume flux must be conserved (in the laboratory reference
frame):

wl cl + wscs = 0. (4.1)

Consequently, there exists an implicit relation between the drag coefficients for large (C D
l )

and small (C D
s ) particles to assure that volume flux is conserved. Noting from (2.7) that

Ti + F D
i = 0, expressions for wi for each species from (2.12) can be substituted into (4.1)

yielding

Tl

C D
l dl

cl + Ts

C D
s ds

cs = 0. (4.2)
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Using (2.6), this can be expressed as

Tl,0

C D
l dl

cl − Tl,0

C D
s ds

cs
mscl

mlcs
= 0, (4.3)

which can be rearranged as

C D
l

C D
s

= mlds

msdl
= Rρ R2

d . (4.4)

To satisfy this constraint for size segregation with density ratio Rρ = 1, we implement
the drag model so that the large-particle drag coefficient C D

l is estimated by (2.10) but
the small-particle drag coefficient C D

s is calculated based on the correlation (4.4). The
justification for this approach is that (2.10) is valid for 0.6 � Rd � 5, so we only use it to
estimate C D

l for large particles (Rd � 1) and use (4.4) to find the corresponding value for
C D

s for small particles that assures volume flux conservation. Figure 2(b) compares C D
i

predictions by both the original intruder drag model (2.10) and the revised mixture drag
model ((2.10) for Rd � 1 and (4.4) for Rd < 1) for I = 0.2. The two approaches overlap
for Rd > 0.6, but the revised model (red curve) allows calculation of C D

s for 0.3 � Rd <

0.6, while simultaneously assuring that volume flux is conserved. Note that C D
i is nearly

independent of I for Rd < 1.5. Outside this range, C D
i depends on I , with the band of

values in figure 2(b) corresponding to 0 � I � 0.4. However, the effect of C D
i on the drag

is relatively limited compared with the influence of viscosity due to the constrained range
of variation in C D

i . Further note that the lower limit in Rd below which (4.4) should not be
applied is necessary because sufficiently small particles can freely pass through interstices
between large particles even if the large particles are not flowing. We estimate this lower
limit to be Rd ≈ 0.3 based on studies of the segregation velocity of small particles in
sheared beds (Gao et al. 2024).

5. Segregation-velocity results
In this section, we address the central result of this paper. That is, we combine the models
for the segregation force (2.6) in mixtures and the drag force for single intruders (2.8)
adapted to mixtures (2.12) via a simple mixture force balance (2.7) to predict the local
segregation velocity via (2.13). We then compare the predicted segregation velocity to the
result measured directly from the DEM simulated flow to demonstrate the validity of the
force-based modelling approach.

5.1. Controlled shear flows
The simulation results and predicted values for the segregation velocity for the four
controlled shear flows at Rd = 2 are presented in figure 3. Figure 3(a) shows the prescribed
and measured streamwise velocity profiles along depth, z. The close agreement between
the DEM data points and the curves representing the target velocity profile demonstrates
the effectiveness of the control scheme in achieving the desired velocity profiles.

The prescribed velocity functions in figure 3(a) are used to calculate the z-profiles of γ̇

and ∂γ̇ /∂z, while the pressure is estimated based on an idealised hydrostatic pressure,
p = P0 + ρφg(H − z). These results are then used to calculate the predicted mixture
segregation force, shown in figure 3(b), which we normalise with the particle weight,
F̂ S

i = F S
i /mi g0. The dashed curves represent F̂ S

l calculated using (2.3)–(2.5) based on
the prescribed pressure and shear states. The symbols indicate F̂ S

l measured directly from
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Figure 3. Depth profiles (rows) of time-averaged simulation results (symbols) and predictions (dashed black
curves) for the four controlled shear flows (columns) in steady state at Rd = 2. (a) Streamwise mean velocity u,
(b) normalised segregation force on a large particle F̂ S

l = F S
l /ml g0, (c) bulk viscosity η and (d) segregation

velocity, wi , for small (red) and large (blue) particles measured from the simulation (symbols) and predicted
via (2.13) (curves). Dotted vertical lines in (b) indicate segregation force equal to particle weight. In all cases,
U = 20 m s−1, cl = cs = 0.5 and H ≈ 0.2 m.

the simulation using the extended virtual spring approach, where forces proportional to
the offset of the centres of mass of the two species are applied uniformly to particles of
each species to suppress segregation (Duan et al. 2024). Error bars indicate the standard
deviation of DEM data averaged over the 1 s measurement window. The agreement
between the DEM data and the model predictions for F̂ S

l across all four controlled shear
flows confirms the general applicability of the segregation-force model (2.5) (see also
Duan et al. 2024). Results for F̂ S

s are similar (not shown). Note that the total segregation
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force equals the depth-wise component of the particle weight for steady flows, specifically,
cl F̂ S

l + cs F̂ S
s = cos θ , where the value on the right-hand side of this equation is shown as

a vertical dotted line in figure 3(b). The large difference between measured and predicted
values of F̂ S

l in the vicinity of z/H = 0.5 for the parabolic velocity profile occurs because
γ̇ (H = 0.5) = 0, leading to a singularity in the second term in (2.3), see Duan et al.
(2024). However, this does not affect the segregation velocity because of a corresponding
singularity in the viscosity, as explained next.

The effective granular viscosity, η, measured as the ratio of shear stress τ to shear
rate γ̇ , (2.11a), averaged over the 1 s window from DEM simulation data, is plotted in
figure 3(c). The dashed curve represents η estimated from the μ(I ) rheology (2.11) for
the corresponding prescribed pressure-shear state. The predicted and measured values of
viscosity match well except near the flow boundaries (see Appendix A). Similar to the
segregation force, the viscosity exhibits a singularity at γ̇ ≈ 0 for the parabolic velocity
profile. This singularity, however, is eliminated as γ̇ → 0 when the segregation force,
along with the drag force, are incorporated into the force and momentum balance, because
both forces scale as 1/γ̇ .

With the knowledge of segregation force (figure 3b), viscosity (figure 3c) and drag
coefficient ((2.10) for large particles and (4.4) for small particles), (2.13) allows the
calculation of segregation velocity. Moreover, the depth-dependent segregation velocity
can be measured directly for each horizontal layer by quantifying the rate of centre of mass
offset between the two species (3.1) in a 1 s window after the flow reaches steady state.
Figure 3(d) shows both the model predictions and DEM measurements of the segregation
velocity for the four controlled shear flows.

For the linear velocity profile (first column of figure 3), the segregation velocity
decreases from top to bottom, despite a constant depth-independent segregation force.
This decrease is due to the increase of pressure with depth, which increases the viscosity
term in the drag force, thereby slowing the segregation. A similar pattern is observed
for the exponential velocity profile without gravity in the second column of figure 3.
Despite the constant segregation force and pressure, the shear rate decreases with depth,
which increases the viscosity and, hence, the drag. For the parabolic velocity profile
(third column of figure 3), the segregation force changes sign at γ̇ = 0. Consequently,
the segregation velocity also changes sign at this point, consistent with large particles
segregating to regions of higher shear (Fan & Hill 2011a). While the model accurately
predicts this sign change, the flow in the z/H ≈ 0.5 region has negligible shear and, hence,
is quasi-static. The continuum framework upon which the model is based is difficult to
apply in this regime, resulting in significant discrepancies between the model predictions
and the simulation measurements. Finally, in the case of the exponential velocity profile
with gravity (fourth column of figure 3), the segregation force increases linearly with
depth. However, the viscosity experiences a more pronounced increase, resulting in a
decrease in segregation velocity with depth.

Overall, the consistent agreement between the model predictions and the simulation
results across all four cases in both magnitude and sign demonstrates the effectiveness
of (2.13) in predicting segregation velocity based on the local pressure-shear state.
These results further indicate that the model effectively captures the underlying physical
mechanisms driving segregation and the associated segregation velocity. The match
between the measured segregation velocity and its predicted values in figure 3(d) is
not perfect. Nevertheless, given the relatively straightforward model, the simplifying
assumptions used in the model, the difficulty in isolating the various forces acting on
individual particles, the complication of considering mixtures (rather than an intruder),
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Figure 4. Profiles of the segregation velocity wi for large (blue) and small (red) particles with Rd = 2 for the
exponential velocity profile with g = g0 and bulk large-particle concentrations of (a) cl = 0.2, (b) cl = 0.5,
and (c) cl = 0.8, based on the prescribed velocity profiles (solid curves) compared with DEM measurements
(symbols) averaged over 1 s after the flow reaches steady state.

and the inherent stochastic nature of granular flows, the match between the measured and
predicted segregation velocities is surprisingly good.

5.2. Varying species concentration
The analysis in § 5.1 focuses on uniformly mixed systems with equal volume fractions of
small and large particles, cl = cs = 0.5. However, the concentration dependence of the
segregation velocity as described by (2.13) should hold for any species concentration
within the range 0 � cl � 1, where cs = 1 − cl . To verify this, we consider controlled
shear flows with the exponential velocity profile and g = g0, because for these conditions
both the segregation force and the viscosity vary with depth (see the last column of
figure 3). Figure 4 shows the model predictions for wi at Rd = 2 with uniform species
concentrations cl = 0.2 and 0.8, along with the results for cl = 0.5 (repeated from figure 3
with a different horizontal scale). While a wider scatter of data points is observed with
cl = 0.2, the predicted segregation velocity matches the measured segregation velocity
reasonably well. Furthermore, a general trend of decreasing segregation velocity with
depth is evident for both particle species, similar to cl = 0.5. However, the segregation
velocity for large particles increases for cl = 0.2, and the segregation velocity for small
particles decreases, compared with cl = 0.5. That is, for cl = 0.2, a large particle among
mostly small particles segregates faster than a small particle among few large particles.
In contrast, for cl = 0.8, the model underpredicts the segregation velocity, possibly due to
the difficulty in accurately determining F̂ S

s for small intruders in the sea of large particles,
which is highly sensitive to Rd and cl near the monodisperse limit of cl = 1 (Jing et al.
2021). Nevertheless, the decreased segregation velocity with depth and the increased
(decreased) segregation velocity for small (large) particles compared with cl = 0.5 is
clear. Here, a small particle among many large particles segregates faster than a large
particle among many small particles, consistent with previously observed asymmetry in
the segregation velocity (van der Vaart et al. 2015; Jing, Kwok & Leung 2017; Jones
et al. 2018). This asymmetry in the segregation velocity originates as an asymmetry in
the segregation force (2.5), which in turn can be traced back to segregation being intruder-
like for small particles at large cl and intruder-like for large particles at small cl . The
species concentration range that the segregation force is intruder-like is narrower for small
particles and wider for large particles (see figures 2 and 3 in Duan et al. 2022), which is
reflected in the hyperbolic tangent dependence of the segregation force on concentration
(2.5) and, consequently, in the form of the segregation velocity (2.13). It is also consistent
with the kinetic sieving model of Savage & Lun (1988), as demonstrated by Jones et al.

1016 A2-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
36

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10360


Journal of Fluid Mechanics

0

1

0

1

0

1

−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4

−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4

0

1

0

1

0

1

0 0.5 1.0

1

0 0.5 1.0

1

0

11

0 0.5 1.00 0.5 1.0

Exponential 

Increasing cl with depth 

cl

Decreasing cl with depth Non-monotonic cl with depth 

Large

Small

Linear 

wi (mm s−1)

wi (mm s−1)

cl , φ

(a)

(b)

(c)

z/
H

z/
H

z/
H

Figure 5. Effect of three different spatially varying concentration profiles (columns and plotted in (a) using the
large particle concentration, cl ) on the segregation velocity wi versus depth for (b) linear (u = U z/H ) and (c)
exponential (Uek((z/H)−1)) velocity profiles with g = g0 and Rd = 2. In the graphs in (b) and (c), dashed curves
represent model predictions using (2.13) for wi , solid curves represent predictions corrected by the diffusion
flux, i.e. wnet

i from (2.17), and symbols indicate measurements from DEM simulations. Note that the volume
fraction, φ, in (a) varies only weakly with cl .

(2018) by comparing DEM segregation-velocity results to the solution of the Savage and
Lun model over a range of size ratios and species concentrations (see figures 5 and 7 in
Jones et al. 2018).

To this point, the segregation-velocity model (2.13) has been validated against different
flow configurations with uniform mixture concentrations throughout the flow domain.
However, the model can be extended to scenarios where particle species concentration
varies with depth. In such cases, concentration gradients induce a diffusion flux that can
enhance or counteract the segregation flux, as described in § 2.5. Because differentiating
between these two fluxes is impractical from a measurement standpoint, the observed
segregation velocity represents the net effect of both fluxes (see (2.17)).

To consider varying species concentrations, three distinct large-particle concentration
profiles, shown in figure 5(a), are investigated: cl increasing with depth, cl decreasing
with depth, and cl decreasing in the upper half of the flow and increasing in the lower
half of the flow. Although these concentration profiles are initialised to vary linearly with
depth, variations in concentration occur as the flow is established, resulting in slightly
nonlinear cl profiles at the start of the 1 s measurement window. The particle volume
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fraction, φ, remains approximately constant with depth in all three cases. Figure 5(b)
shows the segregation velocity for an imposed linear velocity profile with g = g0 in the
z-direction. Neglecting the diffusion flux leads to an underestimation of the segregation
velocity (dashed curves) for both small and large particles, as both the diffusion flux and
the segregation flux act in the same direction. Specifically, both segregation and diffusion
contribute to the upward movement of large particles. The improved agreement between
the diffusion-corrected velocity (wnet

i , solid curves) and the DEM measurements shows
the importance of the diffusion effect in inhomogeneous-concentration flows across all
three initial conditions for cl . Results for an exponential velocity profile with g = g0 in
the z-direction in figure 5(c) indicate a generally good agreement between the predicted
segregation velocity and the DEM results even without accounting for the diffusion flux,
except near the top boundary where the correction for diffusion flux is clearly necessary.
This is because the diffusion flux scales with shear rate, which is maximal at the top
boundary and decreases rapidly with increasing depth.

For all cases in figure 5, the predicted segregation velocity accounting for diffusion
matches the measured segregation velocity well. It is also worth noting that the force-
based segregation-velocity model accurately captures the change in segregation direction
in scenarios where cl reaches a minimum value at a mid-depth position for both linear
and exponential velocity profiles. This not only highlights the model’s ability to predict
segregation velocities, even with substantial variations in the concentration gradient, but
also reveals that diffusion can, under certain conditions, become the dominant mechanism,
overpowering the effects of size-induced segregation.

5.3. Natural flows
As demonstrated earlier, the segregation-velocity model (2.13) works well for arbitrary
concentration fields in a variety of flows where the velocity field is artificially prescribed.
We now examine four uncontrolled wall- or gravity-driven flows, illustrated in figure 6(a),
in which the velocity field develops naturally via the boundary conditions and gravity-
induced body forces. Note that particles in each layer of the flow are constrained
vertically using the restoring force approach so that they cannot segregate until they are
released when the velocity profile reaches steady state. In wall-driven plane shear flow,
which results from upper and lower walls moving in opposite directions with velocity
U = 10 m s−1, there is no gravity, so the fully developed velocity profile is linear with
a nearly constant inertial number of 0.2 (Duan et al. 2024). In the three gravity-driven
cases, the orientation of gravity relative to the flow direction is parameterised by θ .
For wall-driven plane shear flow, gravity acts perpendicular to the flow direction (aligned
with the z-direction such that θ = 0), resulting in a nonlinear velocity profile due to the
increasing pressure with depth in the flow. In vertical chute flow, gravity aligns with the
z-direction (θ = π/2), such that there is no pressure gradient in the z-direction, ∂p/∂z = 0,
resulting in a blunt velocity profile with zero velocity at the two confining walls. Finally,
for inclined chute flow with θ = 28◦, which exceeds the critical angle required for flow,
the resulting velocity profile is nonlinear with a maximum velocity at the free surface.

Following a similar methodology to the analysis of controlled-velocity flow fields, we
plot dimensionless depth profiles of u, F̂ S

i , η and wi for the natural flows with cl = cs =
0.5, as shown in figure 6. Here we consider Rd = 1.5 to demonstrate results for a different
size ratio than used earlier. Unlike the controlled flows where γ̇ , ∂γ̇ /∂z, p and η can be
determined from prescribed functions (streamwise velocity, pressure) or assumed constant
(concentration), these same variables for natural flow are measured directly from DEM
simulations.
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Figure 6. Depth profiles (rows) of time-averaged simulation results (symbols) for the four natural shear flows
(columns) in steady state at Rd = 1.5. (a) Streamwise mean velocity u, (b) normalised segregation force on
a large particle F̂ S

l = F S
l /ml g0, (c) bulk viscosity η and (d) segregation velocity wi for small (red) and

large (blue) particles measured from the simulation (symbols) and predicted by (2.13) (dashed curves) and
considering diffusion (2.17) (solid curves). Dotted vertical lines in (b) indicate segregation force equal to
particle weight. In all cases, cl = cs = 0.5 and H ≈ 0.2 m.

In the absence of an intrinsic velocity scale for vertical and inclined chute flows, the
kinematic terms are non-dimensionalised using the acceleration due to gravity at the
earth’s surface (g0) and the flow depth (H ). Unlike the controlled flows in the previous
sections, here there are no predicted values for F̂ S

i and η because u and, hence, γ̇ ,
∂γ̇ /∂z, p and η depend on the naturally developed flow conditions, rather than being
prescribed. Nevertheless, the predicted value for the segregation velocity, wi , based on
measured z-dependent values of γ̇ , ∂γ̇ /∂z, p and η, can be compared with the measured
value of wi .
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Consider first the wall-driven plane shear flow without gravity (first column of figure 6)
where the streamwise velocity decreases linearly with increasing depth, resulting in a
constant shear rate. This leads to a negligible segregation force across the depth, with only
minor deviations observed near the walls. Furthermore, the viscosity remains relatively
constant throughout the flow domain. Consequently, the segregation velocity in the first
column of figure 6(c) is approximately zero over most of the depth, except close to the
walls. The minor deviation from perfect symmetry about z/H = 0.5 near the top and
bottom walls is likely a consequence of two factors. First, the initial packing procedure,
which involves particles falling freely under gravity in the negative z-direction to fill the
domain, may lead to a slight initial segregation of particles. Second, random variations in
roughness between the top and bottom boundaries could also contribute to the asymmetry.

With gravity (second column in figure 6), the wall-driven plane shear flow velocity
profile is steep near the upper moving wall but flattens in the bottom half of the flow
where the pressure is higher. As a result, the segregation force increases with depth
except within the region z/H < 0.3. In this region, a rapid decrease in segregation force is
observed, accompanied by a reversal in its sign at approximately z/H ≈ 0.2. This is due
to the interaction of particles with the moving bottom wall, leading to complex variations
in the shear rate gradient for small z/H . A similar trend also occurs for the viscosity.
Consequently, the segregation velocity in the second column of figure 6(d) demonstrates
a nonlinear variation with depth, with a reversal in segregation direction at z/H ≈ 0.2.
Nevertheless, the predicted segregation velocity matches the measured values well except
where it is affected by the walls.

The vertical chute flow (third column of figure 6) has a plug-like velocity profile,
resulting in a segregation force that is antisymmetric about z/H = 0.5. Within the central
region of the flow, specifically 0.2 � z/H � 0.8, the shear rate is negligible, leading to
difficulty in accurately estimating the local viscosity, which is typical of the quasi-static
flow regime. Despite this problem, the model accurately predicts the measured segregation
velocity to be approximately zero within this quasi-static central region, as well as the
reversal of segregation direction above and below this region.

The curvature of the velocity profile for the inclined chute with θ = 28◦ (fourth column
of figure 6) is opposite that of the wall-driven flow with gravity (second column of
figure 6). The combined effects of shear rate and shear rate gradient result in an almost
uniform segregation force except near the static bottom boundary. However, the increase
in viscosity with depth leads to a gradual decrease in the segregation velocity, except near
the bottom wall, as shown in the fourth column of figure 6(c). Additionally, the model
overpredicts the segregation velocity near the free surface (z/H � 0.9). This discrepancy
is attributed to the inherent difficulty in accurately resolving the free surface using bin-
averaging, compounded by the dilute flow regime (I > 5) that prevails near the free
surface. Such conditions deviate from the dense flow regime for which the model was
developed, resulting in the observed overprediction of wi . Nevertheless, through most
of the depth of the chute flow, the predicted segregation velocity is consistent with the
measured values.

To further confirm the validity of our approach for calculating the segregation velocity,
model predictions are compared with chute flow simulations for size ratios other than Rd =
1.5. Figure 7 shows reasonably close agreement between the model predictions and DEM
measurements for Rd = 2, 2.5 and 3, although the model underpredicts the segregation
velocity. The overall segregation velocity is largest for Rd = 2 and 2.5, but is smaller for
Rd = 1.5 and 3, consistent with previous findings (Alonso, Satoh & Miyanami 1991; Félix
& Thomas 2004; Thornton et al. 2012; Jones et al. 2018). Similar to the results for Rd = 1.5
in figure 6, the discrepancy for z/H � 0.9 is a result of dilute flow near the free surface.
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Figure 7. Segregation velocity wi for small (red) and large (blue) particles measured from the simulation
(symbols) and predicted via (2.13) (dashed curve) and after considering diffusion via (2.17) (solid curve) for
chute flow inclined at 28◦ with different size ratios. In all cases, cl = cs = 0.5 and H ≈ 0.2 m.

Nevertheless, the agreement observed between the model predictions and the simulation
results, not only for various natural flow configurations but also across different size ratios,
shows the broad applicability of (2.13) to a wide range of size-bidisperse granular flows at
inertial numbers typical of dense flows.

6. Comparison with a previous segregation-velocity model
The broad applicability of (2.13) can be further elucidated by demonstrating its
compatibility with the well-established linear segregation-velocity model, initially
developed for free-surface heap flows (Fan et al. 2014), and successfully applied to a
wide range of free-surface flows including chute flow, rotating tumbler flow, steady and
intermittent heap flow, three-dimensional heap flow, multidisperse species, polydisperse
species and density-disperse species (Umbanhowar et al. 2019). The model is expressed as
(Fan et al. 2014)

wi = Sds γ̇ (1 − ci ). (6.1)

It postulates a direct proportionality between the segregation velocity wi and the product
of the concentration complement, 1 − ci , the shear rate, γ̇ , and the particle size, ds (or dl ),
and it is motivated by the ‘kinetic sieving’ mechanism and statistical mechanics model
for dense granular flows of bidisperse mixtures of spherical particles by Savage & Lun
(1988), as noted previously (Gray & Thornton 2005; Jones et al. 2018). The segregation
parameter S multiplied by the small particle diameter ds quantifies the characteristic
segregation length scale. Larger values of S indicate a stronger tendency for segregation.
As determined empirically, this length scale depends on various factors, including particle
properties (such as size, shape, density), flow conditions (such as flow depth) and the
specific segregation mechanism at play. The effectiveness of the linear segregation-
velocity model stems from its ability to encapsulate the complex interplay of segregation
factors in a single length scale, while still demonstrating good agreement with simulations
and experiments of free-surface flows on heaps or in rotating tumblers. For free-surface
flows without strongly segregated regions, the empirically determined segregation length
scale S is well approximated by (Schlick et al. 2015a)

S = 0.26 ln Rd . (6.2)

However, the assumption of a linear relationship between segregation velocity and shear
rate in (6.1), while simple to implement, neglects the influence of pressure. Consequently,
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Figure 8. Profiles of the segregation velocity wi for large (blue) and small (red) particles at the feed zone
exit of quasi-2-D heap flows for three different size ratios: (a) Rd = 1.5, (b) Rd = 2 and (c) Rd = 2.5. Curves
represent predictions from (6.1) (dashed) and (2.13) (solid). Symbols represent DEM measurements averaged
over 1 s after the flow becomes steady.

this linear segregation model is limited to free-surface flows where the effects of lithostatic
pressure on its predictions are negligible.

To demonstrate that the force-based segregation-velocity model described in this paper
is consistent with this previous simpler approach for free-surface flows, model predictions
from (6.1) and (2.13) are compared with data from quasi-two-dimensional (quasi-2-D)
heap-flow simulations, which are detailed elsewhere (Duan et al. 2021). The simulations
are performed with a two-dimensional flow rate of 20 cm2 s−1 and a heap length of 52
cm, resulting in a measured flowing layer thickness (δ) of approximately 1.5 cm. The
large-particle diameter is 3 mm, while the small-particle diameter is varied between 1.2
and 2 mm, to provide different size ratios. The feed concentration is cl = cs = 0.5, which is
used as the input concentration for the model. To mitigate the impact of segregation on the
concentration profiles, measurements of the segregation velocity are taken immediately
downstream of the feed zone, where the concentration profile remains largely unaffected
by segregation, and are averaged over a 1 s window.

Previous studies of quasi-2-D heap flow kinematics (Fan et al. 2013) show that the
streamwise velocity just downstream of the feed zone exit is well approximated by

u(z) = kq

δ(1 − e−k)
ekz/δ, (6.3)

where k = 2.3. Hence, we use this velocity profile to determine γ̇ and ∂γ̇ /∂z, and we
assume the pressure at the free surface to be the pressure of a single layer of particles,
p0 = ρφgd̄ . The pressure profile is p(z) = ρφg(d̄ + δ − z) cos θ , and the feed
concentrations of the two particle species are cl = cs = 0.5.

Predictions of the linear segregation-velocity model (6.1) and the force-based model
(2.13) are generally consistent with each other for all three size ratios, as shown in
figure 8. Both methods also match measurements of the local segregation velocity from
the simulations, except near the free surface, particularly for Rd = 2 and 2.5. Note that
in all cases, the small and large particles are assumed to be perfectly mixed with a
uniform concentration of cl = cs = 0.5 at this location in the flow, which implies equal
but opposite segregation velocities for the two particle species. This is indeed the case for
the measured segregation velocity for Rd = 1.5 and 2, where the segregation velocities for
both species are nearly symmetric about zero. However, for Rd = 2.5, the asymmetry in the
measured segregation velocities of the two particle species suggests that some segregation
has occurred in the feed zone. In this case, while both (6.1) and (2.13) accurately predict
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the segregation velocity of the large particles, they tend to overestimate the segregation
velocity of the small particles.

In all cases in figure 8, the force-based model overpredicts the segregation velocities
in the near-surface region (z/H > 0.9). Similar to the chute flow results in figure 7, this
discrepancy is likely attributed to the dilute flow with diminishing pressure near the free
surface, as well as the additional challenges associated with delineating the free surface
when employing a cutoff solid fraction as the defining criterion (Duan et al. 2021).
Nevertheless, the close agreement between the force-based model (2.13) and the linear
segregation-velocity model (6.1), along with their collective agreement with the measured
segregation velocity for z/H < 0.9, provides compelling evidence that the two models are
consistent with one another and that the linear segregation model provides a reasonable
simplification for heap flow and other free-surface flow scenarios.

Finally, we note that other segregation-velocity models exist, but they are limited in
several ways. For one, the effect of shear rate gradients on segregation is not included
in many models and scalings (Marks et al. 2012; Tunuguntla et al. 2014; Fry et al. 2018;
Chassagne et al. 2020; Trewhela et al. 2021), making them inapplicable to most of the
flows in this study. Other approaches are more general but lack details (such as particle size
and concentration dependence) that would allow them to be applied to the specific flow
situations considered here (Hill & Tan 2014; Gray & Ancey 2015; Bancroft & Johnson
2021; Liu et al. 2023; Singh et al. 2024). Hence, even though some of these segregation-
velocity models and scalings have demonstrated success for specific flow conditions and
geometries, it would be challenging to meaningfully evaluate their relative performance
across the broad range of flow conditions considered here.

7. Conclusions
The results in this paper complete our decade-long quest to predict particle segregation in
dense granular flows. This effort began using a simple approach to predict size segregation
for bidisperse mixtures of dense flowing particles using an advection–diffusion approach
(2.15) that includes a term related to segregation (Fan et al. 2014; Umbanhowar et al.
2019). This approach was first proposed four decades ago (Bridgwater et al. 1985) and has
been built upon by many other researchers (Gray & Thornton 2005; Marks et al. 2012;
Tunuguntla et al. 2014; Hill & Tan 2014). However, the key to its practical implementation
was a simple expression for the segregation velocity (6.1), which was motivated by the
much more complicated kinetic sieving model of Savage & Lun (1988). Using (6.1) for
the segregation velocity allows the application of the advection–diffusion–segregation
model across a wide range of surface flow geometries including heap flow, tumbler flow,
chute flow and hopper flow (Fan et al. 2014; Schlick et al. 2015b; Deng et al. 2020).
It can be applied not only to bidisperse granular materials, but also to multidisperse
and polydisperse particle mixtures (Deng et al. 2018; Gao et al. 2021), density-disperse
granular materials, where S depends on the particle density ratio instead of the size ratio,
combined size- and density-disperse granular materials (Duan et al. 2021) and even non-
spherical particles (Jones et al. 2020, 2021). And, while it is best suited for segregation in
free-surface flows, adjustments can be made such that it can be applied in situations with
significant overburden pressures (Fry et al. 2018).

While successful in many ways, the advection–diffusion–segregation approach using
(6.1) for the segregation velocity has been limited by the empirical basis (6.2) for the
segregation length scale, Sds , which is a function of the size or density ratio, as determined
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from DEM simulations, although it is possible to estimate S by matching experiments
to predictions using the advection–diffusion–segregation equation (Fry et al. 2020a,b).
Hence, we set out to determine the segregation velocity based on particle-level forces.
This requires several ingredients. Foremost is an understanding of the forces acting on an
individual particle in a granular flow. While seemingly straightforward, it was not until the
development of a virtual spring approach for DEM simulations (Guillard et al. 2016) that
it became possible to extract meaningful measurements of forces on an intruder particle in
a dense granular flow. This allowed a better understanding of the segregation force acting
on the intruder particle, which is a combination of buoyancy-like effects and gradients
in the shear rate, expressed compactly in (2.3). A related approach provided the means
to measure the drag force on a particle pulled through a sheared granular medium and
determine that the drag on an intruder particle is Stokes-like over a range of Reynolds
numbers extending over several orders of magnitude (Jing et al. 2022; He et al. 2025),
expressed in (2.8), with the drag coefficient dependent on the intruder size ratio and
density ratio as well as the inertial number. An additional ingredient in the drag force
formulation is the ability to determine a granular viscosity via the μ(I ) rheology (2.11b)
(GDR-MiDi 2004). The segregation force, drag force and particle weight must balance
for an individual intruder particle under the assumption of negligible acceleration, which
allows the determination of its segregation velocity, much like how the terminal velocity
of a sphere falling in a viscous fluid can be determined from the buoyancy force, drag force
and weight. However, as in a fluid suspension where nearby particles and the local flow
kinematics alter the sedimentation velocity, other nearby intruder particles and the local
flow conditions alter the segregation velocity for a particle in a flowing granular mixture.
Using a variant of the virtual spring approach (Duan et al. 2022, 2024), the dependence
of these forces on species concentration can be determined as given by (2.5). The final
ingredient corrects the segregation velocity in a mixture to account for diffusion fluxes
originating from concentration gradients, given by (2.17).

As we show in this paper, properly combining all of these ingredients results in the
ability to predict the segregation velocity using forces rather than calculating it from the
simple relation of (6.1), which depends on an empirical relation for the segregation length
scale, Sds , and is limited to free-surface flows. This new approach for determining the
segregation velocity matches the measured segregation velocity well for the full variety of
flow and mixture conditions examined here.

Although determining the segregation velocity using particle-level force models allows
the application of the advection–diffusion–segregation equation across a wider range of
conditions, there is more work to be done. For instance, predictions of segregation from the
force-based approach could be compared with previously proposed segregation kinematics
models for specific flow and material combinations (e.g. Fry et al. 2018; Rousseau et al.
2021; Trewhela et al. 2021; Jing et al. 2022; Singh et al. 2024). Extensions to polydisperse
particle-size distributions, combined size and density segregation, more complex flow
geometries, and non-spherical particles are needed. Of particular interest is increasing the
size ratio range that can be accurately modelled. The mixture segregation force (2.5) has
only been shown to be valid for Rd < 3 and the coefficient of drag (2.10) for Rd < 5.
The challenge is that for large Rd the nature of particle interactions changes. In fact,
for Rd � 6.464 small particles fall freely through the interstices between large particles
even if the particles are not undergoing shear, a process called free sifting. This effect
begins to influence segregation for Rd > 3 (Gao et al. 2023, 2024), well before unhindered
free sifting occurs at Rd = 6.464. Since many practical granular flows in industry and
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geophysics consist of mixtures with very broad size distributions, more work is clearly
warranted to better understand and predict the segregation of ‘fine’ particles with Rd � 4.
Other physical effects can also play important roles in segregation. Of particular interest
in the chemical and pharmaceutical industries is interparticle cohesion, which can result
from moisture, surface roughness, electrostatic charging, stickiness and other causes. In
some cases, cohesion reduces segregation, while in other cases fine particles agglomerate
into large clusters which then segregate. A very different issue is the coupling between the
granular flow field and granular segregation, which we ignore here by simply assuming that
the flow is relatively unaffected by segregation. Progress is being made in this area (Barker
et al. 2021; Edwards et al. 2023; Liu et al. 2023; Sahu et al. 2023; Maguire et al. 2024;
Singh et al. 2024), but more work can be done. In short, while this paper arguably closes
the loop on segregation prediction for non-cohesive particles with R � 3 by providing
a particle-level force-based approach for predicting the segregation velocity, much work
remains to be done for larger size ratios, cohesive particles, coupling flow to segregation
and many other practical aspects of granular segregation.
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Appendix A. Confirmation of µ(I) parameter values
Accurate prediction of the segregation velocity from the flow field necessitates, in addition
to segregation force and drag models, a value for the effective granular viscosity, η, in the
drag model (2.8). This can be estimated from the μ(I ) rheology model for dense flows
via (2.11a) and (2.11b). The accuracy of the μ(I ) rheology for the flows considered here
is confirmed in figure 9, which shows the relationship between the local effective friction
coefficient (μeff ) and the local inertial number (I ) for the eight controlled and natural
flows included in this study. Nearly all of the data falls on the master curve predicted
by the μ(I ) model with parameters derived from a separate study using simulations
with different particle properties (density-bidisperse mixture) and flow geometry (periodic
chute) (Tripathi & Khakhar 2013). Notably, outlier data points correspond to locations near
the solid wall boundaries or within quasi-static regions of the flow, which are expected
to deviate from the μ(I ) rheology. Corrections to the μ(I ) rheology model have been
proposed for quasi-static flow (as I → 0) and for I � 0.3 (Barker et al. 2017; Heyman
et al. 2017; Barker et al. 2021; Lloyd et al. 2025) that involve fitting several parameters
to account for deviations from the standard μ(I ) rheology in these regions. However,
these deviations from the μ(I ) rheology model only occur near the walls and in quasi-
static regions where other effects also influence segregation and are not captured by our
framework, so we rely on the standard μ(I ) rheology to estimate the viscosity used in the
expression for the drag force, (2.12) and, subsequently, the segregation velocity. Finally,
the viscosities estimated from (2.11a) compare well to the values measured directly from
the simulation, as shown in figure 3(c).
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Figure 9. Effective friction coefficient μeff versus local inertial number I for the eight controlled and natural
flows included in this study. The data points represent DEM simulation measurements of the ratio of shear
stress to shear rate, defined as μeff . Circles correspond to flows shown in figures 3 and 6. Outliers represent
flows near the boundaries (+), where z/H < 0.1 or z/H > 0.9, and those in the quasi-static regime (×) with
I < 0.03. The solid curve is the prediction of (2.11b) with μs = 0.364, μ2 = 0.772 and Ic = 0.434 for data from
a previous study of chute flow (Tripathi & Khakhar 2011).
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