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Introduction

1.1 Newtonian Gravity

No student of physics can fail to notice the similarity between Coulomb’s

law for the electrostatic force between two point charges q1 and q2 a

distance r apart,

F =
1

4πε0

q1q2

r2
r̂, (1.1)

and the gravitational force between two point masses m1 and m2 a

distance r apart, according to Newton’s universal law of gravitation,

F = −Gm1m2

r2
r̂. (1.2)

(r̂ = r/r is a unit vector pointing from particle 1 to particle 2, and these

are the forces on particle 2 due to particle 1.) Newton published his

universal law of gravitation in 1686 (though Robert Hooke appreciated

the significance of the inverse square law for planetary motion before

Newton and accused Newton of plagiarism), and Coulomb published his

law almost exactly 100 years later, in 1785. Coulomb must have been

very excited by his discovery; Equations (1.1) and (1.2) appear to imply

a very close connection between electrostatics and gravity.

Even in the static case there are obvious differences, of course; the

prefactor 1
4πε0

in Coulomb’s law1 is replaced with −G in Newton’s law,

but this is partly just a choice of units. Instead of measuring electric

charge in coulombs (the MKSA unit of charge), we could use a different

set of units with q̃ = q√
4πε0

and then Coulomb’s law reads

F =
q̃1q̃2

r2
r̂, (1.3)

1 ε0 goes by the unfortunate name of ‘the electric permittivity of the vacuum’.
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2 Introduction

and instead of measuring mass in kilograms we could define m̃ =
√
Gm,

in which case Newton’s law of gravitation reads

F = −m̃1m̃2

r2
r̂. (1.4)

(q̃ and m̃ have the same units, kilograms1/2×metres3/2/second.) They

look even more similar – apart from that minus sign. This mathemat-

ical similarity, however, hides the physical fact that the forces are of

very different magnitudes. In MKSA units Newton’s universal constant

of gravitation is G = 6.67 × 10−11 kg−1m3s−2 while the electric per-

mittivity of the vacuum is ε0 = 8.85× 10−12C2m3s−2kg−1. The relative

strengths of the gravitational to the electrostatic force between two elec-

trons, with q1 = q2 = −1.6 × 10−19C and m1 = m2 = 9.1 × 10−31kg,

is 4πε0G
(

9.1×10−31

1.6×10−19

)2

≈ 10−43, a dimensionless number which is inde-

pendent of the units used. Gravity is an extremely weak force, which is

why a small magnet can beat the gravitational attraction of the entire

Earth and lift a metal pin off a table. Nevertheless, gravity dominates

the Universe on large scales, as there is only one sign for the gravitational

‘charge’, m, while it is a fact from experimental observation that electric

charge q can be either positive or negative, like charges repel and unlike

charges attract, while m always seems to be positive and, because of

that minus sign, all masses attract under Newton’s gravitational force.

With an equal number of positive and negative charges in the Universe,

electrostatic forces cancel out in the large, while gravitational forces are

cumulative and dominate on astrophysical scales.

Nevertheless, the mathematical similarity between (1.3) and (1.4)

makes it very tempting to think there must be some deep relation

between electromagnetism and gravity that remains to be uncovered,

if only we could see a little more deeply into the nature of the two

forces. Indeed, Einstein himself spent much of his later career trying

to find a unified mathematical framework: a unified theory of elec-

tricity, magnetism, and gravity. He failed to achieve his dream of a

unified theory. It happens that this connection is largely illusory when we

start to consider moving charges and masses, particularly with velocities

approaching the speed of light: we need to consider time-varying electro-

magnetic and gravitational fields, and the dynamics of these two fields

are very different. (Einstein was well aware of this; he was motivated by

deeper considerations.) Coulomb’s law and magnetostatics generalise to

Maxwell’s equations (1865) which unify electricity and magnetism into

a single mathematical framework, the theory of electromagnetism, while
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1.1 Newtonian Gravity 3

Newton’s law generalises to Einstein’s general theory of relativity (1916),

and Einstein’s equations are very different from Maxwell’s equations.

Both predict oscillating waves, electromagnetic waves for electromag-

netism (radio waves were discovered by Hertz in 1888) and gravitational

waves for general relativity (discovered more recently in 2016); but the

physics, and the mathematics, of the two theories turns out to be very

different – that minus sign, and the absence of negative masses, are just

the tip of the iceberg.2

It was Michael Faraday (1791–1867) who abstracted the notion of

a field from Coulomb’s law. He suggested that an electrically charged

particle generates an electric field,

E =
1

4πε0

q1

r2
r̂,

and a second particle, with charge q, then experiences a force,

F = qE,

in the presence of that field. Since the electrostatic force is conservative,

we can rephrase this in terms of the electrostatic potential. The electric

field E is the electric force per unit charge, and we define the electrostatic

potential ϕ for a distribution of charges through

E = −∇ϕ.

If we have N charges q1, . . . , qN at points r1, . . . , rN , they generate an

electrostatic potential at r given by

ϕ(r) =
1

4πε0

N∑
i=1

qi
|r− ri|

,

and the electrostatic force experienced by a charge q at the point r is

F = −q∇ϕ(r).

The electric field satisfies Gauss’ law and, when expressed as a differen-

tial equation, this is

∇.E = −∇2ϕ =
ρ

ε0
, (1.5)

where ρ is the charge density.

2 When quantum mechanics is taken into consideration, the situation is even worse:
a relativistic quantum theory of electromagnetism, quantum electrodynamics, or
QED, for which Richard Feynman, Sin-Itro Tomonaga, and Julian Schwinger
received the Nobel Prize in Physics, was fully developed in the 1940s, but a fully
credible quantum theory of gravity still eludes us.
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4 Introduction

Similar language can be used for Newtonian gravity – think of mass

m1 as creating a gravitational field,

g = −Gm1

r2
r̂, (1.6)

and then another mass m experiences a force,

F = mg.

The gravitational force is also conservative, and g, the acceleration due

to gravity, can be defined in terms of the gravitational potential, Φ, due

to a distribution of masses:

g = −∇Φ. (1.7)

If we have N point masses m1, . . . ,mN at points r1, . . . , rN , they

generate the gravitational potential

Φ(r) = −G
N∑
i=1

mi

|r− ri|
, (1.8)

and the gravitational force on a mass m at the point r is

F = −m∇Φ(r) = mg. (1.9)

The gravitational field g satisfies the gravitational version of Gauss’ law,

Poisson’s equation,

∇.g = −∇2Φ = −4πGρ, (1.10)

where ρ is the mass density. Again, the similarity between (1.5) and

(1.10) can be traced to the fact that the Coulomb force and the Newton-

ian gravitational force are both inverse square laws; the only difference

is that ρ
ε0

in (1.5) is replaced with −4πGρ in (1.10).

Forces cause things to accelerate, and here we meet an important

difference between electricity and gravity (which will turn out to be

crucial): mass plays two completely different roles in Newton’s universal

law of gravitation and in Newton’s second law. In Newton’s universal

law of gravitation (1.2), the gravitational field is (1.6) and m1 is like a

gravitational charge; it is a ‘charge’ generating a gravitational field. On

the other hand, in Newton’s second law, (1.9) written as

F = mIa,

with a = g, mI is the inertial mass, a measure of the reluctance, or

inertia, of a body to be accelerated. Two bodies with different inertial

masses experiencing the same force will undergo different accelerations;

the one with the larger inertial mass will accelerate more slowly.
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1.1 Newtonian Gravity 5

For example, a proton and a singly ionised atom of helium 4He+ both

experience the same force in a static electric field E,

F = qE,

where q = 1.60 × 10−19C is the charge of a proton. But they will

consequently have different accelerations – for the proton,

a =
q

mI
E,

where mI = 1.67 × 10−27kg is the inertial mass of a proton, while for

the ionised helium,

a =
q

MI
E,

where MI is the inertial mass of a helium atom (to a reasonable approxi-

mation some four times mI). Under the same force, the helium atom

undergoes an acceleration some four times less than that of the proton.

However, put the proton and the helium atom in the same gravi-

tational field g and the proton will experience a force determined by

Newton’s Universal Law of Gravitation (1.2), analogous to F = qE in

electrostatics,

F = mG g,

where mG here is the gravitational mass of the proton, while the helium

atom will feel a different force,

F = MG g,

where MG is the gravitational mass of the helium atom.

The proton then experiences an acceleration,

a =
F

mI
=
mG

mI
g,

while for the helium atom,

a =
F

MI
=
MG

MI
g.

Since inertial mass equals gravitational mass,3 mI = mG and MI = MG,

both the proton and the helium undergo exactly the same acceleration

in the gravitational field,

a = g.

3 More generally, inertial mass and gravitational mass are proportional to one
another, mI = kmG, with k some constant. But we are free to re-scale mG by
changing the units in which we define Newton’s constant, and it is a convention,
albeit a very natural one, to define G so that k = 1 and mI = mG. From now on
we shall not distinguish between gravitational mass and inertial mass.
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6 Introduction

The equality of gravitational and inertial mass is related to the dif-

ference between weight and mass. In elementary physics courses mass is

usually defined as force divided by acceleration,

m =
F

a
.

This is really the inertial mass. Weight, on the other hand, is the force

you feel on your feet when you stand on the floor, as a result of the

acceleration due to gravity; the upward force is

F = −mg,

if g is downwards, and m here is the gravitational mass. In outer space,

where g = 0, you are weightless, not massless.

This aspect of the gravitational force was understood even before

Newton discovered his Universal Law of Gravitation. There is the tale

(probably apocryphal) of Galileo dropping two different weights from

the top of the leaning tower of Pisa. A more modern demonstration was

when the Apollo 15 commander David Scott dropped a geological ham-

mer and a falcon’s feather onto the surface of the Moon and the world

saw them accelerate downwards at exactly the same rate and hit the

lunar surface at exactly the same time, despite the huge disparity in

their masses.4

This equivalence of inertial mass and gravitational mass has very far

reaching consequences. For example, it is impossible to tell the difference

between a uniform constant gravitational field and a constant acceler-

ation. Imagine standing in a featureless closed room, or box, with no

windows; you feel a force on your feet from the floor pushing against you

as the gravitational field of the Earth tries to accelerate you downwards,

but the solid floor stops the acceleration with an equal and opposite

force. Now imagine the box is in empty space far away from any source

of gravity, but it is in a rocket with a thruster that is accelerating it at

precisely 9.81 m s−2. You cannot tell the difference between the effects

of the acceleration due to the rocket’s thrusters and the Earth’s gravita-

tional field – they are indistinguishable because gravitational mass equals

inertial mass (see the two pictures on the right-hand side of Figure 1.1).

Now suppose the box is in a lift shaft and is suspended by a metal

cable. You feel the force of the floor on your feet. If the cable snaps,

however, you will suddenly be in free fall and the force on your feet

4 www.youtube.com/watch?v=KDp1tiUsZw8
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g

(a) (c)

(b) (d) a

f

a

g

f

Figure 1.1 The equivalence of inertial and gravitational mass. The

situation in a freely falling lift (a) is indistinguishable from that in a rocket

in empty space far removed from any gravitational field (b); objects just

float and experience no forces. An observer in a static box in a gravita-

tional field feels a force on his feet due to his weight f = −mg (c) which

is indistinguishable from the force due to acceleration (f = −ma) of an

accelerating rocket in empty space (d).

will disappear – as long as the box continues to accelerate downwards,

without hitting anything, you will float freely inside the box as if there

were no gravitational field at all, just like an astronaut in empty space

in a rocket that is not accelerating. (See the two pictures in parts (a)

and (b) of Figure 1.1.)

This is only true for uniform gravitational fields. In fact, the Earth’s

gravitational field is not uniform; it converges, and changes in magni-

tude, as one moves towards the centre of the Earth. If our experimenter
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Bob
Alice

f

Earth’s centre

g

g

Figure 1.2 Tidal forces. Bob, standing and watching a falling lift acceler-

ate past him, feels a force on his feet opposite in direction to the acceleration

due to gravity f = −mg. A non-uniform gravitational field can be detected

by someone floating in free fall (Alice). The gravitational field generated by

a spherical mass such as the Earth or the Moon is not uniform over large

distances; it converges towards a point at the centre of the mass, and this

gives rise to tidal forces. A uniform gravitational field would not generate

any tidal forces.

who is freely falling in the lift shaft (Alice) takes two objects (such as a

hammer and a feather) and releases them together at rest, they will just

float in front of her. But if she waits long enough (about 20 minutes for

free fall in a tunnel drilled through the Earth), she will see them start

to drift towards each other as the box gets nearer to the centre of the

Earth (see Figure 1.2). She will then know that there is a non-uniform

gravitational field present – this is an example of a tidal force. However,

as long as we restrict our considerations to regions of space over which

a gravitational field does not vary appreciably in either magnitude or

direction, we cannot tell the difference between a gravitational field and

an acceleration – this is known as the Equivalence Principle.5

5 Most textbooks distinguish between different kinds of Equivalence Principle, the
Weak Equivalence Principle and the Strong Equivalence Principle, depending on
how widely it is applied to physical phenomena. We shall not make that distinction
here.
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1.2 Equivalence Principle

Because inertial mass equals gravitational mass, all massive objects fol-

low the same trajectory in a gravitational field, if they start from the

same place with the same velocity. This observation led Einstein to

suggest that the trajectory of a falling body is not determined by any

properties of the body itself, such as its internal construction or constitu-

ent parts, but by the properties of the space (more correctly space-time)

in which the body moves – and the trajectories are not straight because

space-(time) is curved. In fact, freely falling bodies follow trajectories

between two points in space-time that extremise the time it takes to go

from one event to the other, as measured by a clock carried by the body

(called the body’s proper time).6

A simple example from 3-dimensional geometry illustrates Einstein’s

thinking. Consider an airplane flying from Delhi to Vancouver. To min-

imise fuel costs, the pilot wants to follow a route which takes the shortest

path between the two cities – this takes her close to the North Pole. Now

consider a second pilot flying from Mumbai to San Francisco; to minim-

ise his fuel costs he takes a trajectory that takes him south, as in Figure

1.3. We see from the figure that the planes initially diverge, then their

trajectories become parallel, and then they start converging. Each of the

pilots is taking the shortest path to their destination, and to each pilot

it looks as though the other plane is initially moving away but is being

pulled inexorably towards them by some ‘force’ which depends not on

the properties of the planes, but on the curvature of the Earth.

On a curved surface, the angles of a triangle do not necessarily add

up to 180◦. For example, on the surface of the Earth the angles of the

triangle with one vertex at the north pole, one in Quito (the capital

of Ecuador, on the equator 80◦W of the Greenwich meridian), and the

third in Libreville (the capital of Gabon, on the equator 10◦E of the

Greenwich meridian), the angles add to 90◦ + 90◦ + 90◦ = 270◦.

The German mathematician Gauss, one of the fathers of non-

Euclidean geometry, was involved in a land survey in Germany and

made many trigonometric measurements between 1818 and 1832. These

included measuring the angles of a large triangle with vertices at the tops

of three prominent hills near Göttingen in northern Germany. Within

6 We shall see that, for massive bodies, the proper time is maximised. There is a
principle in optics, Fermat’s principle of least time, which states that the path
taken by a beam of light in a refractive medium is that which minimises the time
taken for the light to travel between two fixed points within the medium, but this
is not the proper time of the light beam.
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Vancouver Delhi

Mumbai
San Francisco

Figure 1.3 Great circles. Two airplanes taking paths of shortest length on

the surface of the Earth. Technically the two paths are called great circles;

they are circles whose centre is the centre of the Earth and whose radius is

the radius of the Earth.

the accuracy of the measurements, the angles added up to the Euclidean

value of 180◦, giving no evidence of any curvature on the length scales

that were accessible to him.

A modern measurement was made by the Planck satellite in 2015.

This set limits on any spatial curvature of our Universe over cosmological

distances: if it is non-zero, it must involve length scales at least of order

1028m and possibly greater – some 100 times greater than the size of

the observable Universe. The Planck results are compatible with zero

spatial curvature.

However, any efforts to understand gravity in terms of the curvature

of 3-dimensional space were doomed to failure. The analogy with the

airline pilots is misleading, because in a gravitational field bodies with

different starting velocities have different trajectories; this is an indica-

tion that in gravity time must somehow enter the picture as well as space.

Having formulated his special theory of relativity in 1905 (which did not

include gravity), Einstein was in a unique position to make progress in

developing this idea further by postulating that, not just 3-dimensional

space but 4-dimensional space-time is curved. Einstein’s interpretation

of gravity is that tidal forces are a manifestation of a curvature of 4-

dimensional space-time and all particles starting from the same point

at the same time with the same velocity will follow the same trajec-

tory in a curved 4-dimensional space-time. This is Einstein’s Equivalence

Principle at work. Einstein commented some years after developing the
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general theory of relativity that, when this idea occurred to him, it was

‘the happiest thought of my life’.7

Understanding the consequences of these ideas requires studying the

geometry of curved 4-dimensional space-times. This is inevitably rather

technical mathematically, but before embarking on that journey let us

emphasise the philosophy here. In order to understand physics in a gravi-

tational field, we take the known laws of physics in flat 4-dimensional

space-time (called Minkowski space-time) and try to write them out for

a curved space-time. The complications of general relativity lie mainly

in learning how to write the laws of physics in a curved space-time.

Problems

1) Calculate the speed of a planet moving in a circular orbit of radius r

around a star of mass M . (Ignore the mass of the planet relative to

M .) Show that

v2 =
GM

r
.

2) Evaluate the escape velocity from the surface of a planet of mass M

and radius R. What is its value when R = 2GM/c2, where c is the

speed of light?

3) The geometry of an ellipse: Kepler’s first law of planetary motion

states that the planets move around the Sun in an ellipse with the

Sun at one focus. An ellipse is a very precise shape, and we will

need the mathematical formulation of that shape when we discuss

the Schwarzschild space-time later.

In Cartesian coordinates (x′, y′), with O′ as the origin, the equation

of an ellipse is

x′2

a2
+
y′2

b2
= 1.

If a > b, a is called the semi-major axis (half the larger diameter)

and b is the semi-minor axis (half the smaller diameter).

An ellipse can be drawn on a piece of paper by tying a piece of

string into a loop of length l, fixing two drawing pins into the paper

a distance d apart, looping the string around the drawing pins (this

requires l > 2d) and using the tip of a pencil to pull the string taut

7 Einstein, A., Fundamental ideas and methods of the theory of relativity, presented
in their development: in Collected papers of Albert Einstein vol. 7: The Berlin
years 1918–1921 (English translation), Princeton University Press (2002).
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and then move the pencil in an arc around the drawing pins, keeping

the string taut.

In the following unnumbered drawing, O′ is the symmetric centre of

the ellipse, one drawing pin is at O, and the other is at Õ, a distance

∆ = d
2 from O′, to its left. The points O and Õ are the called the

foci of the ellipse.

Show that:

a) l = 2(∆ + a).

b) r + r̃ = 2a.

c) Define r0 and e as shown in the figure: the distance from O to A

is r0
1−e and the distance from O to B is r0

1+e , with 0 ≤ e < 1. Show

that:

i) a = r0
1−e2 ;

ii) the distance between the centre O′ and a focus O is ∆ = er0
1−e2 ;

iii) b = r0√
1−e2 ;

iv) 2r0
1−e = l;

r
0

2a

r
0

r
0

2b
O’ O

∆

1−  
1+ 

P

∆

O
~

B

r

r
~ e

e

A

d) the equation of the ellipse in polar coordinates (r′, θ′) relative to

O′ is

r′2 =
r2
0

(1− e2)(1− e2 cos2 θ′)
;

e) the equation of the ellipse in polar coordinates (r, θ) relative to

the focus O is

r =
r0

(1 + e cos θ)
.
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f) the distance between the focus Õ and P is

r̃ =
r0(1 + 2e cos θ + e2)

(1− e2)(1 + e cos θ)
.

g) Calculate the area enclosed by the ellipse.

Note: you may find the following integral useful:∫ 2π

0

dθ

(1 + e cos θ)2
=

2π

(1− e2)3/2
.

4) Treating the Earth as a perfect sphere uniformly covered in water,

calculate the height of the tides raised by the Moon (ignoring the Sun)

and the height of the tides raised by the Sun (ignoring the Moon).

Which is the larger effect?

(The Earth has mass 5.97 × 1024kg and equatorial radius 6,370 km;

the Moon has mass 7.35× 1022kg and is 384,000 km from the Earth

on average; the Sun has mass 2.0×1030kg and is 150 million km from

the Earth on average.)
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