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Abstract
A realization is a triple, (𝐴, 𝑏, 𝑐), consisting of a 𝑑−tuple, 𝐴 = (𝐴1, · · · , 𝐴𝑑), 𝑑 ∈ N, of bounded linear operators
on a separable, complex Hilbert space, H, and vectors 𝑏, 𝑐 ∈ H. Any such realization defines an analytic non-
commutative (NC) function in an open neighbourhood of the origin, 0 := (0, · · · , 0), of the NC universe of 𝑑−tuples
of square matrices of any fixed size. For example, a univariate realization, i.e., where A is a single bounded linear
operator, defines a holomorphic function of a single complex variable, z, in an open neighbourhood of the origin
via the realization formula 𝑏∗(𝐼 − 𝑧𝐴)−1𝑐.

It is well known that an NC function has a finite-dimensional realization if and only if it is a non-commutative
rational function that is defined at 0. Such finite realizations contain valuable information about the NC rational
functions they generate. By extending to infinite-dimensional realizations, we construct, study and characterize
more general classes of analytic NC functions. In particular, we show that an NC function is (uniformly) entire if
and only if it has a jointly compact and quasinilpotent realization. Restricting our results to one variable shows
that a formal Taylor series extends globally to an entire or meromorphic function in the complex plane, C, if and
only if it has a realization whose component operator is compact and quasinilpotent, or compact, respectively.
This motivates our definition of the field of global (uniformly) meromorphic NC functions as the field of fractions
generated by NC rational expressions in the ring of NC functions with jointly compact realizations. This definition
recovers the field of meromorphic functions in C when restricted to one variable.
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1. Introduction

Realization theory has become a powerful tool in the study of analytic functions of several non-
commuting (NC), as well as commuting, variables. A holomorphic function of even a single complex
variable, z, can be a complicated object. Realization theory provides new functional analytic tools
for analyzing and understanding this complexity by constructing a ‘linear representation’ of such a
holomorphic function in terms of bounded linear operators on a Hilbert space, and a pair of Hilbert
space vectors. In particular, a univariate realization is a triple, (𝐴, 𝑏, 𝑐), consisting of a bounded linear
operator, 𝐴 ∈ ℬ(H), acting on a complex, separable Hilbert space, H, and vectors 𝑏, 𝑐 ∈ H. Any such
single-variable realization defines an analytic function in an open neighbourhood of the origin, 0 ∈ C,
via the formula,

ℎ(𝑧) := 𝑏∗(𝐼H − 𝑧𝐴)−1𝑐 =
∞∑
𝑛=0

𝑏∗𝐴𝑛𝑐 𝑧𝑛.

That is, the Taylor coefficients of h are given by the ‘moments’, ℎ̂𝑛 = 𝑏∗𝐴𝑛𝑐, of the realization, and this
Taylor series has positive radius of convergence, 𝑅ℎ ≥ ‖𝐴‖−1

ℬ(H) , since (𝐼H − 𝑧𝐴)−1 can be expanded
as an operator–norm convergent geometric series for any |𝑧 | < ‖𝐴‖−1. It follows that all information
about h (in the connected component of its domain containing 0), including the location and orders of
its zeroes and poles, is encoded in the operator–theoretic object, (𝐴, 𝑏, 𝑐), its realization.

As we observe in Lemma 3.2, a simple argument using Hardy spaces of square–summable power
series shows that the converse is also true. Namely, any function, h, is holomorphic in an open neigh-
bourhood of 0 ∈ C if and only if it has a realization, ℎ ∼ (𝐴, 𝑏, 𝑐). Indeed, if ℎ ∈ 𝒪(𝑟D) for any 𝑟 > 1,
then h is uniformly bounded in the complex unit disk, D. In this case, ℎ ∈ 𝐻2, the classical Hardy space
of square–summable Taylor series in D and Cauchy’s integral formula becomes

ℎ(𝑧) = 1
2𝜋𝑖

‰
𝜕D

ℎ(𝜁)
𝜁 − 𝑧 𝑑𝜁

=
1

2𝜋

ˆ 2𝜋

0

ℎ(𝑒𝑖 𝜃 )
1 − 𝑒−𝑖 𝜃 𝑧

𝑑𝜃

= 〈1, (𝐼 − 𝑧𝑀𝜁 )
−1ℎ〉𝐿2 (𝜕D) = 𝑏

∗(𝐼 − 𝑧𝐴)−1𝑐,

with 𝐴 := 𝑆∗, the adjoint of the shift operator, 𝑆 = 𝑀𝑧 , on 𝐻2, 𝑏 = 1 and 𝑐 = ℎ. This construction
can be extended to give a realization of any function that is holomorphic in an open neigbourhood of
0 by ‘rescaling the argument’. That is, Cauchy’s integral formula becomes a realization formula and
realizations of holomorphic functions are ubiquitous. This argument also extends readily to several NC
variables; see the proof of Lemma 3.2.
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A natural question that has motivated our work here is how different classes of realizations correspond
to different classes of holomorphic functions. Indeed, it is well known that 𝔯 is a (univariate) rational
function if and only if it has a finite-dimensional realization, 𝔯 ∼ (𝐴, 𝑏, 𝑐) ∈ C𝑛×𝑛 × C𝑛 × C𝑛, 𝑛 ∈ N,
and 𝑝 ∈ C[𝑧] is a polynomial if and only if it has a finite and nilpotent realization, 𝑝 ∼ (𝐴′, 𝑏′, 𝑐′),
i.e., with 𝐴′ a nilpotent matrix [49, 63]. Finite-dimensional realizations of rational functions in one and
several non-commuting variables have been studied extensively, and the theory of finite-dimensional
realizations has been developed and independently rediscovered in several fields including the theory
of non-commutative (NC) rational functions in NC algebra, in systems and control theory, and in free
probability theory [53, 22, 24, 14, 36, 7, 27, 26].

The theory of not necessarily finite realizations is not as well developed, although infinite-dimensional
operator realizations have appeared in several contexts – for example, in the engineering literature [7],
and in the de Branges–Rovnyak and Nagy–Foias model theories for linear contractions on Hilbert space
[19, 20, 57]. One of our main goals is to develop a general theory of realizations and to determine
how properties of classes of operators and realizations are related to the corresponding classes of
holomorphic functions that they generate.

Although we develop a general theory of realizations for holomorphic functions in several non-
commuting variables, many of our results remain new when restricted to the classical setting of holo-
morphic functions of a single complex variable. Corollary 4.4 shows that a univariate formal power
series, ℎ ∈ C[[𝔷]], is the Taylor series of an entire function if and only if it is given by a realization
(𝐴, 𝑏, 𝑐) with A compact and quasinilpotent, and given any entire function Theorem 4.3 builds such
a realization explicitly from its Taylor series coefficients. Since any univariate meromorphic function,
g, in C, is a ratio of entire functions, a straightforward application of the realization algorithm for
sums, products and inverses of holomorphic functions then yields Corollary 5.1, which asserts that any
meromorphic function, g, which is analytic at 0, has a compact realization, 𝑔 ∼ (𝐴, 𝑏, 𝑐) (i.e., with
𝐴 ∈ 𝒞(H) a compact linear operator). Theorem 5.3 then establishes the converse, so that a univariate
formal power series, g, is the Taylor series of a meromorphic function in C (which is locally analytic
at 0), if and only if 𝑔 ∼ (𝐴, 𝑏, 𝑐), with 𝐴 ∈ 𝒞(H). Theorem 5.3 further shows that detailed infor-
mation about the location and multiplicities of the poles and zeroes of such a meromorphic g can be
obtained from the spectrum of A and of the rank-one perturbation 𝐴 − 𝑔(0)−1𝑐𝑏∗, respectively (assum-
ing 𝑔(0) ≠ 0). Finally, restricting Theorem 6.10 to one variable shows that the sets of meromorphic
functions given by realizations (𝐴, 𝑏, 𝑐), with A in the Schatten 𝑝−classes, 𝒯𝑝 (H), of compact oper-
ators obeying tr |𝐴|𝑝 < +∞, 𝑝 ∈ [1, +∞), are local rings whose fields of fractions form a chain of
distinct and proper sub-fields of the field of all meromorphic functions in C. Any entire 𝑔 ∼ (𝐴, 𝑏, 𝑐),
with quasinilpotent 𝐴 ∈ 𝒯𝑝 (H) (and with 𝑔(0) ≠ 0), is such that its sequence of zeroes, (𝑧 𝑗 ), re-
peated according to order is inversely 𝑝−summable; i.e.,

∑ 1
|𝑧 𝑗 |𝑝 < +∞, and this places bounds on the

genus of g.

In full generality, a multivariate realization is a triple, (𝐴, 𝑏, 𝑐), consisting of a 𝑑−tuple, 𝐴 :=

(
𝐴1
...
𝐴𝑑

)
∈

ℬ(H)𝑑 of bounded linear operators on a separable, complex Hilbert space,H, and vectors 𝑏, 𝑐 ∈ H. Any
such realization defines a free formal power series (FPS) in the d NC formal variables, 𝔷 = {𝔷1, · · · 𝔷𝑑},

ℎ(𝔷) :=
∑
𝜔∈F𝑑+

𝑏∗𝐴𝜔𝑐 𝔷𝜔 .

The coefficients of h are ℎ̂𝜔 := 𝑏∗𝐴𝜔𝑐 ∈ C, where 𝜔 = 𝑖1 · · · 𝑖𝑛 is any word comprised of letters, 𝑖 𝑗 ,
chosen from the alphabet {1, · · · , 𝑑}, and F𝑑+ is the free monoid consisting of all words, with product
given by concatenation of words and with unit ∅, the empty word, containing no letters. The free
monomial 𝔷𝜔 is defined in the obvious way: if 𝜔 = 𝑖1 · · · 𝑖𝑛, then 𝔷𝜔 = 𝔷𝑖1 · · · 𝔷𝑖𝑛 and 𝔷∅ =: 1. The free
algebra of all free or NC polynomials in the variables 𝔷 is denoted by C〈𝔷〉, and the ring of all free
formal power series (FPS) with complex coefficients will be denoted by C〈〈𝔷〉〉.
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In syzygy with the univariate case, any realization, (𝐴, 𝑏, 𝑐) ∈ ℬ(H)𝑑 ×H×H, defines a uniformly
analytic NC function in a uniformly open NC neighbourhood of the origin of the 𝑑−dimensional complex
NC universe, consisting of all 𝑑−tuples of complex square matrices, of any fixed size, 𝑛 ∈ N. Here,
the adjective ‘uniformly’ refers to the uniform topology on the NC universe, which we will define in
Section 2, the origin of the NC universe is the 𝑑−tuple 0 := (0, · · · , 0) ∈ C1×𝑑 , an NC set is any direct
sum-closed subset of the NC universe, and an NC function is any function on an NC subset that respects
(i) the grading (matrix size), (ii) direct sums and (iii) joint similarities; see Subsection 1.2 for more
details and Subsection 2.1 for precise definitions. Given a realization, (𝐴, 𝑏, 𝑐) ∈ ℬ(H)𝑑 ×H×H, and
any point 𝑍 := (𝑍1, · · · , 𝑍𝑑), 𝑍 𝑗 ∈ C𝑛×𝑛, at level 𝑛 ∈ N of the NC universe, the realization formula,

ℎ(𝑍) := 𝐼𝑛 ⊗ 𝑏∗���𝐼𝑛 ⊗ 𝐼H −
𝑑∑
𝑗=1

𝑍 𝑗 ⊗ 𝐴 𝑗
	
�
−1

𝐼𝑛 ⊗ 𝑐,

defines a (uniformly) analytic (and holomorphic) NC function in a uniformly open neighbourhood of 0.
As in the univariate case, the linear pencil of A,

𝐿𝐴(𝑍) := 𝐼𝑛 ⊗ 𝐼H −
𝑑∑
𝑗=1

𝑍 𝑗 ⊗ 𝐴 𝑗 =: 𝐼𝑛 ⊗ 𝐼H − 𝑍 ⊗ 𝐴,

will be invertible for any 𝑍 = (𝑍1, · · · , 𝑍𝑑) ∈ C𝑛×𝑛 ⊗ C1×𝑑 so that

‖(𝑍1, · · · , 𝑍𝑑)‖ℬ(C𝑛⊗C𝑑 ,C𝑛) <

�����
(
𝐴1
...
𝐴𝑑

)�����−1

ℬ(H,H⊗C𝑑)

.

In this case 𝐿𝐴(𝑍)−1 can be expanded as a convergent geometric series to yield the evaluation of a free
FPS representation of h at Z,

ℎ(𝑍) = 𝐼𝑛 ⊗ 𝑏∗
∞∑
𝑗=0

(𝑍 ⊗ 𝐴) 𝑗 𝐼𝑛 ⊗ 𝑐 =
∑
𝜔∈F𝑑+

𝑏∗𝐴𝜔𝑐 𝑍𝜔 .

1.1. Outline and summary of new results

The subsequent subsection describes the history of realization theory and its parallel development in
several branches of mathematics. Following this, Section 2 provides some preliminary background
material on realizations, free FPS and NC function theory. Our first main results appear in Section
3, where we define a notion of minimality for an operator realization, (𝐴, 𝑏, 𝑐), based on cyclicity of
the vectors 𝑏, 𝑐 for 𝐴∗ and A. Theorem 3.6 proves that minimal realizations are unique up to unique
pseudo-similarity (i.e., a generally unbounded, closed, ‘similarity’), and Theorem 3.12 shows that a
minimal realization can be constructed from any realization, via compression to a certain semi-invariant
‘minimal’ subspace. As demonstrated in Example 3.10, pseudo-similarity is an extremely weak relation
which preserves few spectral properties of realizations or of domains of NC functions. This example
shows that the Volterra operator, which is quasinilpotent and compact, is pseudo-similar to the backward
shift on the Hardy space, 𝐻2. In Subsection 3.4, we initiate the construction and study of operator–
realizations about a matrix–centre, 𝑌 = (𝑌1, · · · , 𝑌𝑑) ∈ C𝑚×𝑚 ⊗ C1×𝑑 , in the domain of a uniformly
analytic NC function, f. We will leave a full development of this theory, as is done for NC rational
functions in [46, 47], to future research. Our main motivation for introducing matrix–centre realizations
is to use them as a tool in our construction of the skew field of global uniformly meromorphic NC
functions, ℳ𝒞

0 , 𝒞 := 𝒞(H)𝑑 , generated by all NC functions with jointly compact realizations, as
well as to show that this skew field sits properly between the free skew field, C<( 𝔷>) , of all NC rational
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functions, and the skew field of uniformly meromorphic NC germs at 0, ℳ𝑢
0 . (The adjective skew simply

means non-commutative.) Here, an NC rational expression is any valid rational expression in elements
of the free algebra, and an NC rational function is a suitably defined ‘evaluation’ equivalence class of
such expressions.

The ring of all uniformly analytic NC germs at 0, 𝒪𝑢0 , where 0 = (0, · · · , 0) denotes the origin of
the NC universe, consists of equivalence classes of uniformly analytic NC functions whose evaluations
agree in a uniformly open neighbourhood of 0. This local theory of analytic germs of NC functions
was recently developed by Klep, Vinnikov and Volčič in [39], where it was proven that 𝒪𝑢0 is a semifir
or semi-free ideal ring in the sense of P.M. Cohn [15]. This is a class of non-commutative rings that
admit (necessarily unique) universal skew fields of fractions. (See Section 6 for the formal definition of
a semifir and of the universal skew field of fractions of a ring.) The universal skew field, ℳ𝑢

0 , of 𝒪𝑢0 , is
called the skew field of uniformly meromorphic NC germs at 0, and it can be constructed by considering
‘local evaluation’ equivalence classes (at 0) of NC rational expressions composed with elements of 𝒪𝑢0
[39]. Our elementary Lemma 3.2 shows that one can identify 𝒪𝑢0 with 𝒪ℬ

0 , ℬ := ℬ(H)𝑑 , the ring of
all NC functions that have an operator realization. For this reason, we will also sometimes write ℳℬ

0
in place of ℳ𝑢

0 . We will say that any NC function or free FPS, h, that has an operator realization,
(𝐴, 𝑏, 𝑐) ∈ ℬ(H)𝑑 × H × H, is familiar, and we write ℎ ∼ (𝐴, 𝑏, 𝑐) in this case.

Section 4 provides a complete realization–theoretic characterization of uniformly entire NC functions,
as well as of entire and meromorphic functions of a single complex variable. (Here, an NC function is
uniformly entire if it is uniformly analytic everywhere in the entire NC universe and bounded on any
NC ball of finite radius. Equivalently, an NC function is uniformly entire if it is given by a free FPS with
an infinite radius of convergence; see Definition 2.1.) In Theorem 4.5 and Corollary 4.4, we prove the
following:

Theorem. A free formal power series, ℎ ∈ C〈〈𝔷〉〉 = C〈〈𝔷1, · · · , 𝔷𝑑〉〉, in 𝑑 ∈ N variables, defines a
uniformly entire NC function if and only if it has a realization (𝐴, 𝑏, 𝑐) with 𝐴 ∈ 𝒞(H)𝑑 jointly compact
and quasinilpotent. Moreover, if h is uniformly entire, then it has a minimal compact and quasinilpotent
realization that is the norm limit of finite-rank and jointly nilpotent realizations.

In the above theorem statement, a 𝑑−tuple of linear operators, 𝐴 ∈ ℬ = ℬ(H)𝑑 , is jointly nilpotent
if there is an 𝑛 ∈ N so that 𝐴𝜔 ≡ 0 for any word, 𝜔 = 𝑖1 · · · 𝑖𝑚, of length |𝜔| = 𝑚 > 𝑛. A 𝑑−tuple
of linear operators, 𝐴 ∈ ℬ is then jointly quasinilpotent, or simply, quasinilpotent, if the linear map
Ad𝐴,𝐴∗ : ℬ(H) → ℬ(H), defined by Ad𝐴,𝐴∗ (𝑇) :=

∑𝑑
𝑗=1 𝐴 𝑗𝑇𝐴

∗
𝑗 , is quasinilpotent as an element of the

unital Banach algebra, ℬ(𝑋), of bounded linear maps on the Banach space 𝑋 = ℬ(H). This theorem is
consistent with, and a natural extension of a well-known fact: A uniformly analytic NC function, h, with
0 ∈ Dom ℎ is a free polynomial, ℎ = 𝑝 ∈ C〈𝔷〉, and hence uniformly entire, if and only if h has a finite-
dimensional realization that is jointly nilpotent; see, for example, [30] or [33, Section 6]. If (𝐴, 𝑏, 𝑐) is
a minimal realization with 𝐴 ∈ ℬ(H)𝑑 jointly nilpotent, then H is necessarily finite-dimensional.

In particular, setting 𝑑 = 1 in the above theorem statement yields a new characterization of entire
functions of a single complex variable.

Theorem. A univariate formal power series, ℎ ∈ C[[𝔷]], is the Taylor series of an entire function in C if
and only if it has a compact and quasinilpotent realization (𝐴, 𝑏, 𝑐) – that is, with 𝐴 ∈ 𝒞(H) compact
and quasnilpotent.

Since any meromorphic function of a single complex variable is a ratio of entire functions, the
standard realization algorithm for sums, products and inverses (see Subsection 3.3) readily implies that
any single-variable meromorphic function has a compact realization, and we prove the converse of this
in Theorem 5.1 and Theorem 5.3.

Theorem. Let 𝑓 ∈ C[[𝔷]] be a formal power series in one variable. Then f is the Taylor series of a
meromorphic function (which is analytic at 0) if and only if it has a compact realization, (𝐴, 𝑏, 𝑐), i.e.,
with 𝐴 ∈ 𝒞(H).
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Motivated by these results, and the fact that a reasonable definition of a uniformly meromorphic NC
function would be any NC rational expression in uniformly entire NC functions, we define the ring of
all uniformly meromorphic NC functions that are analytic in a uniformly open neighbourhood of 0,
𝒪𝒞

0 , 𝒞 = 𝒞(H)𝑑 , where again, 𝒞(H) denotes the compact linear operators on H, as the set of all NC
functions with jointly compact operator realizations. If a familiar NC function, f, has the realization,
(𝐴, 𝑏, 𝑐), the invertibility domain of A, 𝒟(𝐴), is the uniformly-open and joint-similarity invariant NC
subset of the NC universe consisting of all 𝑋 = (𝑋1, · · · , 𝑋𝑑) in the NC universe for which the linear
pencil, 𝐿𝐴(𝑋), is invertible. While invertibility domains of different minimal realizations for the same
familiar NC function can be very different, compact realizations exhibit much better behaviour:

Theorem (Theorem 5.1, Theorem 5.3, Theorem 5.5 and Theorem 5.8). Any two minimal and compact
realizations of the same NC function, f, have the same invertibility domains and the invertibility domain
of any minimal compact realization of f is equal to the largest NC domain on which f can be defined. If
𝑓 ∼ (𝐴, 𝑏, 𝑐) with jointly compact 𝐴 ∈ 𝒞, then the invertibility domain, 𝒟(𝐴), of the linear pencil, 𝐿𝐴,
is analytic–Zariski open and dense as well as matrix-norm open and connected at every level, 𝑛 ∈ N.
If 𝑋 = (𝑋1, · · · , 𝑋𝑑) ∈ C𝑛×𝑛 ⊗ C1×𝑑 and f has a compact realization, then the matrix-valued function
𝑓 (𝜆𝑋), 𝜆 ∈ C, is meromorphic.

In particular, in one-variable we obtain the following:

Corollary 5.4. If 𝐴 ∈ 𝒞(H) and 𝐴′ ∈ 𝒞(H′) are analytically equivalent in the sense that there exist
𝑏, 𝑐 ∈ H and 𝑏′, 𝑐′ ∈ H′ so that (𝐴, 𝑏, 𝑐) and (𝐴′, 𝑏′, 𝑐′) are minimal compact realizations for the same
meromorphic function, then A and 𝐴′ have the same spectrum. In this case, 𝜎(𝐴) \ {0} = 𝜎(𝐴′) \ {0} is
either the empty set, or equal to {𝜆 𝑗 }𝑁𝑗=1, 𝑁 ∈ N ∪ {+∞}, where each 𝜆 𝑗 ∈ 𝜎(𝐴) \ {0} is an eigenvalue
of finite multiplicity. For each 0 ≠ 𝜆 𝑗 ∈ 𝜎(𝐴), the size of the largest Jordan blocks in the Jordan normal
forms of 𝐴 𝑗 = 𝐴|Ran𝐸 𝑗 (𝐴) , and of 𝐴′

𝑗 , where 𝐸 𝑗 (𝐴) is the Riesz idempotent so that 𝜎(𝐴 𝑗 ) is equal to
the singleton, {𝜆 𝑗 }, are the same, and the Riesz idempotents 𝐸 𝑗 (𝐴), 𝐸 𝑗 (𝐴′) have the same rank.

Theorem 5.3. Let 𝑓 ∼ (𝐴, 𝑏, 𝑐), where 𝐴 ∈ 𝒞(H) is compact. Then f is a meromorphic function in C
which is analytic in an open neighbourhood of 0. If (𝐴, 𝑏, 𝑐) is minimal, and if ∅ ≠ 𝜎(𝐴)\{0} = {𝜆 𝑗 }𝑁𝑗=1,
𝑁 ∈ N ∪ {+∞}, then the set of poles of f is equal to the set of points {𝑧 𝑗 = 1/𝜆 𝑗 }𝑁𝑗=1. The size of the
largest Jordan block in the Jordan normal form of 𝐴 𝑗 = 𝐴|Ran𝐸𝜆 𝑗 (𝐴) is an upper bound for the order of
the pole 𝑧 𝑗 .

In Section 6, we investigate when a subset 𝒮 ⊆ ℬ = ℬ(H)𝑑 of operator 𝑑−tuples generates a
sub-semifir of the ring of uniformly analytic germs, 𝒪𝑢0 = 𝒪ℬ

0 . That is, given any subset 𝒮 ⊆ ℬ, we
investigate when the set of all NC functions, f, with realizations 𝑓 ∼ (𝐴, 𝑏, 𝑐), 𝐴 ∈ 𝒮, is a semi-free
ideal ring, 𝒪𝒮

0 , so that 𝒪𝒮
0 � 𝒪ℬ

0 and so that we also have proper containment of the universal fields
of fractions of these semifirs, ℳ𝒮

0 � ℳℬ
0 = ℳ𝑢

0 . For example, the set, C0<( 𝔷>) , of all NC rational
functions defined at 0 is a semifir with universal skew field of fractions, C<( 𝔷>) , the free skew field of all
NC rational functions [3, 15, 16]. Moreover, it is well known that 𝔯 ∈ C0<( 𝔷>) is an NC rational function
defined at 0 if and only if it has a finite-rank realization [37, 53]. It follows that if ℱ(H) denotes the ideal
of all finite-rank operators on H, and ℱ := ℱ(H)𝑑 , the containment ℱ ⊆ ℬ yields the containment of
semifirs, C0<( 𝔷>) = 𝒪ℱ

0 ⊆ 𝒪ℬ
0 = 𝒪𝑢0 . Further defining 𝒞 = 𝒞(H)𝑑 to be the set of 𝑑−tuples of compact

operators and 𝒯𝑝 := 𝒯𝑝 (H)𝑑 to be 𝑑−tuples of operators in the Schatten 𝑝−classes of compact linear
operators obeying tr |𝐴|𝑝 < +∞, we obtain the following:

Theorem 6.10. The sets, 𝒪𝒞
0 and 𝒪

𝒯𝑝

0 , 𝑝 ∈ [1, +∞), of free FPS with jointly compact and Schatten
𝑝−class realizations, respectively, are semifirs, and for any 1 ≤ 𝑞 < 𝑝 < +∞, we have the proper
inclusions:

C0<( 𝔷>) = 𝒪ℱ
0 � 𝒪

𝒯𝑞

0 � 𝒪
𝒯𝑝

0 � 𝒪𝒞
0 � 𝒪ℬ

0 = 𝒪𝑢0 .
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These proper inclusions also hold for the universal skew fields of fractions of these semifirs,

C<( 𝔷>) = ℳℱ
0 �ℳ

𝒯𝑞

0 �ℳ
𝒯𝑝

0 �ℳ𝒞
0 �ℳℬ

0 = ℳ𝑢
0 .

Since we have identified𝒪𝒞
0 as the ring of global uniformly meromorphic NC functions with analytic

germs at 0, we define the skew field of all global uniformly meromorphic NC functions as the universal
skew of field of fractions, ℳ𝒞

0 , of the semifir 𝒪𝒞
0 , 𝒞 = 𝒞(H)𝑑; see Subsection 6.1.

Elements of ℳ𝑢
0 = ℳℬ

0 are inherently local objects (i.e., they are uniformly meromorphic NC germs
at 0). However, as we will show in Theorem 6.4 and Subsection 6.1, any uniformly meromorphic NC
germ, f, in the universal skew sub-field generated by familiar NC functions with compact realizations,
ℳ𝒞

0 � ℳ𝑢
0 , extends uniquely to a uniformly analytic NC function on a uniformly open and joint-

similarity invariant NC domain that is analytic–Zariski open and dense, hence matrix–norm open and
connected, at every level, n, of the NC universe, for sufficiently large n. This motivates and justifies our
interpretation of ℳ𝒞

0 as the skew field of global uniformly meromorphic NC functions.

1.2. Mathematical and historical context

Recall that if a free FPS, ℎ ∈ C〈〈𝔷〉〉 is given by a realization, (𝐴, 𝑏, 𝑐) ∈ ℬ(H)𝑑×H×H, in the sense that

ℎ(𝔷) =
∑
𝜔∈F𝑑+

𝑏∗𝐴𝜔𝑐 𝔷𝜔 ,

we will write ℎ ∼ (𝐴, 𝑏, 𝑐). Any such h can be viewed as a freely non-commutative function in the
sense of NC function theory, a relatively recent and deep extension of classical complex analysis and
analytic function theory to several NC variables [59, 58, 35, 1]. In particular, any free polynomial
can be evaluated on any 𝑑−tuple of complex 𝑛 × 𝑛 matrices, and hence defines a function on the
𝑑−dimensional NC universe. A free polynomial, 𝑝 ∈ C〈𝔷〉, viewed as a function on the NC universe,
has three basic properties: (i) p respects the grading (matrix size), (ii) p respects direct sums, and (iii) p
respects joint similarities. In modern NC function theory, these three properties are taken as the axioms
defining a free or non-commutative function, which is any function defined on an NC set obeying (i)–(iii)
[59, 35]. These axioms, which are natural and may seem innocuous, are surprisingly rigid. Namely, any
NC function on an ‘open NC set’ which is ‘locally bounded’ is automatically holomorphic. That is, such
a function is Fréchet differentiable at any point in its NC domain and it is analytic in the sense that it has
a Taylor-type power series expansion about any point in its domain with non-zero radius of convergence
[35, Theorem 7.21, Theorem 8.11]. (In order to precisely define ‘open’ and ‘locally bounded’, we need
to define a suitable topology on the NC universe, which we will do in the next section. The topology
most relevant to us is called the uniform topology [35, Section 7.2].)

NC function theory was pioneered by J.L. Taylor in his work on multivariate spectral theory and
functional calculus for 𝑑−tuples of non-commuting operators [59, 58]. Some of his results were redis-
covered and developed independently by D.-V. Voiculescu in his operator-valued free probability theory
[60, 61]. These works of Taylor have become extremely influential in the last decade or so, with sev-
eral groups of prominent researchers advancing what is now called free analysis or NC function theory
[35, 1]. This renaissance in NC function theory has been precipitated by an influx of both algebraic and
analytic techniques. Fundamental links have been forged between NC function theory and several estab-
lished branches of mathematics including NC algebra – in particular, P.M. Cohn’s theory of localization
of non-commutative rings, invariant theory, convex analysis, algebraic geometry, systems and control
theory, and operator algebra theory [5, 42, 50, 51, 39, 31, 30, 38, 40, 6, 11].

The theory of non-commutative rational functions, in particular, lies at the intersection of NC algebra
and free analysis, and some of the earliest appearances of realizations are found in the study of NC
rational functions. From an algebraic perspective, the set of all NC rational functions is the free skew
field, C<( 𝔷>) , as introduced by P.M. Cohn [15, 16]. As proven by Amitsur, the free skew field is a
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universal object, the universal skew field of fractions of the free algebra [3, 15, 16]. By a theorem
of Kleene and Schützenberger, a free formal power series, ℎ ∈ C〈〈𝔷〉〉, is recognizable (i.e., admits a
finite-dimensional realization) if and only if it defines an NC rational function, ℎ = 𝔯 ∈ C<( 𝔷>) , with
0 ∈ Dom 𝔯 [37, 53]. (This is related to the multivariate generalization of a classical result of Kronecker,
which provides a criterion for recognizing when a one-variable formal power series is the Taylor series
of a rational function [41].) If a free FPS is not recognizable, we say it is unrecognizable. More generally
and motivated by this accepted terminology of ‘recognizable formal power series’ [13], we will say
that any FPS that admits a (not necessarily finite) operator realization is familiar, and that any FPS that
does not admit any realization is unfamiliar; see Definition 3.1. Realizations of NC rational functions
originated in the work of Schützenberger in automata theory, and were further developed by Cohn
and Reutenauer in the context of NC algebra [15, 13]. This technique was rediscovered independently
by Fliess in systems and control theory as well as by Haagerup and Thorbjørnsen in the setting of
free probability theory [22, 23, 24, 26, 27]. Finite realizations contain useful information about the
corresponding NC rational functions they generate, and we will see that this is also true for more
general, infinite-dimensional operator realizations.

While infinite-dimensional realizations have not been studied as thoroughly in their own right, they
have appeared previously in the literature. In the de Branges–Rovnyak theory of contractive multipliers
between vector–valued Hardy spaces and in the Nagy–Foias and de Branges–Rovnyak model theories
for linear contractions on Hilbert space, the characteristic functions of such linear contractions are
contractive, matrix or operator-valued analytic functions in the complex unit disk and are constructed
via certain realizations [19, 20, 57]. Also see [10, 29], which consider one-variable realizations that
are generally infinite-dimensional. Here, the classical Hardy space, 𝐻2, is the Hilbert space of square–
summable Taylor series in the complex unit disk. The classical Hardy space has natural multivariate
generalizations, namely, the commutative Drury–Arveson space of analytic functions in the open unit
ball of C𝑑 , and the non-commutative free Hardy space or full Fock space of square–summable formal
power series in several NC variables [4, 44]. The de Branges–Rovnyak realization theory has been
extended to the multivariate setting for contractive multipliers between vector–valued Drury–Arveson
and free Hardy spaces by Ball–Bolotnikov–Fang in [8, 9]. In particular, any contractive left multiplier
of the free Hardy space has a de Branges–Rovnyak realization, and this is an operator realization that is
generally infinite-dimensional. Although our main focus will be on the realization theory of uniformly
analytic NC functions, operator realizations of free holomorphic maps, in the sense of the ‘free topology’
on the NC universe, were constructed by Agler, McCarthy and Young in [1]. In this paper, we develop a
general theory of realizations and apply it to characterize the ring of uniformly entire NC functions and
to construct a skew field of (global) uniformly meromorphic NC functions.

2. Background

2.1. NC Function Theory

The 𝑑−dimensional complex NC universe, C(N×N) ·𝑑 , is the graded set of all row 𝑑−tuples of square
matrices of any fixed size, 𝑛 ∈ N:

C(N×N) ·𝑑 :=
∞⊔
𝑛=1
C(𝑛×𝑛) ·𝑑; C(𝑛×𝑛) ·𝑑 := C𝑛×𝑛 ⊗ C1×𝑑 .

Given any row 𝑑−tuple 𝑍 = (𝑍1, · · · , 𝑍𝑑) ∈ C(𝑛×𝑛) ·𝑑 , we will view Z as a linear map from d copies of
C𝑛 into one copy, and we define the row-norm of Z as the norm of this linear map:

‖𝑍 ‖row := ‖𝑍 ‖ℬ(C𝑛⊗C𝑑 ,C𝑛) =

√√√√√������ 𝑑∑
𝑗=1

𝑍 𝑗𝑍
∗
𝑗

������.
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When we write 𝑍∗, this will then denote the Hilbert space adjoint of the linear map 𝑍 : C𝑛 ⊗ C𝑑 → C𝑛.
That is,

𝑍∗ =
����
𝑍∗

1
...
𝑍∗
𝑑

	

� : C𝑛 → C𝑛 ⊗ C𝑑 .

We will also, on occasion, need to consider col(𝑍) :=

(
𝑍1
...
𝑍𝑑

)
and row(𝑍∗) := (𝑍∗

1 , · · · , 𝑍
∗
𝑑). In this case,

given 𝑍 ∈ C(𝑛×𝑛) ·𝑑 ,

‖𝑍 ‖col := ‖col(𝑍)‖ℬ(C𝑛 ,C𝑛⊗C𝑑) =

√√√√√������ 𝑑∑
𝑗=1

𝑍∗
𝑗𝑍 𝑗

������.
If the row-norm of 𝑍 ∈ C(𝑛×𝑛) ·𝑑 is less than or equal to 1, we say Z is a row contraction, and if

‖𝑍 ‖row < 1, we say Z is a strict row contraction. The NC unit row-ball, B(N×N) ·𝑑 , is the open unit ball
of C(N×N) ·𝑑 with respect to this row-norm. The uniform topology on C(N×N) ·𝑑 is related to the topology
generated by the row pseudo-metric. Namely, given 𝑍 ∈ C(𝑛×𝑛) ·𝑑 and𝑊 ∈ C(𝑚×𝑚) ·𝑑 ,

𝑑row(𝑍,𝑊) := ‖𝑍 ⊕𝑚 −𝑊 ⊕𝑛‖row,

and the NC unit row-ball, B(N×N) ·𝑑 , then consists of all Z so that 𝑑row(𝑍, 0) < 1. A sub-base for the row
pseudo-metric topology is given by the row-balls centred at any 𝑌 ∈ C(𝑚×𝑚) ·𝑑 ,

𝑟 · B(N×N) ·𝑑 (𝑌 ) :=
∞⊔
𝑚=1

{𝑋 ∈ C(N×N) ·𝑑 | 𝑑row(𝑋,𝑌 ) < 𝑟}.

The uniform topology on C(N×N) ·𝑑 is the topology generated by the sub-base of sets, 𝑟 · B𝑑𝑚N(𝑌 ) ⊆
𝑟 · B(N×N) ·𝑑 (𝑌 ), where if 𝑌 ∈ C(𝑚×𝑚) ·𝑑 , then B𝑑𝑚N(𝑌 ) contains only the levels 𝑚𝑛, 𝑛 ∈ N,

𝑟 · B𝑑𝑚N(𝑌 ) :=
∞⊔
𝑛=1

{𝑋 ∈ C(𝑚𝑛×𝑚𝑛) ·𝑑 | 𝑑row(𝑋,𝑌 ) < 𝑟}.

As explained in [35, Proposition 7.18], there is subtle difference between the uniform topology and the
topology generated by 𝑑row, and the topology generated by the row pseudo-metric is strictly weaker than
the uniform topology. The main difference is that these open sets, B𝑑𝑚N(𝑌 ), need not be closed under
direct summands. This difference, however, will not play a significant role in this paper.

An NC set is any subset, Ω ⊆ C(N×N) ·𝑑 , that is closed under direct sums. Hence, any such Ω can be
written as a graded set,

Ω =
∞⊔
𝑛=1

Ω𝑛, Ω𝑛 := Ω ∩ C(𝑛×𝑛) ·𝑑 .

A freely non-commutative function, or more simply, NC function on an NC set Ω ⊆ C(N×N) ·𝑑 , is any
function 𝑓 : Ω → CN×N, where CN×N denotes the one-dimensional NC universe, that obeys the three
axioms:
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1. 𝑓 : Ω𝑛 → C𝑛×𝑛, i.e., f is graded, or f preserves matrix size.
2. Given 𝑋 ∈ Ω𝑛 and 𝑌 ∈ Ω𝑚,

𝑓

(
𝑋 0
0 𝑌

)
=

(
𝑓 (𝑋) 0

0 𝑓 (𝑌 )

)
,

i.e., f preserves direct sums.
3. If 𝑆 ∈ GL𝑛 is any invertible matrix, 𝑋 ∈ Ω𝑛, and

𝑆−1𝑋𝑆 := (𝑆−1𝑋1𝑆, · · · , 𝑆−1𝑋𝑑𝑆) ∈ Ω𝑛,

then 𝑓 (𝑆−1𝑋𝑆) = 𝑆−1 𝑓 (𝑋)𝑆, i.e., f preserves joint similarities.

We say that an NC function, h, on a uniformly open NC domain, Dom ℎ, is locally uniformly
bounded if for any 𝑋 ∈ Dom ℎ, there is a uniformly open neighbourhood of X in Dom ℎ, on which ℎ(𝑌 )
is uniformly bounded in matrix-norm. As proven in [35, Corollary 7.6, Corollary 7.28], the axioms
defining NC functions and this local boundedness condition imply that any such h is holomorphic, in
the sense that it is Fréchet, and hence Gâteaux differentiable at any point in its domain, and uniformly
analytic in the sense that it has a Taylor-type power series expansion about any point, X, in its NC
domain (i.e., a Taylor–Taylor series) with nonzero radius of convergence, 𝑅𝑋 > 0 [35, Corollary 7.26,
Corollary 7.28, Theorem 8.11]. That is, its Taylor–Taylor series converges absolutely and uniformly on
any (uniformly) open row-ball of radius 0 < 𝑟 < 𝑅𝑋 , centred at any 𝑋 ∈ Dom ℎ. Here, if h is uniformly
analytic in a uniformly open neighbourhood, 𝒰, of 𝑌 ∈ C(𝑛×𝑛) ·𝑑 , and 𝑋 ∈ 𝒰𝑚𝑛 is sufficiently close to
Y, then the Taylor–Taylor series of h, centred at Y and evaluated at X, is

ℎ(𝑋) =
∞∑
𝑗=0

(
𝜕
𝑗
𝑋−𝑌 ⊕𝑚ℎ

)
(𝑌 ⊕𝑚)

𝑗!
,

where 𝜕 𝑗
𝑋−𝑌 ⊕𝑚ℎ(𝑌 ⊕𝑚) is the jth directional or Gâteaux derivative of h in the direction 𝑋 −𝑌 ⊕𝑚. That is,

𝜕𝑋 ℎ(𝑌 ) := lim
𝑡→0

ℎ(𝑌 + 𝑡𝑋) − ℎ(𝑌 )
𝑡

,

for 𝑋,𝑌 of the same size. In particular, the Taylor–Taylor series of h at the origin, 0, of the NC universe
can be written

ℎ(𝑋) =
∞∑
𝑗=0

1
𝑗!
𝜕
𝑗
𝑋 ℎ(0),

where if 𝑋 ∈ C(𝑛×𝑛) ·𝑑 , then 𝜕 𝑗𝑋 ℎ(0) := 𝜕
𝑗
𝑋 ℎ(0𝑛) is a homogeneous free polynomial of degree j in

𝑋 = (𝑋1, · · · , 𝑋𝑑). This Taylor–Taylor series at 0 can be expanded further as

ℎ(𝑋) =
∑
𝜔∈F𝑑+

Δ𝜔
t

𝑋 𝑓 (0).

Here, Δ𝜔t

( ·) 𝑓 (0) is a partial difference-differential operator of f at 0 of order |𝜔|, where if 𝜔 = 𝑖1 · · · 𝑖𝑚,
then |𝜔| = 𝑚 is the length of 𝜔 and 𝜔t = 𝑖𝑚 · · · 𝑖1. Given any 𝑛 ∈ N, Δ𝜔t

( ·) , · · · , ( ·) 𝑓 (0) = Δ𝜔
t

( ·) , · · · , ( ·) 𝑓 (0𝑛) :
C(𝑛×𝑛) ·𝑑⊗C |𝜔 | → C𝑛×𝑛 is a multi-linear map from |𝜔| copies ofC(𝑛×𝑛) ·𝑑 intoC𝑛×𝑛, and we have written
Δ𝜔

t

𝑋 𝑓 (0) as a short-form notation for Δ𝜔t

𝑋, · · · ,𝑋 𝑓 (0, · · · , 0), where 𝑋 ∈ C(𝑛×𝑛) ·𝑑 is repeated |𝜔| times
and 0 = (0𝑛, · · · , 0𝑛) ∈ C(𝑛×𝑛) ·𝑑 is repeated |𝜔| + 1 times. That is, Δ𝜔t

𝐻 (1) , · · · ,𝐻 ( |𝜔 |) 𝑓 (0) is multilinear in
the ‘directional arguments’, 𝐻 ( 𝑗) ∈ C(𝑛×𝑛) ·𝑑 , 1 ≤ 𝑗 ≤ |𝜔|. See [35, Section 3.5 and Corollary 4.4] for a
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precise definition of these higher-order partial difference-differential operators. Given any 𝜔 ∈ F𝑑+ , one
can compute that

Δ𝜔
t

𝑋 ℎ(0) = 𝑐𝜔𝑋
𝜔 , 𝑐𝜔 ∈ C,

so that this gives a free power series expansion of ℎ(𝑋), and any h that is uniformly analytic in a
uniformly open neighbourhood of 0 can be identified with a free FPS [35, Corollary 4.4].

2.2. Free formal power series

Recall that any ℎ ∈ C〈〈𝔷〉〉 can be written as

ℎ(𝔷) =
∑
𝜔∈F𝑑+

ℎ̂𝜔𝔷
𝜔; ℎ̂𝜔 ∈ C.

There is a natural ‘letter reversal’ involution on the free monoid, t : F𝑑+ → F𝑑+ defined by𝜔 ↦→ 𝜔t, where
if 𝜔 = 𝑖1 · · · 𝑖𝑛, 𝜔t := 𝑖𝑛 · · · 𝑖1 and ∅t := ∅. This gives rise to a natural involutive anti-isomorphism of the
ring of all complex free FPS, t : C〈〈𝔷〉〉 � C〈〈𝔷〉〉, via

ℎ(𝔷) =
∑
𝜔∈F𝑑+

ℎ̂𝜔𝔷
𝜔 ↦→ ℎt (𝔷) :=

∑
𝜔∈F𝑑+

ℎ𝜔t𝔷𝜔 =
∑

ℎ𝜔𝔷
𝜔t
,

and we call ℎt the transpose of h.
Given a free formal power series, ℎ(𝔷) =

∑
ℎ̂𝜔𝔷𝜔 , its radius of convergence, 𝑅ℎ ∈ [0, +∞], is the

largest value so that the power series ℎ(𝑍) converges absolutely and uniformly on 𝑟 · B(N×N) ·𝑑 for any
0 < 𝑟 < 𝑅ℎ . This radius can be computed by Popescu’s generalization of the Hadamard formula [44],

1
𝑅ℎ

= lim sup
𝑛→∞

2𝑛

√ ∑
|𝜔 |=𝑛

| ℎ̂𝜔 |2. (2.1)

Hence, any free FPS with radius of convergence 𝑟 > 0 defines a uniformly analytic NC function on
𝑟 · B(N×N) ·𝑑 .

Every free FPS that converges with radius 𝑟 > 0 will be bounded on every row sub-ball of radius
𝑟 ′, 0 < 𝑟 ′ < 𝑟 . However, in [43], J.E. Pascoe has constructed an example of an NC function that is
uniformly locally bounded everywhere in the 𝑑−dimensional NC universe and yet is not bounded on
the unit row-ball. In order to avoid such pathologies, we will define an NC function, h, to be uniformly
entire if it is defined by a free FPS at 0 with an infinite radius of convergence. (If a free FPS, ℎ ∈ C〈〈𝔷〉〉,
has a positive radius of convergence, then this FPS is necessarily equal to the Taylor–Taylor series of h
at 0, as described at the end of Subsection 2.1.) By [44, Theorem 1.1 and Section 3], or by a special case
of [35, Corollary 7.26 and Theorem 8.11], this is equivalent to h being defined and uniformly locally
bounded (hence uniformly analytic) everywhere in the NC universe, and bounded on any row-ball of
finite radius which is centered at the origin. In particular, the example of [43] is not uniformly entire,
according to our definition.

Definition 2.1. An NC function, h, is a uniformly entire NC function if it is defined by a free formal
power series with infinite radius of convergence.

We will denote the ring of uniformly entire NC functions in d NC variables by 𝒪𝑑 .
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2.3. The free Hardy space

Let H2
𝑑 denote the set of all free FPS with square–summable coefficients:

H2
𝑑 :=

{
ℎ(𝔷) =

∑
ℎ̂𝜔𝔷

𝜔
��� ∑ | ℎ̂𝜔 |2 < +∞

}
.

Any ℎ ∈ H2
𝑑 has radius of convergence at least 1, so that H2

𝑑 is a vector space of uniformly analytic
NC functions on B(N×N) ·𝑑 . In fact, equipping H2

𝑑 with the ℓ2−norm of the coefficients, this is a Hilbert
space of NC functions that is clearly a natural multivariate and NC generalization of the classical Hardy
space, 𝐻2, of square-summable Taylor series in the complex unit disk.

Left multiplication by each of the d independent variables, 𝐿𝑘 := 𝑀𝐿
𝔷𝑘 , defines a 𝑑−tuple of isometries

on H2
𝑑 with pairwise orthogonal ranges which we call the left free shifts. Since these have pairwise

orthogonal ranges, 𝐿 := (𝐿1, · · · , 𝐿𝑑) : H2
𝑑 ⊗C𝑑 → H2

𝑑 , is a row isometry, i.e., an isometry from several
copies of a Hilbert space into one copy. The standard orthonormal basis for H2

𝑑 � ℓ2(F𝑑+ ) is given by
the free monomials {𝔷𝜔}𝜔∈F𝑑+ , and it follows that the letter reversal involution on free FPS defines an
involutive unitary operator on H2

𝑑 , the flip unitary,𝑈t = 𝑈∗
t . One can check that𝑈t𝐿𝑘𝑈t = 𝑀𝑅

𝔷𝑘 =: 𝑅𝑘 is
the right free shift of right multiplication by 𝔷𝑘 . Hence, 𝑅 = 𝑈t𝐿𝑈t is also a row isometry. In the single-
variable setting, 𝑑 = 1, H2

1 = 𝐻2 is the classical Hardy space of analytic Taylor series in the complex
unit disk with square-summable coefficients. In this case, we use the standard notation, 𝑆 = 𝑀𝑧 , for the
isometric shift operator on 𝐻2.

We also consider the Banach algebra of uniformly bounded, and hence uniformly analytic, NC
functions in the NC unit row-ball, B(N×N) ·𝑑 , which we denote by H∞

𝑑 . That is, ℎ ∈ H∞
𝑑 if

‖ℎ‖∞ := sup
𝑍 ∈B(N×N) ·𝑑

‖ℎ(𝑍)‖ < +∞.

Any ℎ ∈ H∞
𝑑 is necessarily a uniformly bounded and hence analytic NC function in B(N×N) ·𝑑 , and

as proven in [44, Theorem 3.1] and [50, Theorem 3.1], ℎ ∈ H∞
𝑑 if and only if h belongs to the left

multiplier algebra of H2
𝑑 . Namely, an NC function, h, on B(N×N) ·𝑑 is a left multiplier of the free Hardy

space if ℎ · 𝑓 ∈ H2
𝑑 for any 𝑓 ∈ H2

𝑑 . Moreover, the left multiplier algebra is equal to H∞
𝑑 , and if

𝑀𝐿
ℎ : H2

𝑑 → H2
𝑑 denotes the linear map of left multiplication by ℎ ∈ H∞

𝑑 , then we have equality of
norms, ‖ℎ‖∞ = ‖𝑀𝐿

ℎ ‖[44, Theorem 3.1], [50, Theorem 3.1]. Note that since 1 ∈ H2
𝑑 , H∞

𝑑 ⊆ H2
𝑑 .

If ℎ ∈ H2
𝑑 , then ℎ𝑟 (𝑍) := ℎ(𝑟𝑍) ∈ H∞

𝑑 ; see, for example, [32, Lemma 4.5]. Given any ℎ ∈ H∞
𝑑 , the

operator ℎ(𝐿), obtained by substituting the 𝐿 𝑗 in for the variables 𝔷 𝑗 in the free power series for h is the
operator, 𝑀𝐿

ℎ , of left multiplication by h. However, one can check that ℎ(𝑅) = 𝑀𝑅
ℎt .

Any ℎ ∈ H2
𝑑 is familiar, i.e., is given by an operator realization (𝐴, 𝑏, 𝑐). Indeed, given any ℎ ∈ H2

𝑑 ,

ℎ(𝔷) =
∑
𝜔∈F𝑑+

ℎ̂𝜔𝔷
𝜔 , and (𝐿∗

𝑗ℎ) (𝔷) =
∑

ℎ̂ 𝑗𝜔𝔷
𝜔 .

Since the monomials, {𝔷𝜔}, are an ON basis of H2
𝑑 , it follows that for any 𝜔 ∈ F𝑑+ ,

1∗𝐿∗𝜔ℎt =
∑
𝛼

ℎ̂𝛼〈𝔷𝜔
t
, 𝔷𝛼

t〉H2
𝑑
= ℎ̂𝜔 .

Hence, ℎ ∼ (𝐿∗, 1, ℎt) has an operator realization. Note that the constant function, 1, is 𝐿−cyclic. Here,
and throughout, all inner products are conjugate linear in their first argument.
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If ℎ ∈ H2
𝑑 has the realization (𝐴, 𝑏, 𝑐), then

ℎ(𝔷) =
∑
𝜔∈F𝑑+

ℎ̂𝜔𝔷
𝜔 , where ℎ̂𝜔 = 𝑏∗𝐴𝜔𝑐.

As one can readily calculate,

(𝐿∗
𝑗ℎ) (𝔷) =

∑
𝜔∈F𝑑+

ℎ̂ 𝑗𝜔𝔷
𝜔 , and (𝑅∗

𝑗ℎ) (𝔷) =
∑
𝜔∈F𝑑+

ℎ̂𝜔 𝑗𝔷
𝜔 ,

so that

𝐿∗
𝑗ℎ ∼ (𝐴, 𝐴∗

𝑗𝑏, 𝑐), and 𝑅∗
𝑗ℎ ∼ (𝐴, 𝑏, 𝐴 𝑗𝑐). (2.2)

Moreover, given any 𝑝 ∈ C〈𝔷〉, it then follows that

𝑝(𝐿)∗ℎ ∼ (𝐴, 𝑝(𝐴∗)𝑏, 𝑐), 𝑝(𝑅)∗ℎ ∼ (𝐴, 𝑏, 𝑝(𝐴)𝑐), (2.3)

where 𝑝 ∈ C〈𝔷〉 denotes the free polynomial obtained by complex conjugation of the coefficients of p.

3. Operator realizations

A descriptor realization is a triple, (𝐴, 𝑏, 𝑐), with 𝐴 ∈ ℬ(H)𝑑 := ℬ(H) ⊗ C𝑑 , 𝑏, 𝑐 ∈ H. Here, note

that 𝐴 ∈ ℬ(H)𝑑 is viewed a column 𝑑−tuple, 𝐴 =

(
𝐴1
...
𝐴𝑑

)
. We will use the notation ℬ(H)1×𝑑 for a row

𝑑−tuple.
Given any 𝑑−tuple, 𝐴 ∈ ℬ(H)𝑑 , we define the formal linear pencil:

𝐿𝐴(𝔷) := 1 −
𝑑∑
𝑗=1

𝔷 𝑗𝐴 𝑗 ,

and we view this as a (monic, affine) linear function on C(N×N) ·𝑑 via evaluation,

𝐿𝐴(𝑍) := 𝐼𝑛 ⊗ 𝐼H −
𝑑∑
𝑗=1

𝑍 𝑗 ⊗ 𝐴 𝑗 =: 𝐼𝑛 ⊗ 𝐼 − 𝑍 ⊗ 𝐴; 𝑍 ∈ C(𝑛×𝑛) ·𝑑 .

We can then define the transfer function, h, of the descriptor realization, (𝐴, 𝑏, 𝑐), as the NC function
with domain,

Dom ℎ :=
∞⊔
𝑛=1

Dom𝑛 ℎ; Dom𝑛 ℎ := {𝑍 ∈ C(𝑛×𝑛) ·𝑑 | 𝐿𝐴(𝑍) is invertible},

via the formula

ℎ(𝑍) := 𝐼𝑛 ⊗ 𝑏∗𝐿𝐴(𝑍)−1𝐼𝑛 ⊗ 𝑐. (3.1)

Definition 3.1. A free formal power series, ℎ ∈ C〈〈𝔷〉〉, 𝔷 = (𝔷1, · · · , 𝔷𝑑), is familiar if it is defined by
a realization, (𝐴, 𝑏, 𝑐) ∈ ℬ(H)𝑑 × H × H, in the sense of Equation (3.1) above. In this case, we write
ℎ ∼ (𝐴, 𝑏, 𝑐). If h is not familiar, it is said to be unfamiliar.
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Note that as an operator on C𝑛 ⊗ H,������ 𝑑∑
𝑗=1

𝑍 𝑗 ⊗ 𝐴 𝑗

������
C𝑛×𝑛⊗ℬ(H)

=

�������(𝑍1 ⊗ 𝐼H, · · · , 𝑍𝑑 ⊗ 𝐼H)
����
𝐼𝑛 ⊗ 𝐴1

...
𝐼𝑛 ⊗ 𝐴𝑑

	

�
������� ≤ ‖𝑍 ‖row‖𝐴‖col,

so that the operator 𝐿𝐴(𝑍) will be invertible for all 𝑍 ∈ 𝑟 · B(N×N) ·𝑑 , where 𝑟 = ‖𝐴‖−1
col > 0. Hence,

there is an 𝑟 > 0 so that 𝑟 · B(N×N) ·𝑑 ⊆ Dom ℎ, and h will be uniformly bounded on any NC row-ball
of radius ‖𝐴‖−1

col > 𝑟 > 0, and hence uniformly analytic on this uniformly open NC domain. We will
write ℎ ∼ (𝐴, 𝑏, 𝑐) to denote that h is the transfer–function of this realization. By evaluating h on jointly
nilpotent points Z in 𝑟 · B(N×N) ·𝑑 , we see that any h that admits a realization (𝐴, 𝑏, 𝑐) can be identified
with the formal power series, ℎ ∈ C〈〈𝔷〉〉,

ℎ(𝔷) =
∑
𝜔∈F𝑑+

ℎ̂𝜔𝔷
𝜔 , where ℎ̂𝜔 = 𝑏∗𝐴𝜔𝑐.

This also follows readily from expansion of 𝐿𝐴(𝑍)−1 as a convergent geometric series for any Z in
𝑟 · B(N×N) ·𝑑 , 𝑟 = ‖𝐴‖−1

col, as in the introduction.
Conversely, if h is a uniformly analytic NC function in some row-ball, 𝑅 · B(N×N) ·𝑑 of nonzero

radius 𝑅 > 0, then by rescaling the argument of h, ℎ𝑟 (𝑍) = ℎ(𝑟𝑍), 0 < 𝑟 < 𝑅, we obtain (by the
NC maximum modulus principle [50, Lemma 6.11]) a uniformly bounded NC function in B𝑑

N
, which

therefore is uniformly analytic and belongs to H∞
𝑑 . (Alternatively, since h is uniformly locally bounded

at 0, it is uniformly bounded in some row-ball at 0 of positive radius.) As described in Subsection 2.3,
ℎ𝑟 then has the realization (𝐿∗, 1, ℎt

𝑟 ), 1 = 𝔷∅, so that ℎ ∼ (𝑟−1𝐿∗, 1, ℎt
𝑟 ) is also familiar. Alternatively,

‖ℎ𝑟 ‖−1
∞ ℎ𝑟 is a contractive element of H∞

𝑑 , and hence it has a de Branges–Rovnyak operator realization
so that h also has an operator realization [8]. In summary we have proven the following:

Lemma 3.2. An NC function, h, is uniformly analytic in a uniformly open neighbourhood of
0 ∈ C(N×N) ·𝑑 if and only if it is familiar, i.e., if and only if it has an operator realization.

Given (𝐴, 𝑏, 𝑐), one defines the controllable subspace,

𝒞𝐴,𝑐 :=
∨
𝜔∈F𝑑+

𝐴𝜔𝑐, (3.2)

and the observable subspace,

𝒪𝐴∗ ,𝑏 :=
∨
𝜔∈F𝑑+

𝐴∗𝜔𝑏, (3.3)

and (𝐴, 𝑏, 𝑐) is said to be controllable if 𝒞𝐴,𝑐 = H and observable if 𝒪𝐴∗ ,𝑏 = H, i.e., if and only
if c is 𝐴−cyclic and b is 𝐴∗−cyclic, respectively. In the above,

∨
denotes closed linear span. (In

[29, 10], what we have termed controllable and observable are called approximately controllable and
approximately observable, since the non-closed linear span is generally not the entire space.) We then
say that (𝐴, 𝑏, 𝑐) on H is minimal if it is both controllable and observable. Here, recall that a finite-
dimensional realization 𝐴 ∈ C(𝑛×𝑛) ·𝑑 is said to be minimal if n is as small as possible. It is then a theorem
that a finite-dimensional realization is minimal if and only if it is both observable and controllable
[31, Section 3.1.2], and minimal and finite realizations are unique up to unique joint similarity [13,
Theorem 2.4].
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It will also be convenient to consider Fornasini–Marchesini (FM) realizations. An FM realization is
a quadruple (𝐴, 𝐵, 𝐶, 𝐷), where

𝐴 =
����
𝐴1
...
𝐴𝑑

	

� ∈ ℬ(H)𝑑 , 𝐵 =
����
𝐵1
...
𝐵𝑑

	

� ∈ H ⊗ C𝑑 , 𝐶 ∈ H†, and 𝐷 ∈ C.

An FM realization is often written in the block operator–colligation form:

(
𝐴 𝐵
𝐶 𝐷

)
=

������
𝐴1 𝐵1
...

...
𝐴𝑑 𝐵𝑑
𝐶 𝐷

	



�
:
(
H
C

)
−→

(
H ⊗ C𝑑
C

)
.

As before, we then define the transfer function, h, of the FM realization (𝐴, 𝐵, 𝐶, 𝐷) as the NC function
with domain

Dom ℎ =
⊔

Dom𝑛 ℎ; Dom𝑛 ℎ = {𝑍 ∈ C(𝑛×𝑛) ·𝑑 | 𝐿𝐴(𝑍)−1 ∃},

via the formula

ℎ(𝑍) := 𝐷𝐼𝑛 + 𝐼𝑛 ⊗ 𝐶 𝐿𝐴(𝑍)−1
∑

𝑍 𝑗 ⊗ 𝐵 𝑗 =: 𝐷 + 𝐼𝑛 ⊗ 𝐶 𝐿𝐴(𝑍)−1𝑍 ⊗ 𝐵.

In particular, as discussed above, there is an 𝑟 > 0 so that 𝑟 ·B(N×N) ·𝑑 ⊆ Dom ℎ, and h will be uniformly
bounded on any NC row-ball of radius ‖𝐴‖−1

col > 𝑟 > 0, and hence uniformly analytic on this NC domain.
We will write ℎ ∼ (𝐴, 𝐵, 𝐶, 𝐷) to denote that h is the transfer–function of this FM realization. As before,
we will say that the FM realization, (𝐴, 𝐵, 𝐶, 𝐷), for h, is minimal, if A is as ‘small as possible’ in the
sense that the set {𝐵1, · · · , 𝐵𝑑} ⊆ H is 𝐴−cyclic and 𝐶∗ ∈ H is 𝐴∗−cyclic; that is,

H =
∨
𝜔∈F𝑑+ ,
1≤ 𝑗≤𝑑

𝐴𝜔𝐵 𝑗 =: 𝒞𝐴,𝐵, (3.4)

and

H =
∨

𝐴∗𝜔𝐶∗ =: 𝒪𝐴∗ ,𝐶 . (3.5)

In the above, as before,
∨

denotes closed linear span. More generally, the subspaces 𝒞𝐴,𝐵 and 𝒪𝐴∗ ,𝐶 of
H defined above are called the controllable subspace and the observable subspace of the FM realization,
and we say the FM realization is controllable if H = 𝒞𝐴,𝐵 and observable if H = 𝒪𝐴∗ ,𝐶 . Hence, as
before, (𝐴, 𝐵, 𝐶, 𝐷) is minimal if and only if it is both controllable and observable.

FM realizations from descriptor realizations and vice versa.

Any NC function that admits an FM realization admits a descriptor realization and vice versa. Namely,
if h has descriptor realization (𝐴, 𝑏, 𝑐), then one can define

H′ :=
∨
𝜔≠∅

𝐴𝜔𝑐, 𝐴′ := 𝐴|H′′ , 𝐵 𝑗 := 𝐴 𝑗𝑐, 𝐶 := (𝑃H′𝑏)∗, and 𝐷 := ℎ(0). (3.6)

It follows that (𝐴′, 𝐵, 𝐶, 𝐷) is an FM realization of h. Moreover, it is readily checked that if (𝐴, 𝑏, 𝑐)
is a minimal descriptor realization, then (𝐴′, 𝐵, 𝐶, 𝐷) is a minimal FM realization. Conversely, if
(𝐴, 𝐵, 𝐶, 𝐷) is an FM realization of h on H, one can construct a descriptor realization, ( 𝐴̂, 𝑏, 𝑐) on
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Ĥ := H ⊕ C by setting 𝐴̂ 𝑗 |H := 𝐴 𝑗 and defining 𝐴̂ 𝑗0 ⊕ 1 := 𝐵 𝑗 ∈ H. That is, with respect to the direct
sum decomposition Ĥ = H ⊕ C,

𝐴̂ 𝑗 =

(
𝐴 𝑗 𝐵 𝑗 〈0 ⊕ 1, ·〉Ĥ
0 0

)
. (3.7)

Next, one defines 𝑏 := 𝐶∗ ⊕ 𝐷1 and 𝑐 := 0 ⊕ 1. It is easy to verify that ( 𝐴̂, 𝑏, 𝑐) is then a descriptor
realization of h. If (𝐴, 𝐵, 𝐶, 𝐷) is a minimal FM realization, then ( 𝐴̂, 𝑏, 𝑐) is controllable, but it may
not be observable. Even it is not observable, however, its observable subspace has codimension at most
one in Ĥ.

3.1. Uniqueness of minimal realizations and domains

In this subsection, we show, as in the finite setting, that minimal realizations are unique up to a suitable
notion of isomorphism.

Remark 3.3 (On closed and closeable operators). Recall that a linear map 𝐿 : Dom 𝐿 ⊆ H → J , with
dense linear domain, Dom 𝐿, in a Hilbert space, H, and range in a Hilbert space, J , is said to be closed
if its graph is a closed subspace of H ⊕J . Such a linear map is closeable if it has a closed extension, 𝐿̂,
i.e., Dom 𝐿 ⊆ Dom 𝐿̂ ⊆ H and 𝐿̂ |Dom 𝐿 = 𝐿. In this case, we write 𝐿 ⊆ 𝐿̂ and say that L is a restriction
of 𝐿̂. If L is closeable, its closure, 𝐿, is defined as its minimal closed extension, which can be obtained
by taking the closure of the graph of L in H⊕J . In particular, L is closeable if and only if the closure of
its graph in H⊕J does not contain any vectors of the form, 0 ⊕ 𝑦 for 𝑦 ≠ 0. Equivalently, L is closeable
if and only if whenever 𝑥𝑛 ∈ Dom 𝐿, 𝑥𝑛 → 0 and 𝑦𝑛 = 𝐿𝑥𝑛 → 𝑦 ∈ J , then necessarily 𝑦 = 0.

Given a densely-defined linear map, 𝐿 : Dom 𝐿 ⊆ H → J , as above, its Hilbert space adjoint, 𝐿∗, is
a linear map defined on the linear domain, 𝒟∗, consisting of all 𝑦 ∈ J for which there exists a 𝑦∗ ∈ H,
so that

〈𝐿𝑥, 𝑦〉J = 〈𝑥, 𝑦∗〉H, ∀𝑥 ∈ Dom 𝐿.

One then defines Dom 𝐿∗ := 𝒟∗ and 𝐿∗𝑦 := 𝑦∗. The adjoint of a densely-defined linear map is always
a closed linear map. However, it may not be densely-defined. One can prove that 𝐿∗ is densely-defined
if and only if L is closeable, in which case 𝐿 = 𝐿∗∗, i.e., the bi-adjoint is the minimal closed extension
of L. Finally, a subset 𝒟 ⊆ Dom 𝐿 of the domain of a closed linear operator, L, is called a core for L if
(𝒟, 𝐿𝒟) is dense in the graph of L. In particular, if L is closeable with closure 𝐿, then Dom 𝐿 is a core
for 𝐿. Standard references for the theory of closed linear operators include the functional analysis texts,
[48, 2, 17].

Definition 3.4. Let 𝑋 : H → J be a closed, densely-defined linear map on Dom 𝑋 ⊆ H. We say that
X is a pseudo-affinity if X is injective and has dense range. If 𝐴 ∈ ℬ(H) and 𝐵 ∈ ℬ(J ) are bounded
linear maps so that 𝐴|Dom𝑋 : Dom 𝑋 → Dom 𝑋 and 𝑋𝐴 ⊆ 𝐵𝑋 , we say that 𝐴, 𝐵 are pseudo-similar.

Remark 3.5. In [57], a quasi-affinity, 𝑋 : H → J , is defined as any bounded linear map that is injective
and has dense range. Bounded linear operators 𝐴 ∈ ℬ(H) and 𝐵 ∈ ℬ(J ) are said to be quasi-similar if
there are quasi-affinities 𝑋 : H → J and 𝑌 : J → H so that 𝑋𝐴 = 𝐵𝑋 and 𝑌𝐵 = 𝐴𝑌 . In comparison,
if 𝐴, 𝐵 are pseudo-similar, then there is a pseudo-affinity, X, so that 𝑋𝐴 ⊆ 𝐵𝑋 . However, 𝑌 := 𝑋−1 is
then also a pseudo-affinity so that 𝑌𝐵 ⊆ 𝐴𝑌 . This motivates the terminology ‘pseudo-similar’. Hence,
pseudo-similarity is a weaker concept than quasi-similarity as in the definition of pseudo-similarity,
neither of the closed intertwining pseudo-affinities, X and 𝑌 = 𝑋−1, need to be bounded.

Theorem 3.6 (Uniqueness of minimal realizations). Minimal realizations are unique up to unique
pseudo-similarity. That is, if (𝐴, 𝑏, 𝑐) and (𝐴′, 𝑏′, 𝑐′) are two minimal realizations defined on H and
H′, respectively, for the same NC function, h, then there is a closed, injective and densely-defined linear
transformation, 𝑆 : Dom 𝑆 ⊆ H → H′, with dense range so that for all 𝑝, 𝑞 ∈ C〈𝔷〉,
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(i) The nonclosed linear span C〈𝐴〉𝑐 ⊆ Dom 𝑆 is a core for S and 𝑆𝑝(𝐴)𝑐 = 𝑝(𝐴′)𝑐′.
(ii) The nonclosed linear span C〈𝐴′∗〉𝑏′ ⊆ Dom 𝑆∗ is a core for 𝑆∗ and 𝑆∗𝑞(𝐴′∗)𝑏′ = 𝑞(𝐴∗)𝑏.

In particular, the above theorem implies that 𝑆𝑐 = 𝑐′, 𝑆−∗𝑏 = 𝑏′ and 𝑆−1𝐴′𝑆 = 𝐴, suitably inter-
preted. An analogous result holds for FM realizations. This theorem has been previously established,
essentially, in one-variable in [29, Theorem 3b.1] and [10, Theorem 3.2], and it is a natural extension
of a well-known result on uniqueness of finite-dimensional minimal realizations from systems theory
[14, Theorem 5-21].

Proof. By assumption, we have that for any 𝜔 ∈ F𝑑+ ,

𝑏∗𝐴𝜔𝑐 = 𝑏′∗𝐴
′𝜔𝑐′.

We define a linear map, 𝑆0, with dense domain C〈𝐴〉𝑐 ⊆ H by 𝑆0𝑝(𝐴)𝑐 = 𝑝(𝐴′)𝑐′. First, in order that
this be well defined, if 𝑝(𝐴)𝑐 = 𝑝(𝐴)𝑐 for 𝑝, 𝑝 ∈ C〈𝔷〉, then we need to check that 𝑝(𝐴′)𝑐′ = 𝑝(𝐴′)𝑐′.
This follows from minimality. Indeed, if 𝑝(𝐴)𝑐 = 𝑝(𝐴)𝑐 in H, then for any 𝑞 ∈ C〈𝔷〉,

𝑏∗𝑞(𝐴)𝑝(𝐴)𝑐 = 𝑏∗𝑞(𝐴)𝑝(𝐴)𝑐,

so that

𝑏′∗𝑞(𝐴′)𝑝(𝐴′)𝑐′ = 𝑏′∗𝑞(𝐴′)𝑝(𝐴′)𝑐′.

By minimality of the realization (𝐴′, 𝑏′, 𝑐′), it follows that 𝑝(𝐴′)𝑐′ = 𝑝(𝐴′)𝑐′ ∈ H′.
The linear map, 𝑆0, has dense range in H′, by construction. We next prove that 𝑆0 is closeable. If

𝑝𝑛 (𝐴)𝑐 ∈ Dom 𝑆0, 𝑝𝑛 (𝐴)𝑐 → 0 and 𝑆0𝑝𝑛 (𝐴)𝑐 = 𝑝𝑛 (𝐴′)𝑐′ → 𝑦′ ∈ H′, we need to show that 𝑦′ = 0.
For any 𝑞 ∈ C〈𝔷〉, consider

〈𝑞(𝐴′∗)𝑏′, 𝑦′〉H′ = lim
𝑛

〈𝑏′, 𝑞(𝐴′)𝑝𝑛 (𝐴′)𝑐′〉H′

= lim 𝑏∗𝑞(𝐴)𝑝𝑛 (𝐴)𝑐 = 0,

since 𝑝𝑛 (𝐴)𝑐 → 0 in H and 𝑞(𝐴) is a bounded linear operator for any 𝑞 ∈ C〈𝔷〉. It follows that 𝑦′ ∈ H′

is orthogonal to 𝒪𝐴′∗ ,𝑏′ = H′ and hence 𝑦′ = 0. This proves that 𝑆0 is closeable, and we set 𝑆 := 𝑆0, the
minimal closed extension of 𝑆0.

The closed operator, S, has dense range since 𝑆0 does, and we claim that S is also injective. Indeed, if
S were not injective, then 𝑆ℎ = 0 for some ℎ ∈ Dom 𝑆 ⊆ H. Since 𝑆 = 𝑆0, Dom 𝑆0 = C〈𝐴〉𝑐 is a core for
S. In particular, there is a sequence 𝑝𝑛 (𝐴)𝑐 ∈ Dom 𝑆0 so that 𝑝𝑛 (𝐴)𝑐 → ℎ and 𝑆𝑝𝑛 (𝐴)𝑐 → 𝑆ℎ = 0. By
symmetry, if we defined instead 𝑆′

0 : C〈𝐴′〉 ⊆ H′ → H by 𝑆′𝑝(𝐴′)𝑐′ = 𝑝(𝐴)𝑐, 𝑆′ is closeable which
implies that ℎ = 0. (It is also easy to argue directly that S is injective.) Since S is injective, closed and has
dense range, 𝑆−1 is also closed and densely-defined on Ran 𝑆. It is also injective and has dense range.

Finally, we claim that C〈𝐴′∗〉𝑏′ ⊆ Dom 𝑆∗ and that 𝑆∗𝑞(𝐴′∗)𝑏′ = 𝑞(𝐴∗)𝑏 for any 𝑞 ∈ C〈𝔷〉. Indeed,
for any 𝑝 ∈ C〈𝔷〉,

〈𝑞(𝐴′∗)𝑏′, 𝑆𝑝(𝐴)𝑐〉H′ = 〈𝑏′, 𝑞(𝐴′)𝑝(𝐴′)𝑐′〉H′

= 〈𝑏, 𝑞(𝐴)𝑝(𝐴)𝑐〉H = 〈𝑞(𝐴∗)𝑏, 𝑝(𝐴)𝑐〉H.

By the definition of the Hilbert space adjoint of a densely-defined linear map, 𝑞(𝐴′∗)𝑏′ ∈ Dom 𝑆∗

and 𝑆∗𝑞(𝐴′∗)𝑏′ = 𝑞(𝐴∗)𝑏. The fact that C〈𝐴′∗〉𝑏′ is a core for 𝑆∗ also follows from a symmetric
argument. �

Definition 3.7. Let 𝐴 ∈ ℬ(H)𝑑 and 𝐴′ ∈ ℬ(H′)𝑑 be two column 𝑑−tuples of bounded linear
operators. We say that A and B are analytically equivalent if there exist 𝑏, 𝑐 ∈ H and 𝑏′, 𝑐′ ∈ H′ so that
the realizations (𝐴, 𝑏, 𝑐) and (𝐴′, 𝑏′, 𝑐′) are both minimal and define the same uniformly analytic NC
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function in a uniformly open neighbourhood of 0. That is, A and 𝐴′ are analytically equivalent if there
exists an 𝑟 > 0 so that

𝑏∗𝐿𝐴(𝑍)−1𝑐 = 𝑏′∗𝐿𝐴′ (𝑍)−1𝑐′; ∀𝑍 ∈ 𝑟 · B(N×N) ·𝑑 ,

or equivalently,

𝑏∗𝐴𝜔𝑐 = 𝑏′∗𝐴
′𝜔𝑐′ ∀𝜔 ∈ F𝑑+ .

Similarly, we say that two realizations (𝐴, 𝑏, 𝑐) and (𝐴′, 𝑏′, 𝑐′) are analytically equivalent and write
(𝐴, 𝑏, 𝑐) ∼ (𝐴′, 𝑏′, 𝑐′) if they define the same uniformly analytic NC function in a uniformly open
neighbourhood of 0. (We do not require that analytically equivalent realizations be minimal in this
second definition.)

Theorem 3.1 implies, in particular, that any two analytically equivalent 𝐴 ∈ ℬ(H)𝑑 and
𝐴′ ∈ ℬ(H′)𝑑 are pseudo-similar.

Definition 3.8 (Domain of a realization). The invertibility domain of a realization, (𝐴, 𝑏, 𝑐), or of a
𝑑−tuple, 𝐴 ∈ ℬ(H)𝑑 , is the set of all 𝑍 ∈ C(N×N) ·𝑑 so that the evaluation of the linear pencil, 𝐿𝐴(𝑍),
is invertible.

Note that if ℎ ∼ (𝐴, 𝑏, 𝑐) is familiar, then h is a uniformly analytic NC function on 𝒟(𝐴),
𝒟(𝐴) is uniformly open by operator-norm continuity of the inversion map, 𝑟 · B(N×N) ·𝑑 ⊆ 𝒟(𝐴) for
𝑟 := ‖𝐴‖−1

col > 0, and 𝒟(𝐴) is joint similarity invariant.

Remark 3.9. In one-variable, if 𝐴 ∈ ℬ(H) and 𝑧 ∈ C, 𝐿𝐴(𝑧) = 𝐼 − 𝑧𝐴. In this case, it follows that
𝑧 ∉ 𝒟(𝐴) if and only if 1/𝑧 ∈ 𝜎(𝐴). Hence, the complement of the invertibility domain, 𝒟(𝐴) of
𝐴 ∈ ℬ(H)𝑑 , can be thought of as a generalized or ‘quantized’ notion of spectrum for operator tuples.
Similar notions of spectra for general tuples of operators were considered by Taylor in [58], and by Yang
in [65]. In the latter reference, however, the spectrum consists of scalar points in complex projective
space.

Example 3.10. Consider the entire function, 𝑓 (𝑧) = 𝑒𝑧−1
𝑧 . By a result of Douglas, Shapiro and Shields

[21, Theorem 2.2.4], any function that is analytic in a disk of radius 𝑟 > 1 (centred at 0) is either cyclic
for the backward shift on the Hardy space, 𝐻2(D), or rational. Hence, this 𝑓 ∈ 𝐻2 is cyclic for the
backward shift. (It would be interesting to see whether there is an analogue of this result for the free
Hardy space.) In other words, 𝐻2 =

∨∞
𝑛=0 𝑆

∗𝑛 𝑓 , where 𝑆 := 𝑀𝑧 denotes the shift on 𝐻2. Moreover, 1 is
cyclic for S, so we have a minimal realization for f, i.e., 𝑓 ∼ (𝑆∗, 1, 𝑓 ).

To construct another realization, we consider the Volterra operator on 𝐿2 [0, 1] given by (𝑇𝑔) (𝑥) =´ 𝑥
0 𝑔(𝑡)𝑑𝑡. It is well known that T is a quasinilpotent Hilbert–Schmidt operator [25]. Moreover, the

vector 1 ∈ 𝐿2 [0, 1] is 𝑇−cyclic, since 𝑇𝑛1 = 𝑥𝑛

𝑛! . Since (𝑇∗𝑔) (𝑥) =
´ 1
𝑥 𝑔(𝑡)𝑑𝑡, it follows that 1 is also

𝑇∗−cyclic. The power series generated by the realization (𝑇, 1, 1) is

∞∑
𝑛=0

〈1, 𝑇𝑛1〉𝑧𝑛 =
∞∑
𝑛=0

(ˆ 1

0

𝑥𝑛

𝑛!
𝑑𝑥

)
𝑧𝑛 =

∞∑
𝑛=0

𝑧𝑛

(𝑛 + 1)! = 𝑓 (𝑧),

so that (𝑇, 1, 1) is also a minimal realization of f. Theorem 3.6 now implies that 𝑆∗ and T are analytically
equivalent, and hence pseudo-similar.

Remark 3.11. The previous example is striking in that it shows that pseudo-similarity preserves very few
spectral properties of operators. Namely, the previous example shows that the backward shift, which has
spectral radius 1 and spectrum equal to the closed unit disk, is pseudo-similar to the Volterra operator,
which is quasinilpotent (and compact) and hence has spectrum equal to {0}. Many spectral properties are
not even preserved under quasi-similarity [18]. See [18, 57] for examples of quasinilpotent operators that
are quasi-similar to operators whose spectrum is the closed unit disk, much as in the previous example.
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If (𝐴, 𝑏, 𝑐) and (𝐴′, 𝑏′, 𝑐′) are two minimal realizations for the same NC function, and hence pseudo-
similar, then it is certainly possible that there exist points Z not in the invertibility domain, 𝒟(𝐴) of
A, but which do belong to the invertibility domain of 𝐴′. If 𝑍 ⊗ 𝐴𝑥 = 𝑥, so that 𝑍 ∉ 𝒟(𝐴), then
by minimality there is a sequence (𝑝𝑛) ⊆ C〈𝔷〉 so that 𝑍 ⊗ 𝑝𝑛 (𝐴)𝑐 → 𝑥, but there is no reason that
𝑆𝑝𝑛 (𝐴)𝑐 = 𝑝𝑛 (𝐴′)𝑐′ is even a bounded sequence let alone convergent. Hence, it is certainly possible
that 𝑍 ∈ 𝒟(𝐴′) \ 𝒟(𝐴). Indeed, this occurs in the previous example.

Domain of a familiar NC function
Recall that NC rational functions are defined as certain evaluation equivalence classes of NC rational
expressions [34]. Namely, an NC rational expression, r, is any syntactically valid expression obtained
by applying the arithmetic operations of inversion, addition and multiplication to the free algebra. The
domain, Dom r, of such an expression is the set of all 𝑋 ∈ C(N×N) ·𝑑 for which the expression can be
evaluated at X, and r is said to be valid, if this domain is not empty. Two valid NC rational expressions,
r1 and r2, are said to be equivalent if r1(𝑋) = r2(𝑋) for all 𝑋 ∈ Dom r1

⋂
Dom r2. One can prove that for

any two valid NC rational expressions, there is a finite 𝑁 ∈ N so that Dom𝑛 r1
⋂

Dom𝑛 r2 is nonempty,
and in fact is Zariski open and dense inC(𝑛×𝑛) ·𝑑 for any 𝑛 ≥ 𝑁; see [34, Footnote 1, Section 2]. It follows
that this evaluation relation is transitive, and an equivalence relation on valid NC rational expressions.
One then defines an NC rational function, 𝔯, as an evaluation equivalence class of valid NC rational
expressions with domain Dom 𝔯 :=

⋃
r∈𝔯 Dom r. One views 𝔯 as an NC function on Dom 𝔯, and we

simply write 𝔯(𝑋) := r(𝑋) if 𝑋 ∈ Dom r and r ∈ 𝔯. Any NC rational function, 𝔯 ∈ C<( 𝔷>) , is uniformly
analytic on its domain, and its domain is a joint similarity-invariant and uniformly open NC set. This
follows from the fact that the arithmetic operations +, ·, (·)−1 are all operator-norm continuous and free
polynomials are uniformly entire.

The evaluation equivalence relation, ∼, described above, applied to arbitrary uniformly analytic
NC functions need not be well defined. First, given uniformly analytic 𝑓 , 𝑔, there is no reason for
Dom 𝑓 ∩Dom 𝑔 to be nonempty. Also, this relation need not be transitive when applied to such arbitrary
functions. If 𝑓 ∼ 𝑔 and 𝑔 ∼ ℎ, and Dom 𝑓 ∩ Dom 𝑔 ≠ ∅, Dom 𝑔 ∩ Dom ℎ ≠ ∅, it could still be that
Dom 𝑓 ∩ Dom ℎ = ∅, or worse, it could be that this intersection is nonempty but 𝑓 (𝑋) ≠ ℎ(𝑋) for some
𝑋 ∈ Dom 𝑓 ∩ Dom ℎ.

The domains of familiar (and hence) uniformly analytic NC functions exhibit better behaviour. If
𝑓 ∼ (𝐴, 𝑏, 𝑐) and 𝑔 ∼ (𝐴′, 𝑏′, 𝑐′), then 𝑓 , 𝑔 are uniformly analytic on 𝒟(𝐴) and 𝒟(𝐴′), respectively,
and 𝒟(𝐴) ∩𝒟(𝐴′) ⊇ 𝑟 ·B(N×N) ·𝑑 , where 𝑟 := min{‖𝐴‖−1

col, ‖𝐴
′‖−1

col}. It follows, by the identity theorem
in several complex variables, that we can define an evaluation relation on such familiar NC functions
by 𝑓 ∼ 𝑔 if 𝑓 (𝑋) = 𝑔(𝑋) for all X that belong to the (level-wise) connected component of 0 in
𝒟(𝐴) ∩ 𝒟(𝐴′). If 𝒟(0) (𝐴) is this level-wise connected component of 0 in 𝒟(𝐴) ∩ 𝒟(𝐴′), we view
any familiar NC function as an evaluation equivalence class, [ 𝑓 ], defined on the domain

Dom [ 𝑓 ] :=
⋃

(𝐴,𝑏,𝑐)∼𝑔∈[ 𝑓 ]
𝒟(0) (𝐴), (3.8)

and we write [ 𝑓 ] (𝑋) := 𝑔(𝑋) if 𝑔 ∈ [ 𝑓 ], and 𝑋 ∈ 𝒟(0) (𝐴). We will typically write f in place of [ 𝑓 ].

3.2. Kalman decomposition

Given any operator realization for a fixed NC function, one can construct a minimal realization by
compressing the realization to a certain semi-invariant subspace. This extends what is called the Kalman
decomposition from finite-dimensional realization theory [36, 12].

Let (𝐴, 𝑏, 𝑐) ∼ ℎ be any descriptor realization of h on H. Define the minimal space of (𝐴, 𝑏, 𝑐) as
the subspace

ℳ𝐴,𝑏,𝑐 := 𝒞𝐴,𝑐 � 𝒪⊥
𝐴∗ ,𝑏 ∩ 𝒞𝐴,𝑐 . (3.9)
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Then, ℳ𝐴,𝑏,𝑐 is the direct difference of the nested, 𝐴−invariant subspaces, 𝒞𝐴,𝑐 and 𝒪⊥
𝐴∗ ,𝑏 ∩𝒞𝐴,𝑐 , and

is hence semi-invariant for A [52]. That is, if𝑄0 : H → ℳ𝐴,𝑏,𝑐 denotes the orthogonal projection, then

𝑄0𝐴
𝜔𝑄0 = (𝑄0𝐴𝑄0)𝜔 , 𝜔 ∈ F𝑑+ ,

so that compression to ℳ𝐴,𝑏,𝑐 is a surjective, unital homomorphism of the unital algebra generated by
A, Alg{𝐼, 𝐴1, · · · , 𝐴𝑑}, onto Alg{𝐼, 𝐴(0)

1 , · · · , 𝐴(0)
𝑑 } where 𝐴(0) := 𝑄0𝐴|ℳ𝐴,𝑏,𝑐 .

Theorem 3.12 (Kalman decomposition). Let (𝐴, 𝑏, 𝑐) be any descriptor realization of h on H, and
define the minimal space, ℳ𝐴,𝑏,𝑐 , as in Equation (3.9) above, with projector 𝑄0. Then setting
𝐴(0) := 𝑄0𝐴|ℳ𝐴,𝑏,𝑐 , 𝑏0 := 𝑄0𝑏 and 𝑐 := 𝑄0𝑐, (𝐴(0) , 𝑏0, 𝑐0) is a minimal realization of h.

One can construct a minimal FM realization from any FM realization similarly.

Proof. Given (𝐴, 𝑏, 𝑐), first let 𝐴′ be the restriction of A to the 𝐴−invariant controllable subspace, 𝒞𝐴,𝑐 .
If 𝑃′ is the orthogonal projection onto 𝒞𝐴,𝑐 , let 𝑏′ = 𝑃′𝑏 and 𝑐′ = 𝑐 ∈ 𝒞𝐴,𝑐 . Then, (𝐴′, 𝑏′, 𝑐′) is a
controllable realization of h on 𝒞𝐴,𝑐 since

𝑏′∗𝐴
′𝑤𝑐′ = (𝑃′𝑏)∗(𝑃′𝐴𝑃′)𝜔𝑃′𝑐 = 𝑏∗𝐴𝜔𝑃′𝑐 = 𝑏∗𝐴𝜔𝑐

for any word 𝜔 ∈ F𝑑+ .
Define the subspace ℳ :=

∨
𝐴′𝜔∗𝑏′ ⊆ 𝒞𝐴,𝑐 with orthogonal projection 𝑄0 ≤ 𝑃′. First observe that

𝑥 ∈ 𝒞𝐴,𝑐 � ℳ if and only if, for all 𝜔 ∈ F𝑑+ ,

0 = 〈𝐴′𝜔∗𝑏′, 𝑥〉 = 〈(𝑃′𝐴𝑃′)𝜔∗𝑃′𝑏, 𝑥〉
= 〈𝑃′𝐴𝜔∗𝑏, 𝑥〉, since Ran 𝑃′ is co-invariant for 𝐴∗,

= 〈𝐴𝜔∗𝑏, 𝑥〉,

since 𝑃′𝑥 = 𝑥. It follows that 𝑥 ∈ 𝒞𝐴,𝑐 � ℳ if and only if 𝑥 ∈ 𝒪⊥
𝐴∗ ,𝑏 ∩ 𝒞𝐴,𝑐 , so that

ℳ = 𝒞𝐴,𝑐 � 𝒞𝐴,𝑐 ∩𝒪⊥
𝐴∗ ,𝑏 = ℳ𝐴,𝑏,𝑐 .

Set 𝐴(0) = 𝑄0𝐴|ℳ𝐴,𝑏,𝑐 , 𝑏0 = 𝑏′ and 𝑐0 = 𝑄0𝑐. We claim that (𝐴(0) , 𝑏0, 𝑐0) is a minimal realization
of h on ℳ𝐴,𝑏,𝑐 . Indeed, for any word 𝜔 ∈ F𝑑+ ,

𝑏∗
0𝐴

(0)𝜔𝑐0 = 𝑏′∗ (𝑄0𝐴
′𝑄0)𝜔𝑄0𝑐

′

= 𝑏′∗𝑄0𝐴
′𝜔𝑐 (𝑄0 is co-invariant for 𝐴′ and 𝑐′ = 𝑐)

= (𝑃′𝑏)∗𝐴′𝜔𝑃′𝑐 (𝑏′ ∈ Ran𝑄0 = ℳ𝐴,𝑏,𝑐)
= 𝑏∗𝐴𝜔𝑐 = ℎ̂𝜔 ,

since 𝑐 = 𝑐′ ∈ Ran 𝑃′ and Ran 𝑃′ = 𝒞𝐴,𝑐 is 𝐴−invariant. This proves that (𝐴(0) , 𝑏0, 𝑐0) is a realization
for h. Moreover, ∨

𝐴(0)∗𝜔𝑏0 =
∨

𝐴′∗𝜔 𝑄0𝑏
′︸︷︷︸

=𝑏′

= ℳ𝐴,𝑏,𝑐 , and

∨
𝐴(0)𝜔𝑐0 =

∨
𝑄0𝐴

′𝜔𝑄0𝑐

= 𝑄0
∨

𝐴′𝜔𝑐, since 𝑄0 is 𝐴′-co-invariant,

= 𝑄0
∨

𝐴𝜔𝑐, since 𝐴′ = 𝐴|𝒞𝐴,𝑐 ,

= 𝑄0𝒞𝐴,𝑐 = ℳ𝐴,𝑏,𝑐 ,

since ℳ𝐴,𝑏,𝑐 ⊆ 𝒞𝐴,𝑐 . This proves that the realization (𝐴(0) , 𝑏0, 𝑐0) on ℳ𝐴,𝑏,𝑐 is minimal. �
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Definition 3.13. Let (𝐴, 𝑏, 𝑐) be any realization on H. We say that ( 𝐴̂, 𝑏̂, 𝑐), on K ⊇ H, is a dilation
of (𝐴, 𝑏, 𝑐), or that (𝐴, 𝑏, 𝑐) is a compression of ( 𝐴̂, 𝑏̂, 𝑐), if (𝐴, 𝑏, 𝑐) ∼ ( 𝐴̂, 𝑏̂, 𝑐) are analytically
equivalent, H is semi-invariant for 𝐴̂, 𝐴 = 𝑃H𝐴|H, 𝑏 = 𝑃H 𝑏̂ and 𝑐 = 𝑃H𝑐.

Corollary 3.14. Any realization (𝐴, 𝑏, 𝑐) is a dilation of a minimal realization.

If (𝐴, 𝑏, 𝑐) is a finite-dimensional realization of an NC rational function, the classical Kalman
decomposition theorem further asserts that the invertibility domain of 𝐴(0) contains that of A, 𝒟(𝐴) ⊆
𝒟(𝐴(0) ). Although we are unable to prove this in general, we can extend this to the case where
𝐴 ∈ 𝒞 = 𝒞(H)𝑑 is a 𝑑−tuple of compact operators.

Corollary 3.15. Let (𝐴, 𝑏, 𝑐) ∈ ℬ(H)𝑑 ×H ×H be a descriptor realization of a familiar NC function,
h, and let ℎ ∼ (𝐴(0) , 𝑏0, 𝑐0) be the minimal Kalman decomposition obtained by compressing (𝐴, 𝑏, 𝑐)
to the minimal, 𝐴−semi-invariant subspace, ℳ𝐴,𝑏,𝑐 . If each 𝐴 𝑗 is compact, then 𝒟(𝐴(0) ) ⊇ 𝒟(𝐴).

This corollary allows one to extend ℎ ∼ (𝐴, 𝑏, 𝑐), 𝐴 ∈ 𝒞, to an NC function on a potentially larger
NC domain. (Later, we will see that if 𝐴 ∈ 𝒞, then 𝒟(𝐴) is level-wise open and connected in matrix-
norm, so that (𝐴, 𝑏, 𝑐) and (𝐴(0) , 𝑏0, 𝑐0) define the same uniformly analytic NC function on 𝒟(𝐴).)

Lemma 3.16. Let𝑇 ∈ ℬ(H) have a closed, invariant subspace,J , so that with respect to the orthogonal
direct sum decomposition, H = J ⊕ J ⊥,

𝑇 �
(
𝑇1 𝑇2
0 𝑇3

)
.

If T is invertible, then 𝑇1 is injective, 𝑇∗
1 is surjective on J , and 𝑇3 � 𝑃⊥

J𝑇 |J ⊥ is surjective on J ⊥.
Moreover, T and 𝑇1 are both invertible if and only if T and 𝑇3 are both invertible, in which case

𝑇−1 =

(
𝑇−1

1 −𝑇−1
1 𝑇2𝑇

−1
3

0 𝑇−1
3

)
,

so that J is also 𝑇−1−invariant.

Proof. If T is invertible and 0 ≠ 𝑥 ∈ J , then(
0
0

)
≠ 𝑇

(
𝑥
0

)
=

(
𝑇1𝑥
0

)
,

so that 𝑇1 � 𝑇 |J must be injective on J . Similarly, since T is surjective, given any 𝑦 ∈ J ⊥, there exists
𝑥 ∈ J and 𝑥 ′ ∈ J ⊥ so that (

0
𝑦

)
= 𝑇

(
𝑥
𝑥 ′

)
=

(
𝑇1𝑥 + 𝑇2𝑥

′

𝑇3𝑥
′

)
.

Hence, 𝑇3𝑥
′ = 𝑦 and 𝑇3 is surjective. Since T is invertible so is 𝑇∗ �

(
𝑇 ∗

1 0
𝑇 ∗

2 𝑇 ∗
3

)
, and a similar analysis

shows that 𝑇∗
1 ∈ ℬ(J ) is surjective on J .

If 𝑇3 and T are both invertible, suppose that 𝑦 ∈ J � Ran𝑇1. Then since T is bijective, there exists
𝑥1 ∈ J and 𝑥2 ∈ J ⊥ so that (

𝑦
0

)
= 𝑇

(
𝑥1
𝑥2

)
=

(
𝑇1𝑥1 + 𝑇2𝑥2

𝑇3𝑥2

)
.

Hence, 𝑇3𝑥2 = 0 so that 𝑥2 = 0 by injectivity of 𝑇3, and 𝑦 = 𝑇1𝑥1. However, 𝑦 ∈ J � Ran𝑇1, so that
𝑇1𝑥1 = 𝑦 = 0. This proves that 𝑇1 is surjective, and since T is invertible, 𝑇1 is also injective, and hence
invertible.

https://doi.org/10.1017/fms.2025.10038 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10038


22 M. L. Augat, R. T. W. Martin and E. Shamovich

Similarly, if 𝑇1 and T are both invertible, then so are 𝑇∗ and 𝑇∗
1 , and 𝑇∗

3 is injective. An analogous
argument now proves that 𝑇∗

3 is invertible so that 𝑇3 is invertible as well. If 𝑇1 and 𝑇3 are both invertible,
then it is easily verified that the block upper triangular formula in the lemma statement is the inverse of
T, so that T is invertible and 𝑇−1J ⊆ J . �

Example 3.17. If 𝑇 ∈ ℬ(H) has a closed, invariant subspace J , it is generally not true that J is
invariant for 𝑇−1, or that the ‘diagonal blocks’ of T are both invertible. A counterexample is given by the
bilateral shift, T, on ℓ2(Z), with J = ℓ2(N0). In this case, 𝑇1 = 𝑃J𝑇 |J is isomorphic to the unilateral
shift, which is an isometry, hence injective, but it is not surjective, 𝑇3 = 𝑃⊥

J𝑇 |J ⊥ is isomorphic to the
backward shift, which is a surjective co-isometry, but not injective, and if (𝑒𝑛)𝑛∈Z denotes the standard
orthonormal basis of ℓ2(Z), then 𝑇2 = 〈𝑒−1, ·〉𝑒0. Moreover, T is unitary so that, with respect to the
direct sum decomposition, ℓ2(Z) = ℓ2(N0) ⊕ ℓ2(−N),

𝑇−1 = 𝑇∗ �
(
𝑇∗

1 0
𝑇∗

2 𝑇∗
3

)
,

so that ℓ2(N0) = J is not 𝑇−1−invariant.

Proof of Corollary 3.15. With respect to the orthogonal decomposition,

ℋ = ℳ𝐴,𝑏,𝑐 ⊕ (𝒞𝐴,𝑐 � ℳ𝐴,𝑏,𝑐) ⊕ 𝒞⊥
𝐴,𝑐 ,

we have that

Hence, the entire operator, 𝐴 𝑗 , is block upper triangular with respect to the orthogonal decompostion
H = 𝒞𝐴,𝑐 ⊕𝒞⊥

𝐴,𝑐 , while the upper left block corresponding to the decomposition of 𝒞𝐴,𝑏 is block lower
triangular. Let, 𝐴′

𝑗 denote this upper left block so that

𝐴 𝑗 =

(
𝐴′
𝑗 ∗

0 𝐴(2)
𝑗

)
.

By the previous lemma, if 𝑋 ∈ 𝒟𝑚(𝐴), so that 𝐿𝐴(𝑋) is invertible, it follows that 𝐿𝐴′ (𝑋) is injective
and 𝐿𝐴(2) (𝑋) is surjective. However, if 𝐿𝐴′ (𝑋) = 𝐼𝑚 ⊗ 𝐼 − 𝑋 ⊗ 𝐴′ is not invertible, it is not surjective,
so that 𝜆 = 1 belongs to the spectrum of 𝑋 ⊗ 𝐴′. Since each 𝐴 𝑗 is compact, it follows that 𝑋 ⊗ 𝐴′

is compact, so that any nonzero point in its spectrum is an eigenvalue. This contradicts injectivity of
𝐿𝐴′ (𝑋), and we conclude that 𝐿𝐴′ (𝑋) is invertible. Similarly, since 𝐿𝐴′ (𝑋) is invertible, we must have
that 𝐿𝐴(0) (𝑋) is surjective and 𝐿𝐴(1) (𝑋) is injective by the previous lemma. Again, both 𝑋 ⊗ 𝐴(0) and
𝑋 ⊗ 𝐴(1) are compact, so that both 𝐿𝐴(0) (𝑋) and 𝐿𝐴(1) (𝑋) must be invertible. Hence, 𝑋 ∈ 𝒟𝑚(𝐴(0) )
and 𝒟(𝐴) ⊆ 𝒟(𝐴(0) ). �

3.3. The Fornasini–Marchesini and descriptor algorithms

Let (𝐴, 𝐵, 𝐶, 𝐷) ∼ 𝑔 and (𝐴′, 𝐵′, 𝐶 ′, 𝐷 ′) ∼ ℎ be FM operator realizations on separable, complex
Hilbert spaces, H and H′. An FM operator realization for 𝑔 + ℎ is given by (𝐴+, 𝐵+, 𝐶+, 𝐷+), where

𝐴+
𝑗 := 𝐴 𝑗 ⊕ 𝐴′

𝑗 , 𝐵+
𝑗 :=

(
𝐵 𝑗
𝐵′
𝑗

)
, 𝐶+

𝑗 := (𝐶 𝑗 , 𝐶 ′
𝑗 ), and 𝐷+ := 𝐷 + 𝐷 ′. (3.10)
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An FM realization for 𝑔 · ℎ is given by (𝐴×, 𝐵×, 𝐶×, 𝐷×), where

𝐴×
𝑗 :=

(
𝐴 𝑗 𝐵 𝑗𝐶

′

0 𝐴′
𝑗

)
, 𝐵×

𝑗 :=
(
𝐵 𝑗𝐷

′

𝐵′
𝑗

)
, 𝐶× = (𝐶, 𝐷𝐶 ′), and 𝐷× := 𝐷 · 𝐷 ′. (3.11)

And an FM operator realization for 𝑔−1, assuming that 𝑔(0) = 𝐷 ≠ 0, is given by
(𝐴(−1) , 𝐵 (−1) , 𝐶 (−1) , 𝐷 (−1) ), where

𝐴(−1)
𝑗 := 𝐴 𝑗 −

1
𝐷
𝐵 𝑗𝐶, 𝐵 (−1)

𝑗 := − 1
𝐷
𝐵 𝑗 , 𝐶 (−1) :=

1
𝐷
𝐶, and 𝐷 (−1) :=

1
𝐷
. (3.12)

It is well known that these formulas give realizations for sums, products and inverses in the case of
finite-dimensional realizations. It is straightforward to verify, by direct computation, that these formulas
still hold for operator-realizations, so we omit the proof. (The arguments are independent of dimension.)
The fact that Equation (3.12) above gives an FM realization for 𝑔−1, for example, can be readily checked
using the Woodbury identity [64].

Remark 3.18. If (𝐴, 𝐵, 𝐶, 𝐷) is a minimal FM realization so that 𝐷 ≠ 0, then it is easy to check that
(𝐴(−1) , 𝐵 (−1) , 𝐶 (−1) , 𝐷 (−1) ) is also minimal, as in [30, Section 5.2]. Indeed, assuming (𝐴, 𝐵, 𝐶, 𝐷) is
minimal,∨

𝜔∈F𝑑+
1≤ 𝑗≤𝑑

𝐴(−1)𝜔𝐵 (−1)
𝑗 ⊇

∨
𝐴𝜔𝐵 𝑗 = H, and

∨
𝜔∈F𝑑+

𝐴(−1)∗𝜔𝐶 (−1)∗ ⊇
∨

𝐴∗𝜔𝐶∗ = H.

Similarly, there is an algorithm for constructing descriptor realizations of sums, products and inverses
as follows. Let (𝐴, 𝑏, 𝑐) ∼ 𝑔 and (𝐴′, 𝑏′, 𝑐′) ∼ ℎ be descriptor realizations on complex, separable Hilbert
spaces H and H′. A descriptor realization for 𝑔 + ℎ is given by (𝐴+, 𝑏+, 𝑐+), where

𝐴+
𝑗 := 𝐴 𝑗 ⊕ 𝐴′

𝑗 , 𝑏+ :=
(
𝑏
𝑏′

)
, and 𝑐+ :=

(
𝑐
𝑐′

)
. (3.13)

A descriptor realization for 𝑔 · ℎ is given by (𝐴×, 𝑏×, 𝑐×), where

𝐴×
𝑗 :=

(
𝐴 𝑗 𝐴 𝑗𝑐𝑏

′∗

0 𝐴′

)
, 𝑏× :=

(
𝑏

𝑐∗𝑏 𝑏′

)
, and 𝑐× :=

(
0
𝑐′

)
. (3.14)

And a descriptor realization for 𝑔−1, assuming that 𝑔(0) = 𝑏∗𝑐 ≠ 0, on the Hilbert space Ĥ := H ⊕ C,
is given by (𝐴(−1) , 𝑏 (−1) , 𝑐 (−1) ), where 𝐴(−1)

𝑗 ∈ ℬ(Ĥ), 1 ≤ 𝑗 ≤ 𝑑, 𝑏 (−1) , 𝑐 (−1) ∈ Ĥ and

𝐴(−1)
𝑗 :=

(
𝐴 𝑗 − 1

𝑏∗𝑐 𝐴 𝑗𝑐𝑏
∗ 1
𝑏∗𝑐 𝐴 𝑗𝑐〈0 ⊕ 1, ·〉Ĥ

0 0

)
, 𝑏 (−1) :=

1
𝑐∗𝑏

(
−𝑏
1

)
, and 𝑐 (−1) :=

(
0
1

)
. (3.15)

3.4. Operator realizations around a matrix centre

In [46, 47], Porat and Vinnikov show that any NC rational function, 𝔯 ∈ C<( 𝔷>) , has a ‘realization
around a matrix–centre’, 𝑌 ∈ Dom 𝔯. Namely, suppose that 𝑌 ∈ Dom𝑚 𝔯. Then there is a quadruple,
(𝑨, 𝑩,𝑪, 𝑫), where each 𝑨 𝑗 : C𝑚×𝑚 → C𝑀×𝑀 is a linear map, each 𝑩 𝑗 : C𝑚×𝑚 → C𝑀×𝑚 is a linear
map, 𝑪 ∈ C𝑚×𝑀 , and 𝑫 = 𝔯(𝑌 ) ∈ C𝑚×𝑚, so that for any 𝑋 ∈ Dom𝑚 𝔯 that is sufficiently close to Y,

𝔯(𝑋) = 𝑫 + 𝑪

(
𝐼𝑀 −

∑
𝑗

𝑨 𝑗 (𝑋 𝑗 − 𝑌 𝑗 )
)−1 ∑

𝑗

𝑩 𝑗 (𝑋 𝑗 − 𝑌 𝑗 ).
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This can be extended to points 𝑋 ∈ C(𝑚𝑛×𝑚𝑛) ·𝑑 , 𝑛 ∈ N by viewing each 𝑋 𝑗 as an 𝑛 × 𝑛 block matrix
with blocks of size 𝑚 × 𝑚,

𝑋 𝑗 =
(
𝑋 (𝑘,ℓ)
𝑗

)
1≤𝑘,ℓ≤𝑛

=
𝑛∑

𝑘,ℓ=1
𝐸𝑘,ℓ ⊗ 𝑋 (𝑘,ℓ)

𝑗 ; 𝑋 (𝑘,ℓ)
𝑗 ∈ C𝑚×𝑚,

where 𝐸𝑘,ℓ are the standard matrix units of C𝑛×𝑛. We then define

𝑨 𝑗 (𝑋 𝑗 ) :=
(
𝑨 𝑗
(
𝑋 (𝑘,ℓ)
𝑗

))
∈ C𝑛×𝑛 ⊗ C𝑀×𝑀 ,

and then the action of 𝑩 𝑗 on 𝑋 𝑗 is defined similarly. That is, we are identifyingC𝑚𝑛×𝑚𝑛 withC𝑛×𝑛⊗C𝑚×𝑚

and 𝑨 𝑗 with its ampliation, id𝑛 ⊗ 𝑨 𝑗 , where id𝑛 is the identity map on C𝑛×𝑛. In this case,

𝔯(𝑋) = 𝐼𝑛 ⊗ 𝑫 + 𝐼𝑛 ⊗ 𝑪
(
𝐼𝑛 ⊗ 𝐼𝑀 −

∑
𝑨 𝑗 (𝑋 𝑗 − 𝐼𝑛 ⊗ 𝑌 𝑗 )

)−1 ∑
𝑩 𝑗 (𝑋 𝑗 − 𝐼𝑛 ⊗ 𝑌 𝑗 ).

As for regular realizations, we will write 𝑨(𝑋), 𝑩(𝑋) in place of
∑

𝑨 𝑗 (𝑋 𝑗 ) and
∑

𝑩 𝑗 (𝑋 𝑗 ), respectively,
and we define the linear pencil of 𝑨 as

𝐿𝑨(𝑋) := 𝐼𝑛 ⊗ 𝐼𝑀 − 𝑨(𝑋); 𝑋 ∈ C(𝑚𝑛×𝑚𝑛) ·𝑑 .

Let (𝐴, 𝐵, 𝐶, 𝐷), 𝐴 ∈ ℬ(H)𝑑 , be a minimal FM realization of a familiar NC function, f, and suppose
that 𝑌 ∈ 𝒟(𝐴) ⊆ Dom 𝑓 , 𝑌 ∈ C(𝑚×𝑚) ·𝑑 . Then f also has an FM ‘matrix–realization’ centred at Y. To
see this, consider the Taylor–Taylor series of f centred at Y.

𝑓 (𝑋) =
∑
𝜔∈F𝑑+

Δ𝜔
t

𝑋−𝑌 𝑓 (𝑌 ).

Given any 𝐻 ∈ C(𝑚×𝑚) ·𝑑 , let �𝐻 𝑗 := (0𝑚, · · · , 𝐻 𝑗 , 0𝑚, · · · , 0𝑚) ∈ C(𝑚×𝑚) ·𝑑 , with 𝐻 𝑗 in the jth slot. For
any 1 ≤ 𝑗 ≤ 𝑑, Δ ( 𝑗)

𝐻 𝑓 (𝑌 ) can be computed as the upper right corner of

𝑓

(
𝑌 �𝐻 𝑗
𝑌

)
= 𝐷𝐼𝑚 + 𝐼𝑚 ⊗ 𝐶

(
𝐼𝑚 ⊗ 𝐼 −

(
𝑌 ⊗𝐴 𝐻 𝑗 ⊗𝐴 𝑗

𝑌 ⊗𝐴

))−1 (
𝑌 ⊗𝐵 𝐻 𝑗 ⊗𝐵 𝑗

𝑌 ⊗𝐵

)
= 𝐷𝐼2𝑚 + 𝐼2𝑚 ⊗ 𝐶

(
𝐿𝐴(𝑌 )−1 𝐿𝐴(𝑌 )−1𝐻 𝑗 ⊗ 𝐴 𝑗𝐿𝐴(𝑌 )−1

𝐿𝐴(𝑌 )−1

) (
𝑌 ⊗ 𝐵 𝐻 𝑗 ⊗ 𝐵 𝑗

𝑌 ⊗ 𝐵

)
=

(
∗ 𝐼𝑚 ⊗ 𝐶

(
𝐿𝐴(𝑌 )−1𝐻 𝑗 ⊗ 𝐵 𝑗 + 𝐿𝐴(𝑌 )−1𝐻 𝑗 ⊗ 𝐴 𝑗𝐿𝐴(𝑌 )−1𝑌 ⊗ 𝐵

)
∗

)
.

Hence,

Δ ( 𝑗)
𝐻 𝑓 (𝑌 ) = 𝐼𝑚 ⊗ 𝐶

(
𝐿𝐴(𝑌 )−1𝐻 𝑗 ⊗ 𝐵 𝑗 + 𝐿𝐴(𝑌 )−1𝐻 𝑗 ⊗ 𝐴 𝑗𝐿𝐴(𝑌 )−1𝑌 ⊗ 𝐵

)
. (3.16)

Similarly, Δ (𝑘 𝑗)
𝐻 𝑓 (𝑌 ) can be calculated as the upper right corner of f applied to

���
𝑌 �𝐻 𝑗 0
𝑌 �𝐻𝑘

𝑌

	
�,
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and this yields

𝐷𝐼3𝑚+𝐼3𝑚⊗𝐶

(
𝐼3𝑚⊗𝐼−

(
𝑌 ⊗𝐴 𝐻 𝑗 ⊗𝐴 𝑗 0

𝑌 ⊗𝐴 𝐻𝑘 ⊗𝐴𝑘
𝑌 ⊗𝐴

))−1 ( 𝑌 ⊗𝐵 𝐻 𝑗 ⊗𝐵 𝑗 0
𝑌 ⊗𝐵 𝐻𝑘 ⊗𝐵𝑘

𝑌 ⊗𝐵

)
= 𝐷𝐼3𝑚+𝐼3𝑚⊗𝐶

(
𝐿𝐴 (𝑌 )−1 𝐿𝐴 (𝑌 )−1𝐻 𝑗 ⊗𝐴 𝑗𝐿𝐴 (𝑌 )−1 𝐿𝐴 (𝑌 )−1𝐻 𝑗 ⊗𝐴 𝑗𝐿𝐴 (𝑌 )−1𝐻𝑘 ⊗𝐴𝑘𝐿𝐴 (𝑌 )−1

∗ ∗
∗

) ( 𝑌 ⊗𝐵 𝐻 𝑗 ⊗𝐵 𝑗 0
∗ 𝐻𝑘 ⊗𝐵𝑘

𝑌 ⊗𝐵

)
.

That is,

Δ (𝑘 𝑗)
𝐻 𝑓 (𝑌 ) = 𝐼𝑚 ⊗ 𝐶 𝐿𝐴(𝑌 )−1𝐻 𝑗 ⊗ 𝐴 𝑗

(
𝐿𝐴(𝑌 )−1𝐻𝑘 ⊗ 𝐵𝑘 + 𝐿𝐴(𝑌 )−1𝐻𝑘 ⊗ 𝐴𝑘𝐿𝐴(𝑌 )−1𝑌 ⊗ 𝐵

)
.

(3.17)

Hence, for any fixed 𝐺 ∈ C𝑚×𝑚 and any 1 ≤ 𝑗 ≤ 𝑑, define

𝑨 𝑗 (𝐺) := 𝐿𝐴(𝑌 )−1𝐺 ⊗ 𝐴 𝑗 , 𝑩 𝑗 (𝐺) := 𝐿𝐴(𝑌 )−1𝐺 ⊗ 𝐵 𝑗 + 𝐿𝐴(𝑌 )−1𝐺 ⊗ 𝐴 𝑗𝐿𝐴(𝑌 )−1𝑌 ⊗ 𝐵,

𝑪 := 𝐼𝑚 ⊗𝐶, and 𝑫 := 𝑓 (𝑌 ). Then each 𝑨 𝑗 : C𝑚×𝑚 → ℬ(C𝑚 ⊗H) and each 𝑩 𝑗 : C𝑚×𝑚 → C𝑚×𝑚 ⊗H
are linear maps, 𝑪 ∈ C𝑚×𝑚 ⊗ H†, 𝑫 = 𝑓 (𝑌 ) ∈ C𝑚×𝑚, and f is given by the matrix-realization
(𝑨, 𝑩,𝑪, 𝑫) in the sense of the following theorem. We will write 𝑓 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫) to denote that
(𝑨, 𝑩,𝑪, 𝑫) is a matrix-centre realization of f about Y, and we define the invertibility domain of the
matrix-centre realization (𝑨, 𝑩,𝑪, 𝑫), 𝒟𝑌 (𝑨), 𝑌 ∈ C(𝑚×𝑚) ·𝑑 , as the set of all 𝑋 ∈ C(𝑠𝑚×𝑠𝑚) ·𝑑 , 𝑠 ∈ N,
so that 𝐿𝑨(𝑋 − 𝐼𝑠 ⊗ 𝑌 ) is invertible.

Theorem 3.19. Let 𝑓 ∼ (𝐴, 𝐵, 𝐶, 𝐷) be a familiar NC function and suppose that 𝑌 ∈ 𝒟𝑚(𝐴) =
𝒟(𝐴) ∩ C(𝑚×𝑚) ·𝑑 . Then f has a matrix-centre realization about Y, 𝑓 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫), where 𝑨 𝑗 :
C𝑚×𝑚 → ℬ(C𝑚 ⊗ H), 𝑩 𝑗 : C𝑚×𝑚 → C𝑚 ⊗ H, 1 ≤ 𝑗 ≤ 𝑑, 𝑪 ∈ C𝑚×𝑚 ⊗ H†, and 𝑫 ∈ C𝑚×𝑚 are given
by

𝑨 𝑗 (𝐺) = 𝐿𝐴(𝑌 )−1𝐺 ⊗ 𝐴 𝑗 , 𝑩 𝑗 (𝐺) = 𝐿𝐴(𝑌 )−1𝐺 ⊗ 𝐵 𝑗 + 𝐿𝐴(𝑌 )−1𝐺 ⊗ 𝐴 𝑗𝐿𝐴(𝑌 )−1𝑌 ⊗ 𝐵,

𝑪 = 𝐼𝑚 ⊗ 𝐶, and 𝑫 = 𝑓 (𝑌 ). (3.18)

That is, for any 𝑋 ∈ 𝒟𝑌
𝑠𝑚(𝑨),

𝑓 (𝑋) = 𝐼𝑠 ⊗ 𝑫 + 𝑪
(
𝐼𝑠𝑚 ⊗ 𝐼H −

∑
𝑨 𝑗 (𝑋 𝑗 − 𝐼𝑠 ⊗ 𝑌 𝑗 )

)−1︸��������������������������������������������︷︷��������������������������������������������︸
=𝐿𝑨 (𝑋−𝐼𝑠⊗𝑌 )−1

∑
𝑩 𝑗 (𝑋 𝑗 − 𝐼𝑠 ⊗ 𝑌 𝑗 ). (3.19)

Note that each linear map,

𝑨 𝑗 : C𝑠𝑚×𝑠𝑚 → C𝑠𝑚×𝑠𝑚 ⊗ ℬ(H) = ℬ(C𝑠𝑚 ⊗ H),

in the above theorem statement, is completely bounded so that𝒟𝑌 (𝑨) is uniformly open, joint-similarity
invariant, and contains a uniformly open row-ball centred at Y of radius 𝑟 = ‖𝑨‖−1

col, where ‖𝑨‖col is the
completely bounded norm of the ‘column’ 𝑨 : C𝑚×𝑚 → ℬ(C𝑚 ⊗ H) ⊗ C𝑑 .

As in the theory of NC rational functions, if 𝑓 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫) is given by the matrix-centre
realization formula (3.19), then one can compute the Taylor–Taylor series of f expanded about the point
Y in terms of the matrix-centre realization [46, Lemma 2.12].
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Lemma 3.20. Let 𝑌 ∈ Dom𝑚 𝑓 , where f is a familiar NC function. If 𝑓 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫), then the terms
of the Taylor–Taylor series of f at Y are given by the multilinear partial difference-differential maps,
Δ𝜔

t

( ·) 𝑓 (𝑌 ), where if ∅ ≠ 𝜔 = 𝑖1 · · · 𝑖𝑘 ∈ F𝑑+ and 𝐻 ∈ C(𝑚×𝑚) ·𝑑 , then

Δ𝜔
t

𝐻 𝑓 (𝑌 ) = 𝑪𝑨𝑖1 (𝐻𝑖1)𝑨𝑖2 (𝐻𝑖2) · · · 𝑨𝑖𝑘−1 (𝐻𝑖𝑘−1)𝑩𝑖𝑘 (𝐻𝑖𝑘 ). (3.20)

That is, if the Taylor–Taylor series of 𝑓 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫) centred at 𝑌 ∈ Dom𝑚 𝑓 converges at
𝑋 ∈ C(𝑠𝑚×𝑠𝑚) ·𝑑 , then

𝑓 (𝑋) =
∑
𝜔∈F𝑑+

Δ𝜔
t

𝑋−𝐼𝑠⊗𝑌 𝑓 (𝑌 ),

where the terms of this series are given by Equation (3.20). This lemma can be readily established with
a proof identical to that of [46, Lemma 2.12]. Namely, these terms of the Taylor–Taylor series of f,
centred at Y, can be computed by evaluating f at points in the ‘jointly nilpotent ball centred at Y’, which
consists of all 𝑋 ∈ C(𝑠𝑚×𝑠𝑚) ·𝑑 for which 𝑋 − 𝐼𝑠 ⊗𝑌 is jointly nilpotent. We also omit the inductive proof
of Theorem 3.19, which can be accomplished by showing that the Taylor–Taylor series of the familiar
NC function 𝑓 ∼ (𝐴, 𝐵, 𝐶, 𝐷), at the point 𝑌 ∈ 𝒟𝑚(𝐴), coincides with the Taylor–Taylor series at Y of
𝑓̃ ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫). (We verified this for all words of length ≤ 2 in Equations (3.16–3.17).) Here, 𝑓̃ is
the NC function given by the matrix-centre realization formula of Equation (3.19) and (𝑨, 𝑩,𝑪, 𝑫) are
defined by the FM realization, (𝐴, 𝐵, 𝐶, 𝐷), of f, as in the statement of Theorem 3.19.

Also as in [46, Theorem 2.4], if 𝑓 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫) and 𝑔 ∼𝑌 (𝑨′, 𝑩′,𝑪 ′, 𝑫 ′), then 𝑓 + 𝑔, 𝑓 · 𝑔,
and, assuming 𝑓 (𝑌 ) is invertible, 𝑓 −1, all have matrix-centre realizations about Y given by a natural
extension of the Fornasini–Marchesini algorithm described in Subsection 3.3. Namely, a matrix-centre
realization for 𝑓 + 𝑔 is given by (𝑨+, 𝑩+,𝑪+, 𝑫+), where

𝑨+
𝑗 := 𝑨 𝑗 ⊕ 𝑨′

𝑗 , 𝑩+
𝑗 :=

(
𝑩 𝑗
𝑩′
𝑗

)
, 𝑪+ := (𝑪,𝑪 ′), and 𝑫+ = 𝑫 + 𝑫 ′. (3.21)

A matrix-centre realization for 𝑓 · 𝑔 is given by (𝑨×, 𝑩×,𝑪×, 𝑫×), where

𝑨×
𝑗 :=

(
𝑨 𝑗 𝑩 𝑗 (·)𝑪 ′

𝑨′
𝑗

)
, 𝑩× =

(
𝑩 𝑗 (·)𝑫 ′

𝑩′
𝑗

)
, 𝑪× = (𝑪, 𝑫𝑪 ′), and 𝑫× = 𝑫𝑫 ′. (3.22)

Finally, a matrix-centre realization for 𝑓 −1, assuming that 𝑫 = 𝑓 (𝑌 ) is invertible, is given by
(𝑨(−1) , 𝑩 (−1) ,𝑪 (−1) , 𝑫 (−1) ), where

𝑨(−1)
𝑗 := 𝑨 𝑗 − 𝑩 𝑗 (·)𝑫−1𝑪, 𝑩 (−1)

𝑗 := −𝑩 𝑗 (·)𝑫−1, 𝑪 (−1) := 𝑫−1𝑪, and 𝑫 (−1) := 𝑫−1.

(3.23)

Verification of these formulas is a straightforward computation, and we refer the reader to [46, Theorem
2.4] for their proofs (in the NC rational/ finite-dimensional setting).

4. Uniformly entire NC functions

Recall that an NC function in d NC variables is uniformly entire, ℎ ∈ 𝒪𝑑 , if its Taylor–Taylor series at
0 has infinite radius of convergence; see Definition 2.1. Further recall that the joint spectral radius of a
row 𝑑−tuple, 𝐴 = (𝐴1, · · · , 𝐴𝑑) ∈ ℬ(H)1×𝑑 , introduced by Popescu in [45], is

𝜌(𝐴) = lim
𝑛→∞

2𝑛
√

‖Ad◦𝑛
𝐴,𝐴∗ (𝐼H)‖; where Ad𝐴,𝐴∗ (𝑋) :=

𝑑∑
𝑗=1

𝐴 𝑗𝑋𝐴
∗
𝑗 .

Here, Ad𝐴,𝐴∗ is a normal, completely positive map on ℬ(H) which we call adjunction by A and 𝐴∗.
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Definition 4.1. A row 𝑑−tuple, 𝐴 = (𝐴1, · · · , 𝐴𝑑) ∈ ℬ(H)1×𝑑 , is jointly quasinilpotent if 𝜌(𝐴) = 0.
Similarly, a column 𝑑−tuple, 𝐴 ∈ ℬ(H)𝑑 is jointly quasinilpotent if 𝜌(𝐴) := 𝜌(row(𝐴)) = 0, i.e., if
row(𝐴) is jointly quasinilpotent.

Note that if 𝑑 = 1, this recovers the usual definition of a quasinilpotent operator, 𝐴 ∈ ℬ(H), as an
operator whose spectrum is 𝜎(𝐴) = {0}. This follows as Popescu’s joint spectral radius formula reduces
to the Gelfand–Beurling spectral radius formula when 𝑑 = 1.
Lemma 4.2. Let 𝐴 ∈ ℬ(H)𝑑 , 𝑑 ∈ N, be a quasinilpotent tuple and 𝑏, 𝑐 ∈ H. Then the NC function, h,
given by the realization (𝐴, 𝑏, 𝑐), is uniformly entire.

It is well known that ℎ = 𝑝 ∈ C〈𝔷〉 if and only if ℎ ∼ (𝐴, 𝑏, 𝑐) has a finite-dimensional realization so
that the 𝑑−tuple A is jointly nilpotent (i.e., if there exists an 𝑛 ∈ N so that 𝐴𝜔 = 0, for all |𝜔| > 𝑛) –
see, for example, [30] or [33, Section 6].

Proof. Suppose that ℎ ∼ (𝐴, 𝑏, 𝑐) where 𝐴 ∈ ℬ(H)𝑑 is jointly quasinilpotent. Hence, h is a uniformly
analytic NC function in a uniformly open neighbourhood of 0 with Taylor–Taylor series at 0,

ℎ(𝑋) =
∑
𝜔∈F𝑑+

𝑏∗𝐴𝜔𝑐 𝑋𝜔 ,

for any 𝑋 ∈ 𝑟 · B(N×N) ·𝑑 with 𝑟 > 0 sufficiently small. By Popescu’s generalization of the Cauchy–
Hadamard radius of convergence formula, any formal power series,

𝑓 (𝔷) =
∑
𝜔∈F𝑑+

𝑓𝜔 𝔷𝜔 ,

defines a uniformly analytic NC function in the row-ball of radius 𝑅 𝑓 ≥ 0, where

1
𝑅 𝑓

= lim sup
𝑛→∞

2𝑛

√ ∑
|𝜔 |=𝑛

| 𝑓𝜔 |2,

and f is uniformly bounded on any row-ball of radius r, 0 < 𝑟 < 𝑅 𝑓 . Since∑
|𝜔 |=𝑛

| ℎ̂𝜔 |2 =
∑

|𝜔 |=𝑛
𝑏∗𝐴𝜔𝑐 𝑐∗𝐴𝜔∗𝑏

≤ ‖𝑏‖2‖𝑐‖2

������ ∑|𝜔 |=𝑛
𝐴𝜔𝐴𝜔∗

������ = ‖𝑏‖2‖𝑐‖2‖Ad◦𝑛
𝐴,𝐴∗ (𝐼H)‖,

it follows that 𝑅−1
ℎ ≤ 𝜌(𝐴) = 0, so that 𝑅ℎ = +∞ and h is uniformly entire. �

Moreover, if f is a uniformly entire NC function with jointly quasinilpotent realization (𝐴, 𝑏, 𝑐),
then the joint spectral radius can only decrease by restricting the tuple to jointly invariant subspaces
or compressing it to jointly co-invariant ones. Therefore, such an NC function will have a minimal
realization that is also jointly quasinilpotent. However, as we have seen in Example 3.10, not every
minimal realization of a uniformly entire function is quasinilpotent.

4.1. Entire functions of a single complex variable

Let ℎ ∈ 𝒪(C) be an entire function (in one variable), with Taylor series at zero,

ℎ(𝑧) =
∞∑
𝑗=0
𝑎 𝑗 𝑧

𝑗 ; 𝑎 𝑗 ∈ C.
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This Taylor series has infinite radius of convergence so that the coefficients obey:

lim
𝑛→∞

𝑛
√

|𝑎𝑛 | = 0.

We can construct a realization of h as follows. Let H :=
⊕∞

𝑛=0 C
𝑛+1. For 𝑛 = 0, let 𝐴0 := 0, 𝑏0 = 1 and

𝑐0 = 𝑎01. For 𝑛 ∈ N fix any complex nth root, 𝑛√𝑎𝑛 of 𝑎𝑛 ∈ C, and define

𝐴𝑛 :=

����������

0 𝑛√𝑎𝑛
0 𝑛√𝑎𝑛

. . .
. . .

𝑛√𝑎𝑛
0

	







�
∈ C(𝑛+1)×(𝑛+1) , 𝑏𝑛 := 𝑒1, and 𝑐𝑛 := 𝑒𝑛+1,

where (𝑒 𝑗 )𝑛𝑗=1 is the standard orthonormal basis of C𝑛.

Theorem 4.3. Let ℎ(𝑧) =
∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 be an entire function. Then h has a compact and quasinilpotent
realization (𝐴, 𝑏, 𝑐), on H =

⊕∞
𝑛=0 C

𝑛, given by

𝐴 := 𝐴0 ⊕
∞⊕
𝑛=1

𝑛
√
𝑛2𝐴𝑛, 𝑏 := 1 ⊕

∞⊕
𝑛=1

1
𝑛
𝑒1, and 𝑐 := 𝑎01 ⊕

∞⊕
𝑛=1

1
𝑛
𝑒𝑛+1.

Proof. Note that if 𝐸 𝑗 ,𝑘 denote the standard matrix units of C(𝑛+1)×(𝑛+1) , and

𝑆𝑛 :=
𝑛∑
𝑗=1

𝐸 𝑗+1, 𝑗 , then, 𝑆∗
𝑛 =

������
0 1
. . .

. . .

1
0

	



�
∈ C(𝑛+1)×(𝑛+1) .

Hence, 𝐴𝑛 = 𝑛√𝑎𝑛𝑆∗
𝑛. This ‘truncated backward shift’ matrix, 𝑆∗

𝑛, is a partial isometry with Ker 𝑆∗
𝑛 =

∨
𝑒1

and Ran 𝑆∗⊥
𝑛 =

∨
𝑒𝑛+1. Also notice that each 𝑆∗

𝑛 is nilpotent as 𝑆∗(𝑛+1)
𝑛 = 0𝑛. It follows that 𝑆𝑛𝑆∗

𝑛 = 𝑃
⊥
1

is the orthogonal projection onto
∨

{𝑒1}⊥, and

𝐴∗
𝑛𝐴𝑛 = |𝑎𝑛 |

2
𝑛 (𝐼𝑛+1 − 𝐸1,1).

Hence,

‖𝐴‖ =
√

‖𝐴𝐴∗‖ = sup 𝑛
√
𝑛2 𝑛
√

|𝑎𝑛 | < +∞,

since (𝑎𝑛) is the sequence of Taylor coefficients of an entire function. This proves that 𝐴 ∈ ℬ(H).
Moreover, if 𝐴(𝑁 ) denotes the 𝑁 + 1st partial direct sum of A, 𝐴(𝑁 ) := 𝐴0 ⊕

⊕𝑁
𝑛=1

𝑛
√
𝑛2𝐴𝑛, then each

𝐴(𝑁 ) is clearly finite-rank and nilpotent. Moreover,

‖𝐴 − 𝐴(𝑁 ) ‖ = sup
𝑛>𝑁

𝑛
√
𝑛2 𝑛
√

|𝑎𝑛 |,

which converges to 0 as 𝑁 → ∞, by Hadamard’s radius of convergence formula. This proves that A is the
operator-norm limit of a sequence of finite-rank operators, so that A is compact. Setting 𝐴̂𝑛 := 𝑛

√
𝑛2𝐴𝑛,

similar calculations show that

‖ 𝐴̂𝑘𝑛 ‖ = (𝑛2 |𝑎𝑛 |)
𝑘
𝑛 ,
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which implies

‖𝐴𝑘 ‖ = sup
𝑛>𝑘

(𝑛2 |𝑎𝑛 |)
𝑘
𝑛 .

Given any 𝜖 > 0, since 𝑛
√
𝑛2 |𝑎𝑛 | → 0, there is an 𝑁𝜖 ∈ N so that 𝑛 > 𝑁𝜖 implies that 𝑛

√
𝑛2 |𝑎𝑛 | < 𝜖 .

Hence, for 𝑛 > 𝑘 > 𝑁𝜖 , ‖𝐴𝑘 ‖ < 𝜖 𝑘 and by the Gelfand–Beurling spectral radius formula,

𝜌(𝐴) = lim
𝑘→∞

𝑘
√

‖𝐴𝑘 ‖ ≤ 𝜖 .

Since 𝜖 > 0 was arbitrary, we conclude that 𝜎(𝐴) = {0} and A is both compact and quasinilpotent.
Finally, it is easily checked that (𝐴, 𝑏, 𝑐) is a realization for h as

𝐴𝑛𝑛 =

�������
0 · · · 0 𝑎𝑛
...
. . . 0

...
0 · · · 0

	




�
, and 𝑏∗

𝑛𝐴
𝑗
𝑛𝑐𝑛 = 𝛿 𝑗 ,𝑛𝑎𝑛.

It follows that for all 𝑛 ∈ N ∪ {0}, 𝑏∗𝐴𝑛𝑐 = 𝑎𝑛, and ℎ ∼ (𝐴, 𝑏, 𝑐). �

Although the realization of an entire function, h, just constructed above need not be minimal, this is
no matter.

Corollary 4.4. A formal power series, ℎ ∈ C[[𝔷]] in one variable, 𝔷, is the Taylor series of an entire
function in C if and only if it has a compact and quasinilpotent realization, that is, if and only if

ℎ(𝔷) =
∞∑
𝑛=0

ℎ̂𝑛 𝔷
𝑛; where ℎ̂𝑛 = 𝑏

∗𝐴𝑛𝑐; (𝐴, 𝑏, 𝑐) ∈ ℬ(H) × H × H,

with A compact and quasinilpotent. Equivalently, ℎ ∈ C[[𝔷]] is the Taylor series of an entire function if
and only if it has a minimal compact and quasinilpotent realization.

Proof. This is an immediate consequence of Lemma 4.2, the previous theorem and the Kalman decompo-
sition, Theorem 3.12, as compressions/ restrictions of compact operators are compact and compressions/
restrictions of quasinilpotent operators to invariant or co-invariant subspaces are quasinilpotent. �

4.2. Realizations of uniformly entire NC functions

Theorem 4.5. A free formal power series, ℎ ∈ C〈〈𝔷〉〉, defines a uniformly entire NC function if and only
if it has a compact and jointly quasinilpotent realization, (𝐴, 𝑏, 𝑐). Moreover, if h is uniformly entire,
then it has a minimal compact and quasinilpotent realization that is the row operator-norm limit of
finite-rank and jointly nilpotent realizations.

In order to establish this theorem, we will show that the construction of the realization in Theorem 4.3
above can be extended to several variables. It will be convenient to first prove several lemmas and
preliminary results needed in this construction.

Fix any 𝛼 = 𝑖1 · · · 𝑖𝑛 ∈ F𝑑+ , 1 ≤ 𝑖𝑘 ≤ 𝑑, and consider C𝑛+1 with the standard basis (𝑒 𝑗 )𝑛+1
𝑗=1 . Also set

𝐸 𝑗 ,𝑘 := 𝑒 𝑗𝑒∗𝑘 ∈ C(𝑛+1)×(𝑛+1) to be the standard matrix units, and 𝐸 𝑗 := 𝐸 𝑗 , 𝑗 . We define the compressed
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shift matrix, 𝑆𝑛 :=
∑𝑛
𝑗=1 𝐸 𝑗+1, 𝑗 ∈ C(𝑛+1)×(𝑛+1) , so that 𝑆∗

𝑛 =
∑𝑛
𝑗=1 𝐸 𝑗 , 𝑗+1, and we call 𝑆∗

𝑛 the truncated
backward shift matrix of size 𝑛 + 1. Then set

𝑇 (𝛼)𝑘 := 𝑆∗
𝑛

𝑛∑
𝑗=1
𝛿𝑖 𝑗 ,𝑘𝐸 𝑗+1 =

𝑛∑
𝑗=1
𝛿𝑖 𝑗 ,𝑘𝐸 𝑗𝑆

∗
𝑛; 1 ≤ 𝑘 ≤ 𝑑. (4.1)

Let 𝑇 (𝛼) := (𝑇 (𝛼)1, · · · , 𝑇 (𝛼)𝑑) ∈ C( (𝑛+1)×(𝑛+1)) ·𝑑 , and also consider 𝐶 (𝛼)𝑘 := 𝑇 (𝛼)∗𝑘 , for 1 ≤ 𝑘 ≤
𝑑, 𝐶 (𝛼) := row(𝑇 (𝛼)∗). Observe that 𝑇 (𝛼) is jointly nilpotent of order n, i.e., 𝑇 (𝛼)𝛽 ≡ 0𝑛+1 for
|𝛽 | > |𝛼 | = 𝑛. In particular, each 𝑇 (𝛼)𝑘 ∈ C(𝑛+1)×(𝑛+1) is nilpotent of order n. Similarly, 𝐶 (𝛼) :=
(𝐶 (𝛼)1, · · · , 𝐶 (𝛼)𝑑) is jointly nilpotent of order n.

Lemma 4.6. Each 𝐶𝑘 := 𝐶 (𝛼)𝑘 , 1 ≤ 𝑘 ≤ 𝑑 is a partial isometry with range projection,

𝑃𝑘 :=
𝑛∑
ℓ=1

𝛿𝑖ℓ ,𝑘𝐸ℓ+1,

and source projection,

𝑄𝑘 :=
𝑛∑
ℓ=1

𝛿𝑖ℓ ,𝑘𝐸ℓ .

The partial isometries 𝐶𝑘 have pairwise orthogonal ranges and sources,

𝑑∑
𝑘=1

𝑃𝑘 = 𝐼𝑛+1 − 𝐸1,
𝑑∑
𝑘=1

𝑄𝑘 = 𝐼𝑛+1 − 𝐸𝑛+1,

and both 𝐶,𝑇 := 𝑇 (𝛼) are jointly nilpotent row partial isometries of order n.

Proof. First,

𝐶∗
𝑗𝐶𝑘 =

𝑛∑
ℓ=1

𝛿𝑖ℓ , 𝑗𝐸ℓ𝑆
∗
𝑛𝑆𝑛

𝑛∑
𝑝=1

𝛿𝑖𝑝 ,𝑘𝐸𝑝

=
∑
ℓ, 𝑝

𝛿𝑖ℓ , 𝑗𝛿𝑖𝑝 ,𝑘 𝐸ℓ (𝐼𝑛+1 − 𝐸𝑛+1)𝐸𝑝︸�������������������︷︷�������������������︸
=𝛿ℓ,𝑝𝐸ℓ

= 𝛿 𝑗 ,𝑘
∑
ℓ

𝛿𝑖ℓ , 𝑗𝐸ℓ

= 𝛿 𝑗 ,𝑘𝑄 𝑗 .

Similarly,

𝐶 𝑗𝐶
∗
𝑘 =

𝑛∑
𝑝=1

𝛿𝑖𝑝 , 𝑗𝐸𝑝+1𝑆𝑛𝑆
∗
𝑛

𝑛∑
ℓ=1

𝛿𝑖ℓ ,𝑘𝐸ℓ+1

=
∑
𝑝,ℓ

𝛿𝑖𝑝 , 𝑗𝛿𝑖ℓ ,𝑘 𝐸𝑝+1𝑆𝑛𝑆
∗
𝑛𝐸ℓ+1︸������������︷︷������������︸

=𝛿𝑝,ℓ𝐸𝑝+1

= 𝛿𝑘, 𝑗
𝑛∑
𝑝=1

𝛿𝑖𝑝 , 𝑗𝐸𝑝+1

= 𝛿𝑘, 𝑗𝑃 𝑗 .
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It follows that

𝐶𝐶∗ =
𝑑∑
𝑘=1

𝑃𝑘 =
𝑑∑
𝑘=1

𝑛∑
𝑝=1

𝛿𝑖𝑝 ,𝑘𝐸𝑝+1

=
𝑛∑
𝑝=1

𝐸𝑝+1

= 𝐼𝑛+1 − 𝐸1,

while a similar calculation shows that 𝑇𝑇∗ =
∑𝑑
𝑘=1𝑄𝑘 = 𝐼𝑛+1 − 𝐸𝑛+1. �

Lemma 4.7. Let 𝐶 := 𝐶 (𝛼) and 𝑇 := 𝑇 (𝛼) as above and set 𝛽 = 𝑗1 · · · 𝑗𝑚. Then

𝐶𝛽𝑒𝑘 = 𝑒̃𝑘+𝑚 =

{
𝑒𝑘+𝑚 𝛽 = 𝑖𝑘+𝑚 · · · 𝑖𝑘

0 else .

In particular,

𝑇𝛽∗𝑒1 = 𝐶𝛽
t
𝑒1 = 𝑒̃1+𝑚 =

{
𝑒1+𝑚 𝛽 = 𝑖1+𝑚 · · · 𝑖1

0 else ,

so that this is zero unless 𝛼 = 𝛽𝛾, or equivalently, 𝛼t = 𝛾t𝛽t.

Proof.

𝐶 𝑗𝑒𝑘 = 𝑆𝑛
𝑛∑
ℓ=1

𝛿𝑖ℓ , 𝑗 𝐸ℓ𝑒𝑘︸︷︷︸
=𝑒𝑘 𝛿ℓ,𝑘

= 𝛿𝑖𝑘 , 𝑗𝑒𝑘+1.

Similarly,

𝐶 𝑗𝑚−1𝐶 𝑗𝑚𝑒𝑘 = 𝛿𝑖𝑘 , 𝑗𝑚𝛿𝑖𝑘+1 , 𝑗𝑚−1𝑒𝑘+2,

and so on. �

Similarly, one can prove the following.

Lemma 4.8. Let 𝑇 := 𝑇 (𝛼) as above and set 𝛽 = 𝑗1 · · · 𝑗𝑚. Then

𝑇𝛽𝑒𝑘 = 𝑒̃𝑘−𝑚 =

{
𝑒𝑘−𝑚 𝛽 = 𝑖𝑘−𝑚 · · · 𝑖𝑘−1

0 else .

In particular,

𝑇𝛽𝑒𝑛+1 = 𝑒̃𝑛+1−𝑚 =

{
𝑒𝑛+1−𝑚 𝛽 = 𝑖𝑛+1−𝑚 · · · 𝑖𝑛

0 else ,

so that this is zero unless 𝛽 ≤ 𝛼.

In the above statement, we define a partial order on F𝑑+ by 𝛼 ≤ 𝜔 if 𝜔 = 𝛽𝛼 for some 𝛽 ∈ F𝑑+ .

Lemma 4.9. Fix any 𝛼 = 𝑖1 · · · 𝑖𝑛 ∈ F𝑑+ and 𝛽 = 𝑗1 · · · 𝑗𝑚 ∈ F𝑑+ as above. Then(
𝐶 (𝛼)𝛽t

𝑒1, 𝑒𝑛+1

)
C𝑛+1

= 𝛿𝛼,𝛽 =
(
𝑒1, 𝑇 (𝛼)𝛽𝑒𝑛+1

)
C𝑛+1

.
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Proof. (
𝑒1, 𝑇 (𝛼)𝛽𝑒𝑛+1

)
C𝑛+1

= 𝛿𝑖𝑛 , 𝑗𝑚𝛿𝑖𝑛−1 , 𝑗𝑚−1 · · · 𝛿𝑖𝑛+1−𝑚 , 𝑗1 (𝑒1, 𝑒𝑛+1−𝑚)C𝑛+1

= 𝛿𝛼,𝛽 . �

Lemma 4.10. Given any 1 ≤ 𝑚 ≤ 𝑛 = |𝛼 |,∑
|𝜔 |=𝑚

𝑇 (𝛼)𝜔𝑇 (𝛼)𝜔∗ =
𝑛−𝑚+1∑
𝑗=1

𝐸 𝑗 .

Proof. If 𝑚 = 1, this follows from Lemma 4.6. If 𝑚 > 1, then again by Lemma 4.6,∑
|𝜔 |=𝑚

𝑇 (𝛼)𝜔𝑇 (𝛼)𝜔∗ =
∑

|𝛽 |=𝑚−1
𝑇 (𝛼)𝛽

𝑑∑
𝑗=1
𝑇 (𝛼) 𝑗𝑇 (𝛼)∗𝑗𝑇 (𝛼)𝛽∗

=
∑

|𝛽 |=𝑚−1
𝑇 (𝛼)𝛽 (𝐼𝑛+1 − 𝑒𝑛+1𝑒

∗
𝑛+1)𝑇 (𝛼)𝛽∗

=
∑

|𝛽 |=𝑚−1
𝑇 (𝛼)𝛽𝑇 (𝛼)𝛽∗ − 𝐸𝑛−𝑚+2,

where the last equality follows from Lemma 4.8. Iterating this argument yields∑
|𝜔 |=𝑚

𝑇 (𝛼)𝜔𝑇 (𝛼)𝜔∗ = 𝐼𝑛+1 −
𝑚∑
𝑗=1

𝐸𝑛+2− 𝑗

=
𝑛−𝑚+1∑
𝑗=1

𝐸 𝑗 . �

Proposition 4.11. Any NC monomial, 𝔷𝛼, has the minimal and jointly nilpotent realization
(𝑇 (𝛼), 𝑏(𝛼), 𝑐(𝛼)) where 𝑏(𝛼) = 𝑒1, 𝑐(𝛼) = 𝑒 |𝛼 |+1. This realization has size 𝑛 + 1 where 𝑛 = |𝛼 |,
and 𝑇 (𝛼) is jointly nilpotent of order |𝛼 |, (i.e., 𝑇 (𝛼)𝜔 ≡ 0 for any word 𝜔 of length |𝜔| > |𝛼 | = 𝑛).

Proof. By Lemma 4.9, this is a realization since 𝑒∗1𝑇 (𝛼)𝜔𝑒𝑛+1 = 𝛿𝛼,𝜔 . Moreover, Lemma 4.7 and
Lemma 3.4 imply that this realization is both controllable and observable, and hence, it is minimal. �

Remark 4.12. Alternatively,
(
𝐶 (𝛼t), 𝑒𝑛+1, 𝑒1

)
is also a minimal realization of 𝔷𝛼.

Proof of Theorem 4.5. If ℎ ∈ 𝒪𝑑 is uniformly entire, then h has a Taylor–Taylor series at 0,

ℎ(𝔷) =
∑
𝜔∈F𝑑+

𝑎𝜔𝔷
𝜔 ,

with infinite radius of convergence, 𝑅ℎ . By Popescu’s Cauchy–Hadamard radius of convergence formula,

1
𝑅ℎ

= lim
𝑛→∞

2𝑛

√ ∑
|𝜔 |=𝑛

|𝑎𝜔 |2 = 0. (4.2)

Let H :=
⊕∞

𝑛=0
⊕

|𝜔 |=𝑛 C
𝑛+1 and set

𝐴 𝑗 := 0 ⊕
∞⊕
𝑛=1

⊕
|𝜔 |=𝑛

𝑑
𝑛
√
𝑛2 𝑛√𝑎𝜔 · 𝑇 (𝜔) 𝑗︸������������������︷︷������������������︸

=:𝐴(𝜔) 𝑗

= 0 ⊕
∞⊕
𝑛=1

⊕
|𝜔 |=𝑛

𝐴(𝜔) 𝑗 ,

https://doi.org/10.1017/fms.2025.10038 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10038


Forum of Mathematics, Sigma 33

where, as before, 𝑛√𝑎𝜔 is any fixed nth root of 𝑎𝜔 ∈ C. Then define

𝑏 := 1 ⊕
∞⊕
𝑛=1

⊕
|𝜔 |=𝑛

1
𝑛
√
𝑑
𝑛 𝑒1,

and

𝑐 := 𝑎∅ ⊕
∞⊕
𝑛=1

⊕
|𝜔 |=𝑛

1
𝑛
√
𝑑
𝑛 𝑒𝑛+1.

Here, 𝑑𝑛 is the number of words in F𝑑+ of length n so that 𝑏, 𝑐 ∈ H.
As before, A is a compact and jointly quasinilpotent realization of h. Indeed,

‖𝐴‖row =
√

‖𝐴𝐴∗‖ = sup
𝑛≥0

max
|𝜔 |=𝑛

√
‖𝐴(𝜔)𝐴(𝜔)∗‖

= sup
𝑛≥1

max
|𝜔 |=𝑛

𝑑
𝑛
√
𝑛2 |𝑎𝜔 | = 𝑑 sup

𝑛≥1

𝑛
√
𝑛2 max

|𝜔 |=𝑛
2𝑛
√

|𝑎𝜔 |2

≤ 𝑑 sup
𝑛

𝑛
√
𝑛2

2𝑛

√ ∑
|𝜔 |=𝑛

|𝑎𝜔 |2.

This is bounded, by the radius of convergence formula, Equation (4.2), so that row(𝐴) ∈ ℬ(H)1×𝑑 , and
hence, 𝐴 ∈ ℬ(H)𝑑 . Similarly, if 𝐴(𝑁 ) denotes the Nth partial direct sum of A, then for each 1 ≤ 𝑗 ≤ 𝑑,

‖𝐴 𝑗 − 𝐴(𝑁 )
𝑗 ‖ ≤ ‖𝐴 − 𝐴(𝑁 ) ‖row ≤ sup

𝑛>𝑁
𝑑

𝑛
√
𝑛2

2𝑛

√ ∑
|𝜔 |=𝑛

|𝑎𝜔 |2,

which converges to 0 as 𝑁 → ∞ by the Popescu–Hadamard radius of convergence formula. Since each
𝐴(𝑁 )
𝑗 is of finite rank, it follows that 𝐴 ∈ 𝒞(H)𝑑 is a 𝑑−tuple of compact operators.
Moreover, and also as before, for any 𝑚 ∈ N so that 𝑛 = |𝜔| ≥ 𝑚, Lemma 4.10 implies that������ ∑|𝛼 |=𝑚

𝐴𝛼𝐴𝛼∗

������ = sup
𝑛≥𝑚

max
|𝜔 |=𝑛

������𝑛−𝑚+1∑
𝑗=1

𝐸 𝑗

������ 𝑑2𝑚𝑛
4𝑚
𝑛 |𝑎𝜔 |

2𝑚
𝑛 .

Hence,

2𝑚

√√√√√������ ∑|𝛼 |=𝑚
𝐴𝛼𝐴𝛼

∗

������ = 𝑑 sup
𝑛≥𝑚

𝑛
√
𝑛2 max

|𝜔 |=𝑛
𝑛
√

|𝑎𝜔 |

≤ 𝑑 sup
𝑛≥𝑚

𝑛
√
𝑛2

2𝑛

√ ∑
|𝜔 |=𝑛

|𝑎𝜔 |2.

Again, this converges to 0 as𝑚 → ∞ by the Popescu–Hadamard radius of convergence formula. That is,

𝜌(𝐴) = lim sup
𝑚→∞

2𝑚

√√√√√������ ∑|𝛼 |=𝑚
𝐴𝛼𝐴𝛼

∗

������ = 0,

so that 𝐴 ∈ 𝒞(H)𝑑 is a jointly compact and quasinilpotent tuple of operators.
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If, for each 𝜔 ∈ F𝑑+ , |𝜔| = 𝑛 ∈ N, we define 𝑏𝜔 := 1
𝑛
√
𝑑
𝑛 𝑒1 and 𝑐𝜔 := 1

𝑛
√
𝑑
𝑛 𝑒𝑛+1, it is easily checked

that (𝐴(𝜔), 𝑏𝜔 , 𝑐𝜔) is a minimal realization of 𝑎𝜔𝔷𝜔 , and it follows that (𝐴, 𝑏, 𝑐) is a compact and
quasinilpotent realization of h. Indeed, 𝑏∗𝐴∅𝑐 = 𝑏∗𝑐 = 𝑎∅, and by Lemma 4.9, for any 𝛼 ≠ ∅,

𝑏∗𝐴𝛼𝑐 =
∞∑
𝑛=0

∑
|𝜔 |=𝑛

1
𝑛2𝑑𝑛

𝑒∗1𝐴(𝜔)𝛼𝑒𝑛+1

=
∞∑
𝑛=0

∑
|𝜔 |=𝑛

(𝑛2)
|𝛼|
𝑛 𝑑 |𝛼 |

𝑛2𝑑𝑛
𝑒∗1𝑇 (𝜔)𝛼𝑒𝑛+1︸����������︷︷����������︸

𝛿𝛼,𝜔

𝑎
|𝛼|
𝑛
𝜔

= 𝑎𝛼 .

As before, compressions of compact operators are compact, and the compression of a quasinilpotent
tuple of operators to a jointly semi-invariant subspace is quasinilpotent, so that h has a minimal compact
and quasinilpotent realization by the Kalman decomposition theorem, Theorem 3.12. The operator
𝑑−tuples 𝐴(𝑁 ) are all of finite rank, they are jointly nilpotent and the 𝐴(𝑁 ) converge to A in the row
operator norm. If 𝑃𝑁 denotes the orthogonal projection of H onto the finite dimensional subspace H𝑁

on which 𝐴(𝑁 ) acts, then observe that

𝑃𝑁𝒞𝐴,𝑐 = 𝑃𝑁
∨

𝐴𝜔𝑐 =
∨

𝐴(𝑁 );𝜔𝑐𝑁 = 𝒞𝐴(𝑁 ) ,𝑐𝑁 ,

where 𝑐𝑁 = 𝑃𝑁 𝑐. Indeed, each finite-dimensional subspace, H𝑁 is clearly jointly 𝐴−reducing so that
this formula follows readily. Similarly, it easy to check that

𝑃𝑁𝒪
⊥
𝐴∗ ,𝑏 = 𝒪⊥

𝐴(𝑁 )∗ ,𝑏𝑁
, 𝑏𝑁 := 𝑃𝑁 𝑏,

and it follows that if ( 𝐴̌, 𝑏̌, 𝑐) is the minimal realization obtained from the Kalman decomposition
of (𝐴, 𝑏, 𝑐), that compression of ( 𝐴̌, 𝑏̌, 𝑐) to the minimal subspace of (𝐴(𝑁 ) , 𝑏𝑁 , 𝑐𝑁 ) yields the
minimal Kalman realization of (𝐴(𝑁 ) , 𝑏𝑁 , 𝑐𝑁 ). It follows that the minimal Kalman realizations of
(𝐴(𝑁 ) , 𝑏𝑁 , 𝑐𝑁 ), which are all finite-rank and jointly nilpotent, converge to the minimal Kalman realiza-
tion of (𝐴, 𝑏, 𝑐) in the sense that 𝐴(𝑁 ) → 𝐴 in operator row-norm, 𝑏𝑁 → 𝑏 and 𝑐𝑁 → 𝑐. In particular,
we see that the minimal, jointly quasinilpotent and compact 𝑑−tuple, 𝐴̌ ∈ ℬ(H)𝑑 , obtained from the
Kalman decomposition of (𝐴, 𝑏, 𝑐) is the operator row-norm limit of the sequence of minimal, finite-rank
and jointly nilpotent 𝑑−tuples, 𝐴̌(𝑁 ) , obtained from the Kalman decomposition of (𝐴(𝑁 ) , 𝑏𝑁 , 𝑐𝑁 ). �

Note that a familiar NC h has a jointly compact and quasinilpotent descriptor realization, (𝐴, 𝑏, 𝑐),
and hence, ℎ ∈ 𝒪𝑑 is uniformly entire if and only if it has a jointly compact and quasinilpotent
FM realization (𝐴′, 𝐵, 𝐶, 𝐷). Indeed, this follows from the construction of an FM realization from a
descriptor realization and vice versa, as described in Equations (3.6) and (3.7).

Remark 4.13. The construction of this subsection can be extended to give realizations of any NC
function that is uniformly analytic in a uniformly open neighbourhood of 0. However, if the Taylor–
Taylor series of this NC function at 0 has finite radius of convergence, the resulting realization will not
be jointly quasinilpotent and it need not be compact.

5. Meromorphic functions

5.1. Meromorphic functions of a single complex variable

Let f be a meromorphic function in C so that there are entire functions 𝑔, ℎ with no common zeroes and
𝑓 = 𝑔

ℎ . Since both g and h have compact and quasinilpotent realizations, we obtain the following:
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Theorem 5.1. Any meromorphic function has a compact FM realization which is at most a rank−2
perturbation of a compact, quasinilpotent realization.

Proof. If f is analytic in an open neighbourhood of 0, then this follows immediately from Theorem 4.3
and the Fornasini–Marchesini algorithm applied to 𝑓 = 𝑔 · ℎ−1; see Subsection 3.3. If f has a pole at 0,
simply define 𝑔(𝑧) := 𝑓 (𝑧− 𝑐), for some nonzero 𝑐 ∈ C. It follows that g has such a compact realization,
and so f has a compact realization (centred at c). �

Conversely, if 𝐴 ∈ 𝒞(H) is compact and H is separable, then its resolvent function, 𝑅𝐴(𝜆) :=
(𝜆𝐼H − 𝐴)−1 is meromorphic on C \ {0}. That is, either 𝜎(𝐴) = {0}, in which case A is compact and
quasinilpotent, or, 𝜎(𝐴) = {0} ∪ {𝜆 𝑗 }𝑁𝑗=1, 𝑁 ∈ N ∪ {+∞}, where each 𝜆 𝑗 is a nonzero eigenvalue of
finite multiplicity, and we can arrange them as a sequence (𝜆 𝑗 )𝑁𝑗=1 so that 𝜆 𝑗 , |𝜆 𝑗 | is nonincreasing, and
if 𝑁 = +∞, 𝜆 𝑗 → 0. One can then show that 𝑅𝐴(𝜆) is a meromorphic, operator–valued function on
C \ {0} whose set of poles is {𝜆 𝑗 }𝑁𝑗=1. This is well known, however, for the convenience of the reader
and for lack of a convenient reference which contains the precise formulation and statement we desire,
we will prove this below. Since 𝑅𝐴(𝜆) is meromorphic on C \ {0}, for a compact A, it easily follows
from this that if 𝑓 ∼ (𝐴, 𝑏, 𝑐) for some 𝑏, 𝑐 ∈ H, that f is meromorphic on the entire complex plane.

Theorem 5.2. Let 𝐴 ∈ 𝒞(H) be a compact linear operator on a separable, complex Hilbert space, H.
Then the resolvent function, 𝑅𝐴(𝜆) = (𝜆𝐼H − 𝐴)−1, is meromorphic on C \ {0}. If ∅ ≠ 𝜎(𝐴) \ {0} =
{𝜆 𝑗 }𝑁𝑗=1, 𝑁 ∈ N∪ {+∞}, where each nonzero 𝜆 𝑗 ∈ 𝜎(𝐴) is an eigenvalue of A of finite multiplicity, then
each 𝜆 𝑗 is a pole of finite order, 𝑚 𝑗 , equal to the size of the largest Jordan block in the Jordan normal
form of 𝐴 𝑗 := 𝐴|Ran𝐸 𝑗 (𝐴) . Here, 𝐸 𝑗 (𝐴) is the Riesz idempotent so that 𝜎(𝐴 𝑗 ) is equal to the singleton,
{𝜆 𝑗 }, and Ran 𝐸 𝑗 (𝐴) is finite-dimensional and 𝐴−invariant. If

𝑅𝐴(𝜆) =
∞∑

𝑛=−𝑚 𝑗

𝐶𝑛 (𝜆 − 𝜆 𝑗 )𝑛, 𝐶𝑛 ∈ ℬ(H)

is the Laurent series expansion of 𝑅𝐴 about 𝜆 𝑗 ∈ 𝜎(𝐴) \ {0}, then the negative coefficients are

𝐶−𝑛−1 := (𝐴 − 𝜆 𝑗 )𝑛𝐸 𝑗 (𝐴); 0 ≤ 𝑛 ≤ 𝑚 𝑗 − 1.

We will call the number, dim Ran 𝐸 𝑗 (𝐴), the algebraic multiplicity of the eigenvalue 𝜆 𝑗 . (It is the
algebraic multiplicity of 𝜆 𝑗 for the finite-dimensional linear operator 𝐴 𝑗 = 𝐴|Ran𝐸 𝑗 (𝐴) .) This number is
an upper bound for the geometric multiplicity of 𝜆 𝑗 , i.e., the number of eigenvectors of A corresponding
to this eigenvalue. Equivalently, the geometric multiplicity is equal to the number of Jordan blocks in
the Jordan normal form of 𝐴 𝑗 . Hence, 𝑚 𝑗 ≤ multalg(𝜆 𝑗 ) − multgeo(𝜆 𝑗 ) + 1.

Proof. Let 𝜆 𝑗 ≠ 0 be an eigenvalue of A. Then 𝑅𝐴(𝜆) is analytic in a punctured disk of positive radius
about 𝜆 𝑗 , so that 𝜆 𝑗 is an isolated singularity of 𝑅𝐴, and 𝑅𝐴 therefore has a Laurent series expansion
about 𝜆 𝑗 ,

𝑅𝐴(𝜆) =
∞∑

𝑛=−∞
𝐶𝑛 (𝜆 − 𝜆 𝑗 )𝑛, 𝐶𝑛 ∈ ℬ(H).

This converges absolutely and uniformly in operator-norm for all 0 < 𝑟 < |𝜆 − 𝜆 𝑗 | < 𝑅, for some fixed
0 < 𝑟 < 𝑅 < +∞. By the Riesz–Dunford holomorphic functional calculus, choosing 𝑟 < 𝜌 < 𝑅, the
residue can be computed as

𝐶−1 =
1

2𝜋𝑖

‰
𝜌 ·𝜕D(𝜆 𝑗 )

(𝜆𝐼 − 𝐴)−1𝑑𝜆 = 𝐸 𝑗 (𝐴),
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where 𝜌 · 𝜕D(𝜆 𝑗 ) is the simple, positively–oriented circular contour of radius 𝜌 centred at 𝜆 𝑗 . Here, the
Riesz idempotent, 𝐸 𝑗 (𝐴), is an idempotent operator so that Ran 𝐸 𝑗 (𝐴) and Ran 𝐼 − 𝐸 𝑗 (𝐴) are invariant
subspaces for A, and the spectrum of 𝐴 𝑗 := 𝐴|Ran𝐸 𝑗 (𝐴) , is the singleton, {𝜆 𝑗 }, while the spectrum
of 𝐴c

𝑗 := 𝐴|Ran 𝐼−𝐸 𝑗 (𝐴) is 𝜎(𝐴) \ {𝜆 𝑗 }. It follows that Ran 𝐸 𝑗 (𝐴) must be finite dimensional as 𝐴 𝑗 is
necessarily compact, and 0 belongs to the spectrum of any compact operator on a separable, non-finite-
dimensional Hilbert space. Observe that for 𝑟 < |𝜆 − 𝜆 𝑗 | < 𝑅,

(𝜆 𝑗 𝐼 − 𝐴) (𝜆𝐼 − 𝐴)−1 = 𝐼 − (𝜆 − 𝜆 𝑗 ) (𝜆𝐼 − 𝐴)−1.

Hence, replacing 𝑅𝐴(𝜆) in this expression by its Laurent series yields

∞∑
𝑛=−∞

(𝜆 𝑗 𝐼 − 𝐴)𝐶𝑛 (𝜆 − 𝜆 𝑗 )𝑛 = 𝐼 −
∞∑

𝑛=−∞
𝐶𝑛 (𝜆 − 𝜆 𝑗 )𝑛+1.

Equating coefficients gives ∀𝑛 ≠ 0, (𝜆 𝑗 𝐼 − 𝐴)𝐶𝑛 = −𝐶𝑛−1, or (𝐴 − 𝜆 𝑗 𝐼)𝐶𝑛 = 𝐶𝑛−1. Hence,

(𝐴 − 𝜆 𝑗 𝐼)𝑘𝐶−1 = (𝐴 − 𝜆 𝑗 𝐼)𝑘𝐸 𝑗 (𝐴) = 𝐶−𝑘−1,

for all 𝑘 ≥ 0. However, if 𝐴 𝑗 = 𝐴|Ran𝐸 𝑗 (𝐴) as above, then since 𝜎(𝐴 𝑗 ) is the singleton, {𝜆 𝑗 }, the
spectrum of (𝐴 − 𝜆 𝑗 𝐼) |Ran𝐸 𝑗 (𝐴) = (𝐴 𝑗 − 𝜆 𝑗 𝐼) is {0}. Since dim Ran 𝐸 𝑗 (𝐴) ∈ N is finite, it follows that
𝐴 𝑗 − 𝜆 𝑗 𝐼 is nilpotent with (𝐴 𝑗 − 𝜆 𝑗 𝐼)𝑛 = 0, for any 𝑛 ≥ 𝑚 𝑗 , the size of the largest Jordan block in
𝐴 𝑗 . (Indeed, it is upper triangularizable, with all eigenvalues on the diagonal equal to 0; hence, it is
unitarily equivalent to a strictly upper triangular, and hence nilpotent matrix.) In conclusion, 𝐶−𝑛 = 0
for all 𝑛 > 𝑚 𝑗 , and 𝜆 𝑗 is a pole of order 𝑚 𝑗 for 𝑅𝐴. �

Theorem 5.3. Let 𝑓 ∼ (𝐴, 𝑏, 𝑐), where 𝐴 ∈ 𝒞(H) is compact. Then f is a meromorphic function on C
which is analytic in an open neighbourhood of 0. If (𝐴, 𝑏, 𝑐) is minimal, and if ∅ ≠ 𝜎(𝐴)\{0} = {𝜆 𝑗 }𝑁𝑗=1,
𝑁 ∈ N ∪ {+∞}, then the set of poles of f is equal to the set of points {𝑧 𝑗 = 1/𝜆 𝑗 }𝑁𝑗=1. The size of the
largest Jordan block in the Jordan normal form of 𝐴 𝑗 = 𝐴|Ran𝐸𝜆 𝑗 (𝐴) is an upper bound for the order of
the pole 𝑧 𝑗 for f.

Proof. First, since f has a realization, it is analytic in an open neighbourhood of 0. Moreover, if 𝑧 𝑗 ≠ 0
is a pole of f, then 𝜆 𝑗 = 1/𝑧 𝑗 must be a pole of the resolvent function, 𝑅𝐴(𝜆) = (𝜆𝐼 − 𝐴)−1, as
otherwise 𝑅𝐴 would be analytic in an open neighbourhood of 𝜆 𝑗 and then 𝑓 (𝑧) = 𝑏∗(𝐼 − 𝑧𝐴)−1𝑐 would
be analytic in an open neighbourhood of 𝑧 𝑗 . Moreover, by the previous Theorem 5.2, if 𝑚 𝑗 is the size
of the largest Jordan block in 𝐴 𝑗 , then in the Laurent series expansion of 𝑅𝐴(𝜆) about 𝜆 𝑗 , all Laurent
series coefficients, 𝐶−𝑛 ∈ ℬ(H), vanish for 𝑛 > 𝑚 𝑗 . Hence, if f has a pole at 𝑧 𝑗 = 1/𝜆 𝑗 , its order is at
most 𝑚 𝑗 .

Conversely, given the minimal, compact realization, (𝐴, 𝑏, 𝑐), of f, fix any eigenvalue𝜆0 ∈ 𝜎(𝐴)\{0}.
We claim that 𝑧0 = 1/𝜆0 is a pole of f. (We can assume that A is not quasinilpotent as then f is entire
and the claim holds trivially.) Assume, to the contrary that f is analytic in an open neighbourhood of 𝑧0,
even though (𝐼 − 𝑧𝐴)−1 has a pole at 𝑧0. If 𝜎(𝐴) \ {0} is equal to the singleton, 𝜆0, then we can consider
the ‘rescaled’ function 𝑓𝑟 (𝑧) := 𝑓 (𝑟𝑧), where 𝑟 > 0 is chosen so that 𝑓𝑟 ∈ 𝒪(D) is uniformly bounded
in the open complex unit disk, D, and so that 𝑟−1𝑧0 ∈ D. That is, ℎ := 𝑓𝑟 ∈ 𝐻∞ and h has the minimal
compact realization, (𝑟 𝐴, 𝑏, 𝑐), where (𝐼 − 𝑧𝑟 𝐴)−1 has a pole at 𝑟−1𝑧0 ∈ D.

If 𝜎(𝐴) \ {0} is not a singleton, let 𝛿 > 0 be the finite distance from 𝑧0 to the next closest pole
of (𝐼 − 𝑧𝐴)−1. Choose a pole, 𝑧1, of (𝐼 − 𝑧𝐴)−1 so that |𝑧0 − 𝑧1 | = 𝛿, and set 𝑤 := 3

4 𝑧0 + 1
4 𝑧1. Then,

the distance from 𝑧0 to w is 𝛿/4 and 𝑔(𝑧) := 𝑓 (𝑧 + 𝑤) is such that g is holomorphic and uniformly
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bounded in the open unit disk of radius 𝛿/2. As in Subsection 3.4, one can show that g has the compact
realization, ((𝐼 − 𝑤𝐴)−1𝐴, 𝑏, (𝐼 − 𝑤𝐴)−1𝑐) =: (𝐴′, 𝑏′, 𝑐′). Indeed,

𝑔(𝑧) = 𝑓 (𝑧 + 𝑤) = 𝑏∗(𝐼 − (𝑧 + 𝑤)𝐴)−1𝑐 = 𝑏∗((𝐼 − 𝑤𝐴) − 𝑧𝐴)−1𝑐

= 𝑏∗
(
𝐼 − 𝑧(𝐼 − 𝑤𝐴)−1𝐴

)−1
(𝐼 − 𝑤𝐴)−1𝑐.

We claim that this realization is also minimal. Indeed, to check that it is controllable, consider

𝒞𝐴′,𝑐′ =
∞∨
𝑗=0

(𝐼 − 𝑤𝐴)−( 𝑗+1)𝐴 𝑗𝑐.

It is readily checked, by induction, that

𝒞𝐴′,𝑐′ =
∞∨
𝑗=0

(𝜔𝐼 − 𝐴)−( 𝑗+1)𝑐; 𝜔 := 𝑤−1.

Then, for all 𝜆 ∈ C so that 𝑟𝜔 := |𝜆 − 𝜔| < ‖(𝜔𝐼 − 𝐴)−1‖−1, since

(𝜆𝐼 − 𝐴)−1 =
∞∑
𝑗=0

(𝜔 − 𝜆) 𝑗 (𝜔𝐼 − 𝐴)−( 𝑗+1)

is a convergent geometric series, we obtain that

𝒞𝐴′,𝑐′ ⊇
∨

|𝜆−𝜔 |<𝑟𝜔

(𝜆𝐼 − 𝐴)−1𝑐.

By operator-norm continuity and analyticity of the resolvent in the resolvent set, 𝜎(𝐴)𝑐 = C \𝜎(𝐴), of
A and by considering difference quotients, 𝜖−1(𝑅𝐴(𝜆 + 𝜖) − 𝑅𝐴(𝜆)), we obtain that

𝒞𝐴′,𝑐′ ⊇
∞∨
𝑗=0

𝜆∈𝜎 (𝐴)𝑐 ; |𝜆−𝜔 | ≤𝑟𝜔

(𝜆𝐼H − 𝐴)−( 𝑗+1)𝑐.

Replacing 𝜔 by 𝜔′ ∈ 𝜎(𝐴)𝑐 so that |𝜔 − 𝜔′ | = 𝑟𝜔 , repeating this argument, and using that 𝜎(𝐴)𝑐 is
open and connected (since A is compact), shows that

𝒞𝐴′,𝑐′ ⊇
∨

𝜆∈𝜎 (𝐴)𝑐
(𝜆𝐼 − 𝐴)−1𝑐.

The Riesz–Dunford holomorphic functional calculus now implies that

𝒞𝐴′,𝑐′ ⊇
∞∨
𝑗=0

𝐴 𝑗𝑐 = 𝒞𝐴,𝑐 = H,

so that (𝐴′, 𝑏′, 𝑐′) is controllable. A similar argument shows (𝐴′, 𝑏′, 𝑐′) is observable and hence minimal.
Since 𝑔 ∼ (𝐴′, 𝑏′, 𝑐′) is holomorphic in a disk of positive radius centred at 0, we can again

consider ℎ(𝑧) := 𝑔(𝑟𝑧) so that (𝑟 𝐴′, 𝑏′, 𝑐′) is a minimal and compact realization of ℎ ∈ 𝐻∞(D), and
𝑤0 := 𝑟−1(𝑧0 − 𝑤) ∈ D is a pole of (𝐼 − 𝑧𝑟 𝐴′)−1. Concretely, since we chose |𝑧0 − 𝑤 | = 𝛿/4, one can
choose 𝑟 = 𝛿/2 so that |𝑤0 | = 1/2 and 𝑤0 ∈ D. Since ℎ ∈ 𝐻∞, so is ℎ𝑝,𝑞 = 𝑝(𝑆∗)𝑞(𝑆∗)ℎ, for any
𝑝, 𝑞 ∈ C[𝑧], and it follows that if we define 𝑔𝑝,𝑞 (𝜆) := 𝜆−1ℎ𝑝,𝑞 (𝜆−1), that
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𝑔𝑝,𝑞 (𝜆) = 𝑏′∗𝑝(𝑟 𝐴′) (𝜆𝐼H − 𝑟 𝐴′)−1𝑞(𝑟 𝐴′)𝑐′

is holomorphic in an open disk of some positive radius 𝜌 > 0 centred at 𝜏0 = 𝑤−1
0 . Hence, by Cauchy’s

theorem,

0 =
1

2𝜋𝑖

‰
𝜌 ·𝜕D(𝜏0)

𝑔𝑝,𝑞 (𝜆)𝑑𝜆

= 𝑏′∗𝑝(𝑟 𝐴′) 1
2𝜋𝑖

‰
𝜌 ·𝜕D(𝜏0)

(𝜆𝐼H − 𝑟 𝐴′)−1𝑑𝜆 𝑞(𝑟 𝐴′)𝑐′

= 𝑏′∗𝑝(𝑟 𝐴′) 𝐸𝜏0 (𝑟 𝐴′)𝑞(𝑟 𝐴′)𝑐′.

Minimality of the realization (𝑟 𝐴′, 𝑏′, 𝑐′) now implies that 𝐸𝜏0 (𝑟 𝐴′) = 0 which contradicts that𝑤−1
0 = 𝜏0

belongs to the spectrum of 𝑟 𝐴′. We conclude that 𝑧0 = 𝜆−1
0 is a pole of f. �

Corollary 5.4. Any two compact and minimal realizations for the same meromorphic function have
the same domains in C. Equivalently, if 𝐴 ∈ 𝒞(H) and 𝐴′ ∈ 𝒞(H′) are two analytically equivalent
compact operators, then they have the same spectra.

If 0 ≠ 𝜆 ∈ 𝜎(𝐴) = 𝜎(𝐴′) and 𝐴𝜆 = 𝐴|Ran𝐸𝜆 (𝐴) , where 𝐸𝜆 (𝐴) is the Riesz idempotent so that
𝜎(𝐴𝜆) = {𝜆}, then the largest Jordan blocks in the Jordan normal forms of 𝐴𝜆 and of 𝐴′

𝜆 = 𝐴
′|Ran𝐸𝜆 (𝐴′)

are of the same size, and dim Ran 𝐸𝜆 (𝐴) = dim Ran 𝐸𝜆 (𝐴′).

Proof. Only the final statement remains to be proven. Fix 0 ≠ 𝜆0 ∈ 𝜎(𝐴) = 𝜎(𝐴′) and let 𝑚0, 𝑛0 ∈ N
be the order of the poles of 𝑅𝐴(𝜆) and 𝑅𝐴′ (𝜆) at 𝜆0. If 𝑓 ∼ (𝐴, 𝑏, 𝑐) ∼ (𝐴′, 𝑏′, 𝑐′), then 𝑚0 is an
upper bound for the order of the pole of f at 𝑧0 = 1/𝜆0 so that (𝑧 − 𝑧0)𝑚0 𝑓 (𝑧) is analytic in an open
neighbourhood of 𝑧0.

For any 𝑝, 𝑞 ∈ C[𝑧], if we define, as before,

𝑓𝑝,𝑞 (𝑧) := 𝑏∗𝑝(𝐴) (𝐼 − 𝑧𝐴)−1𝑞(𝐴)𝑐,

then

𝑓𝑝,𝑞 (𝑧) = 𝑏′∗𝑝(𝐴′) (𝐼 − 𝑧𝐴′)−1𝑞(𝐴′)𝑐′

by the identity theorem, since these two expressions agree in an open neighbourhood of 0. Also as
before, set 𝑔𝑝,𝑞 (𝜆) := 𝜆−1 𝑓𝑝,𝑞 (𝜆−1). Fixing an 𝑟 > 0 so that (𝜆𝐼 − 𝐴)−1 is analytic in a punctured disk,
𝑟 ′ · D(𝜆0), 𝑟 < 𝑟 ′, Cauchy’s theorem implies that

0 =
1

2𝜋𝑖

‰
𝑟 ·𝜕D(𝜆0)

(𝜆 − 𝜆0)𝑚0𝑔𝑝,𝑞 (𝜆)𝑑𝜆

= 𝑏∗𝑞(𝐴) 1
2𝜋𝑖

‰
𝑟 ·𝜕D(𝜆0)

(𝜆 − 𝜆0)𝑚0 (𝜆𝐼 − 𝐴)−1︸�����������������������������������������︷︷�����������������������������������������︸
=(𝐴−𝜆0𝐼 )𝑚0𝐸𝜆0 (𝐴)

𝑝(𝐴)𝑐

= 𝑏′∗𝑞(𝐴′) 1
2𝜋𝑖

‰
𝑟 ·𝜕D(𝜆0)

(𝜆 − 𝜆0)𝑚0 (𝜆𝐼 − 𝐴′)−1︸������������������������������������������︷︷������������������������������������������︸
=(𝐴′−𝜆0𝐼 )𝑚0𝐸𝜆0 (𝐴′)

𝑝(𝐴′)𝑐′.

By minimality of the realization (𝐴′, 𝑏′, 𝑐′), we conclude that (𝐴′−𝜆0𝐼)𝑚0𝐸𝜆0 (𝐴′) ≡ 0, so that 𝑛0 ≤ 𝑚0.
By symmetry, 𝑚0 ≤ 𝑛0 as well.

A similar calculation shows that

𝑏∗𝑝(𝐴)𝐸𝜆0 (𝐴)𝑞(𝐴)𝑐 = 𝑏′∗𝑝(𝐴′)𝐸𝜆0 (𝐴′)𝑞(𝐴′)𝑐′, (5.1)
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for all 𝑝, 𝑞 ∈ C[𝑧]. Hence, if 𝑀0 = dim Ran 𝐸𝜆0 (𝐴) ∈ N, Ran 𝐸𝜆0 (𝐴) has a finite basis of the form
{𝐸𝜆0 (𝐴)𝑞 𝑗 (𝐴)𝑐}

𝑀0
𝑗=1, for some 𝑞 𝑗 ∈ C[𝑧], 1 ≤ 𝑗 ≤ 𝑀0. Given any 𝑥 ′ ∈ Ran 𝐸𝜆0 (𝐴′), there exists

𝑝 ∈ C[𝑧] so that 𝑥 ′ = 𝐸𝜆0 (𝐴′)𝑝(𝐴′)𝑐′. Hence, setting 𝑥 := 𝐸𝜆0 (𝐴)𝑝(𝐴)𝑐, 𝑥 =
∑𝑀0
𝑗=1 𝛼 𝑗 𝐸𝜆0 (𝐴)𝑞 𝑗 (𝐴)𝑐

for some 𝛼 𝑗 ∈ C. By minimality of the realizations and Equation (5.1) above,

𝑥 ′ =
∑

𝛼 𝑗𝐸𝜆0 (𝐴′)𝑞 𝑗 (𝐴′)𝑐′,

so that {𝐸𝜆0 (𝐴′)𝑞 𝑗 (𝐴′)𝑐′}𝑀0
𝑗=1 spans Ran 𝐸𝜆0 (𝐴′), and 𝑁0 := dim Ran 𝐸𝜆0 (𝐴′) ≤ 𝑀0. Again, by sym-

metry, 𝑀0 = 𝑁0. �

5.2. Uniformly meromorphic NC functions with analytic germs

Since a function of one complex variable, analytic in an open neighbourhood of 0, is meromorphic if
and only if it has a compact realization, this motivates the definition of ‘global’ uniformly meromorphic
NC functions on C(N×N) ·𝑑 that are analytic at the origin, 0 ∈ C(N×N) ·𝑑 , as all those NC functions that
admit jointly compact realizations, 𝑓 ∼ (𝐴, 𝑏, 𝑐), 𝐴 ∈ 𝒞(H)𝑑 . Moreover, since any uniformly entire
NC function has a jointly compact and quasinilpotent realization, it follows from the FM algorithm
of Subsection 3.3 that any NC rational expression in uniformly entire NC functions that is uniformly
analytic in a uniformly open neighbourhood of 0 will have a jointly compact realization (and this will
be a finite-rank perturbation of a jointly compact and quasinilpotent realization). This provides further
motivation for this definition/ interpretation.

Again, by the final paragraph of Section 3, a familiar NC function, f, has a jointly compact (and
minimal) FM realization if and only if it has a jointly compact (and minimal) descriptor realization; see
Equations (3.6) and (3.7).

Observe, by the Fornasini–Marchesini algorithm that the set,𝒪𝒞
0 , where𝒞 = 𝒞(H)𝑑 , of all uniformly

meromorphic functions with uniformly analytic germs at 0, is a ring so that if 𝑓 ∈ 𝒪𝒞
0 , and 𝑓 (0) ≠ 0,

then 𝑓 −1 ∈ 𝒪𝒞
0 . We will eventually prove that 𝒪𝒞

0 is a semifir, and hence has a universal skew field of
fractions, ℳ𝒞

0 . Since, by [39, Subsection 5.2, Corollary 5.4], elements of ℳ𝒞
0 ⊆ ℳ𝑢

0 can be identified
with NC rational expressions in 𝒪𝒞

0 , we will call elements of ℳ𝒞
0 global uniformly meromorphic NC

functions. In Subsection 6.1 and Theorem 6.4, we will prove that any 𝑓 ∈ ℳ𝒞
0 can be identified,

uniquely, with an NC function that is uniformly analytic on a uniformly open domain that is analytic–
Zariski dense on every level, C(𝑛×𝑛) ·𝑑 , of the NC universe for sufficiently large 𝑛 ∈ N. This justifies
calling ℳ𝒞

0 the skew field of ‘global’ uniformly meromorphic NC functions.

Theorem 5.5. Let 𝑓 ∼ (𝐴, 𝑏, 𝑐) be a realization with 𝐴 ∈ 𝒞(H)𝑑 . For any fixed 𝑋 ∈ C(𝑛×𝑛) ·𝑑 , 𝑛 ∈ N,
the matrix–valued function 𝑔𝑋 (𝑧) := 𝑓 (𝑧𝑋) ∈ C𝑛×𝑛 is meromorphic. The operator 𝑋 ⊗ 𝐴 is compact
so that 𝜎(𝑋 ⊗ 𝐴) \ {0} is either empty or equal to a discrete set of eigenvalues of finite algebraic
multiplicities, {𝜆 𝑗 }𝑁𝑗=1, 𝑁 ∈ N∪ {+∞}, and the poles of 𝑔𝑋 are contained in set of points {𝑧 𝑗 }𝑁𝑗=1 where
𝑧 𝑗 = 1/𝜆 𝑗 . The order of the pole of 𝑅𝑋 ⊗𝐴(𝜆) at 𝜆 𝑗 is an upper bound for the order of the pole of 𝑔𝑋 at 𝑧 𝑗 .

Proof. This follows from Theorem 5.2 as in the proof of Theorem 5.3. �

Theorem 5.6. The invertibility domains of minimal, jointly compact realizations of the same uniformly
meromorphic NC function, f, are unique and equal. That is, the linear pencils of analytically equivalent
𝐴 ∈ 𝒞(H)𝑑 and 𝐴′ ∈ 𝒞(H′)𝑑 have equal invertibility domains. Moreover, given any 𝑋 ∈ C(N×N) ·𝑑 ,
the operator-valued meromorphic functions on C \ {0}, 𝑅𝑋 ⊗𝐴(𝜆) and 𝑅𝑋 ⊗𝐴′ (𝜆) have the same poles
with the same orders.

Proof. Let (𝐴, 𝑏, 𝑐) and (𝐴′, 𝑏′, 𝑐′) be any two minimal and jointly compact realizations for f. For any
𝑝, 𝑞 ∈ C〈𝔷〉, consider

𝑓𝑝,𝑞 (𝑍) = 𝐼𝑛 ⊗ 𝑏∗𝑞(𝐴)𝐿𝐴(𝑍)−1𝐼𝑛 ⊗ 𝑝(𝐴)𝑐 = 𝐼𝑛 ⊗ 𝑏′∗𝑞(𝐴′)𝐿𝐴′ (𝑍)−1𝐼𝑛 ⊗ 𝑝(𝐴′)𝑐′,
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for all 𝑍 ∈ 𝒟(𝐴) ∩ 𝒟(𝐴′). Equality in the above formula follows from the uniqueness of minimal
realizations, Theorem 3.6. Indeed, by multiplying Z with sufficiently small 𝜆 ∈ C so that 𝐿𝐴(𝜆𝑍)−1

and 𝐿𝐴′ (𝜆𝑍)−1 can be expanded as convergent geometric series, equality holds at 𝜆𝑍 by Theorem 3.6.
The identity theorem in several complex variables, and level-wise connectedness of 𝒟(𝐴) and 𝒟(𝐴′)
(since A and 𝐴′ are compact 𝑑−tuples), then imply that equality holds for 𝜆 = 1. Indeed, the invertibility
domain, 𝒟(𝐴), of any linear pencil with 𝐴 ∈ 𝒞 = 𝒞(H)𝑑 is level-wise path-connected, since for any
𝑋 ∈ 𝒟𝑛 (𝐴) and 0 ≠ 𝑧 ∈ C, 𝑧𝑋 ∈ 𝒟𝑛 (𝐴) if and only if 𝑧−1 ∉ 𝜎(𝑋 ⊗ 𝐴), where 𝑋 ⊗ 𝐴 ∈ 𝒞(C𝑛 ⊗ H).
Hence, since 𝑋 ⊗ 𝐴 is compact and its spectrum is either {0}, or {0} ∪ {𝜆 𝑗 }𝑁𝑗=1, 𝑁 ∈ N ∪ {+∞}, where
𝜆 𝑗 is a sequence of nonzero distinct eigenvalues (which converge to 0 if this sequence is infinite), we
can find a continuous path in 𝒟𝑛 (𝐴) connecting X to 0 = (0𝑛, · · · , 0𝑛), and 𝒟𝑛 (𝐴) is path-connected.

If 𝑋 ∉ Dom 𝑓 , then by definition, 𝑋 ∉ 𝒟(𝐴) and 𝑋 ∉ 𝒟(𝐴′). In this case, 𝜆 = 1 is a pole of 𝑅𝑋 ⊗𝐴(𝜆)
of order ℓ and a pole of 𝑅𝑋 ⊗𝐴′ (𝜆) of order m, where ℓ, 𝑚 ∈ N. Hence, consider the matrix–valued
meromorphic function,

𝑔𝑝,𝑞 (𝜆) := 𝜆−1 𝑓𝑝,𝑞 (𝜆−1𝑋) = 𝐼𝑛 ⊗ 𝑏∗𝑞(𝐴) (𝜆𝐼𝑛 ⊗ 𝐼 − 𝑋 ⊗ 𝐴)−1𝐼𝑛 ⊗ 𝑝(𝐴)𝑐
= 𝐼𝑛 ⊗ 𝑏′∗𝑞(𝐴′) (𝜆𝐼𝑛 ⊗ 𝐼 − 𝑋 ⊗ 𝐴′)−1𝐼𝑛 ⊗ 𝑝(𝐴′)𝑐′.

We also consider the possibility that 𝑋 ∈ 𝒟(𝐴) so that ℓ = 0, in which case 𝑅𝑋 ⊗𝐴 is holomorphic
in an open neighbourhood of 1. Since both 𝑋 ⊗ 𝐴 and 𝑋 ⊗ 𝐴′ are compact, 𝑔𝑝,𝑞 is a meromorphic
matrix–valued function which is analytic in a punctured open neighbourhood of 𝜆 = 1. Hence, by the
Riesz–Dunford functional calculus, for sufficiently small 𝑟 > 0,

0 = 𝐼𝑛 ⊗ 𝑏∗𝑞(𝐴)
‰
𝑟 ·𝜕D(1)

(1 − 𝜆)ℓ (𝜆𝐼𝑛 ⊗ 𝐼 − 𝑋 ⊗ 𝐴)−1𝑑𝜆︸�����������������������������������������������︷︷�����������������������������������������������︸
=(𝐼𝑛⊗𝐼−𝑋 ⊗𝐴)ℓ𝐸1 (𝑋 ⊗𝐴)

𝐼𝑛 ⊗ 𝑝(𝐴)𝑐

= 𝐼𝑛 ⊗ 𝑏′∗𝑞(𝐴′) (𝐼𝑛 ⊗ 𝐼 − 𝑋 ⊗ 𝐴′)ℓ𝐸1(𝑋 ⊗ 𝐴′)𝐼𝑛 ⊗ 𝑝(𝐴′)𝑐′.

Since (𝐴′, 𝑏′, 𝑐′) is a minimal realization, this implies

(𝐼𝑛 ⊗ 𝐼 − 𝑋 ⊗ 𝐴′)ℓ𝐸1 (𝑋 ⊗ 𝐴′) = 0,

so that 𝑚 ≤ ℓ, and by symmetry ℓ ≤ 𝑚. Similarly, if 𝑋 ∈ 𝒟(𝐴) so that ℓ = 0, then 𝑋 ∈ 𝒟(𝐴′), and vice
versa. �

Theorem 5.7. Let 𝑓 ∼ (𝐴, 𝐵, 𝐶, 𝐷) be familiar with 𝐴 ∈ 𝒞(H)𝑑 . Then, for any 𝑌 ∈ 𝒟𝑚(𝐴), and any
𝑋 ∈ C(𝑠𝑚×𝑠𝑚) ·𝑑 , 𝑓 (𝑧𝑋 + 𝐼𝑠 ⊗ 𝑌 ) is a meromorphic matrix-valued function.

Proof. By Subsection 3.4, 𝑓 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫) has a matrix-centre realization about the point Y, so that,
for z in a sufficiently small disk centred at 0, 𝑧𝑋 + 𝐼𝑠 ⊗ 𝑌 belongs to 𝒟𝑌 (𝑨), and

𝐿𝑨(𝑧𝑋 + 𝐼𝑠 ⊗ 𝑌 − 𝐼𝑠 ⊗ 𝑌 )−1 = 𝑧−1
(
𝑧−1𝐼𝑠 ⊗ 𝐼H − 𝑨(𝑋)

)−1
.

Since 𝐴 ∈ 𝒞(H)𝑑 , Theorem 3.19 and Equation (3.18) imply that 𝑨(𝑋) takes values in 𝒞(C𝑠𝑚 ⊗ H).
It follows that 𝐿𝑨(𝑧𝑋)−1 is a globally meromorphic operator-valued function of z. Since

𝑓 (𝑧𝑋 + 𝐼𝑠 ⊗ 𝑌 ) = 𝐼𝑠 ⊗ 𝑫 + 𝐼𝑠 ⊗ 𝑪𝐿𝑨(𝑧𝑋)−1𝑩(𝑧𝑋),

the claim follows. �

By Theorem 5.5 and Theorem 5.7 above, any uniformly meromorphic function with analytic germ
at 0, 𝑓 ∈ 𝒪𝒞

0 , is ‘globally defined’ in the sense that for any 𝑌 ∈ Dom𝑚 𝑓 and any 𝑋 ∈ C(𝑠𝑚×𝑠𝑚) ·𝑑 ,
𝑓 (𝐼𝑠 ⊗ 𝑌 + 𝑧𝑋) is a meromorphic matrix-valued function of z. In fact, one can say more. Namely, let
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𝑋 := (𝑋 (1) , · · · , 𝑋 (𝑑) ) be a 𝑑−tuple of 𝑛× 𝑛 generic matrices, i.e., each 𝑋 (ℓ) = (𝑥 (ℓ)
𝑖 𝑗 )1≤𝑖, 𝑗≤𝑛 is an 𝑛× 𝑛

matrix whose entries are the 𝑛2 commuting complex variables, 𝑥 (ℓ)
𝑖 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛. If 𝑓 ∼ (𝐴, 𝑏, 𝑐) is a

minimal and jointly compact realization, then consider

𝐿𝐴(𝑋) = 𝐼𝑛 ⊗ 𝐼H −
𝑑∑
ℓ=1

𝑋 (ℓ) ⊗ 𝐴ℓ

= 𝐼𝑛 ⊗ 𝐼H −
𝑑∑
ℓ=1

𝑛∑
𝑖, 𝑗=1

𝑥 (ℓ)
𝑖 𝑗 𝐸𝑖, 𝑗 ⊗ 𝐴ℓ =: 𝐿𝐴(𝑥 (ℓ)

𝑖 𝑗 ),

where 𝐸𝑖, 𝑗 are the standard matrix units of C𝑛×𝑛. In the theorem statement below, for any 𝑝 ∈ [1, +∞),
let 𝒯𝑝 := 𝒯𝑝 (H)𝑑 , where 𝒯𝑝 (H) � 𝒞(H) is the Schatten 𝑝−class of all bounded linear operators so
that tr |𝐴|𝑝 < +∞. Given any 𝐴 ∈ 𝒯𝑝 (H), one can define the Fredholm determinant, det𝐹 (𝐼 + 𝐴), of
𝐼 + 𝐴, and det𝐹 (𝐼 + 𝐴) ≠ 0 if and only if 𝐼 + 𝐴 is invertible [54].

Theorem 5.8. If 𝐴 ∈ 𝒞 = 𝒞(H)𝑑 , then the set of all (𝑥 (ℓ)
𝑖, 𝑗 ) ⊆ C𝑑 ·𝑛2 for which 𝐿𝐴(𝑥 (ℓ)

𝑖 𝑗 ) is not
invertible is either (i) empty or (ii) an analytic-Zariski closed subset of codimension 1. In particular,
the invertibility domain, 𝒟(𝐴), of 𝐿𝐴, is analytic–Zariski open and dense in C𝑑 ·𝑛2 for every 𝑛 ∈ N.

If 𝐴 ∈ 𝒯𝑝 , 𝑝 ∈ [1, +∞), then ℎ(𝑥 (ℓ)
𝑖, 𝑗 ) := det𝐹 𝐿𝐴(𝑥 (ℓ)

𝑖 𝑗 ) is entire, so that the non-invertibility set of
𝐿𝐴(𝑥 (ℓ)

𝑖 𝑗 ) is either (i) empty or (ii) the analytic–Zariski closed hypersurface given by the variety of the
entire function h.

Proof. The first statement follows immediately from [56, Theorem 3] and the fact that 𝑟 ·B(N×N) ·𝑑 ⊆ 𝒟𝐴

for some sufficiently small 𝑟 > 0, so that 𝒟𝑛 (𝐴) is not empty for any 𝑛 ∈ N. The second statement
regarding the Schatten 𝑝−classes follows from Theorem 3.3, Theorem 3.9 and Section 6 of [54], since

𝐿𝐴

(
𝑥 (ℓ)
𝑖 𝑗

)
= 𝐼𝑛 ⊗ 𝐼H −

𝑑∑
ℓ=1

𝑛∑
𝑖, 𝑗=1

𝑥 (ℓ)
𝑖 𝑗 𝐸𝑖, 𝑗 ⊗ 𝐴ℓ ,

and each 𝐸𝑖, 𝑗 ⊗ 𝐴ℓ ∈ 𝒯𝑝 (C𝑛 ⊗ H). �

Remark 5.9. In Subsection 3.1, we defined the domain of a familiar NC function, f, as the union of all
𝒟(0) (𝐴), where (𝐴, 𝑏, 𝑐) is any realization of f. Here, 𝒟(0) (𝐴) is the level-wise connected component
of 0 in the invertibility domain, 𝒟𝐴. If 𝐴 ∈ 𝒞 is a compact 𝑑−tuple, then it follows that 𝒟(𝐴) is level-
wise open and connected in matrix norm, as in the proof of Theorem 5.6, so that 𝒟(𝐴) = 𝒟(0) (𝐴),
and the previous theorem shows that 𝒟(𝐴) is level-wise analytic–Zariski dense in C(N×N) ·𝑑 . Moreover,
Theorem 5.6 shows that if (𝐴, 𝑏, 𝑐) ∼ 𝑓 ∼ (𝐴′, 𝑏′, 𝑐′) are two jointly compact realizations of f, then
𝒟(𝐴) = 𝒟(𝐴′), so that Dom 𝑓 = 𝒟(𝐴) for any jointly compact and minimal realization, (𝐴, 𝑏, 𝑐), of f.

6. Semifirs of familiar free power series and their universal skew fields

A ring, R, is a semifir or semi-free ideal ring [15, Section 2.3], if every finitely–generated left ideal in
R is a free left 𝑅−module of unique rank. Given a ring, R, a skew field, U, is the universal skew field of
fractions of R, if (i) R embeds into U, 𝑅 ↩→ 𝑈, and U is generated as a field by the image of R, and (ii)
if 𝐴 ∈ 𝑅𝑛×𝑛 is any square matrix over R whose image under some homomorphism from R into a skew
field is invertible, then the image of A under the embedding 𝑅 ↩→ 𝑈 is invertible [15, Theorem 7.2.7].
This is not the original definition of a universal skew field of fractions from [15], but it is equivalent.
Any semifir has a (necessarily unique) universal skew field of fractions. For example, the ring of all
rational or recognizable formal power series, C0<( 𝔷>) , is a semifir, and the free skew field, C<( 𝔷>) , is its
universal skew field of fractions [3].
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Recently, Klep, Vinnikov and Volčič have developed a local theory of germs of uniformly analytic
NC functions in [39]. Let 𝒪𝑢0 denote the ring of uniformly analytic NC germs at 0 ∈ C(N×N) ·𝑑 . Here, a
uniformly analytic germ at 0 is the evaluation equivalence class of all uniformly analytic NC functions
that agree in some uniformly open neighbourhood of 0. It follows from Lemma 3.2 that 𝒪𝑢0 can be
identified with the ring of all familiar formal power series, i.e., with the ring of all NC functions with
operator realizations (𝐴, 𝑏, 𝑐), 𝐴 ∈ ℬ(H)𝑑 . In [39], it is proven that𝒪𝑢0 is a semifir and that its universal
skew field of fractions, ℳ𝑢

0 , the skew field of uniformly meromorphic germs at 0, can be constructed
by considering evaluation equivalence classes of formal rational expressions in elements of 𝒪𝑢0 [39,
Subsection 5.2, Corollary 5.4].

Our goal now is to construct sub-rings of formal power series that are sub-semifirs of 𝒪𝑢0 , and whose
universal skew fields of fractions are generated by their inclusion into 𝒪𝑢0 . In order to do this, we will
apply the following result of P.M. Cohn, [15, Proposition 2.9.19]:

Theorem (P.M. Cohn). Let ℛ ⊆ C〈〈𝔷〉〉 be any subring that contains C and inverses of all invertible
elements in C〈〈𝔷〉〉, and which is closed under backward right or left shifts. Then ℛ is a semifir. In
particular, C0<( 𝔷>) is a semifir.

Note that an element, 𝑓 ∈ C〈〈𝔷〉〉, is invertible if and only if it has nonvanishing constant term, 𝑓∅ ≠ 0.
Here, given a free FPS, ℎ ∈ C〈〈𝔷〉〉, we define its backward left shift, 𝐿∗

𝑗ℎ, 1 ≤ 𝑗 ≤ 𝑑, and its backward
right shift, 𝑅∗

𝑗ℎ, as the FPS:

(𝐿∗
𝑗ℎ) (𝔷) :=

∑
𝜔∈F𝑑+

ℎ̂ 𝑗𝜔𝔷
𝜔 , and (𝑅∗

𝑗ℎ) (𝔷) :=
∑
𝜔∈F𝑑+

ℎ̂𝜔 𝑗𝔷
𝜔 , where ℎ(𝔷) =

∑
ℎ̂𝜔𝔷

𝜔 .

Remark 6.1. P.M. Cohn calls backward right shifts right transductions. The statement of [15, Propo-
sition 2.9.19] does not include the claim regarding ‘left transductions’. However, since t : C〈〈𝔷〉〉 →
C〈〈𝔷〉〉𝑜𝑝 is an isomorphism of C〈〈𝔷〉〉 onto its opposite ring (or an anti-isomorphism of C〈〈𝔷〉〉), and since
(𝐿∗

𝑗ℎ)t = 𝑅∗
𝑗ℎ

t, this claim follows easily.

As discussed previously, any ℎ ∈ 𝒪𝑢0 has a descriptor operator-realization, ℎ ∼ (𝐴, 𝑏, 𝑐) on some
Hilbert space, H. Hence, to construct sub-semifirs of this ring, we can consider subsets of operator-
realizations that correspond to sub-rings of free FPS that contain the constants and are closed under
backward left or right free shifts. Namely, letℛ ⊆ ℬ(H)𝑑×H×H be a subset of descriptor realizations.
In order that ℛ correspond to a ring of formal power series, 𝒪0(ℛ) (i.e., in order that 𝒪0(ℛ) be closed
under summation and multiplication), we demand that ℛ is closed under the descriptor algorithm
operations given in Equation (3.13) and Equation (3.14). Note that if 𝑓 ∼ (𝐴, 𝑏, 𝑐) and 𝑔 ∼ (𝐴′, 𝑏′, 𝑐′)
where (𝐴, 𝑏, 𝑐) and (𝐴′, 𝑏′, 𝑐′) ∈ ℛ, then technically the realization given by Equation (3.13) for 𝑓 + 𝑔
is (𝐴+, 𝑏+, 𝑐+), where 𝐴+ ∈ ℬ(H ⊕ H)𝑑 . However, assuming that H is separable, we can apply a
surjective isometry to obtain a unitarily equivalent realization for 𝑓 + 𝑔 on H. In order to apply the
above theorem of P.M. Cohn, we also need (i) C ⊆ 𝒪0(ℛ), which means that for any (𝐴, 𝑏, 𝑐) ∈ ℛ,
𝑏∗𝑐 ∈ C can be arbitrary, and (ii) if ℎ ∈ 𝒪0(ℛ) is such that ℎ−1 ∈ C〈〈𝔷〉〉, which happens if and only if
ℎ̂∅ = ℎ(0) = 𝑏∗𝑐 ≠ 0, we want ℎ−1 ∈ 𝒪0(ℛ), which means that ℛ should be closed under the descriptor
operation of Equation (3.15), corresponding to inversion. That is, ℛ needs to be closed under direct
sums and certain rank-two or rank-one perturbations in the sense of Equations (3.13–3.15). Finally, we
need that𝒪0(ℛ) be closed under backward left or right shifts. Recall that if ℎ ∈ 𝒪𝑢0 is any free FPS with
realization (𝐴, 𝑏, 𝑐), and 𝜔 ∈ F𝑑+ is any word, ℎ̂𝜔 = 𝑏∗𝐴𝜔𝑐, so that

(𝐿∗
𝑗ℎ) ∼ (𝐴, 𝐴∗

𝑗𝑏, 𝑐), and (𝑅∗
𝑗ℎ) ∼ (𝐴, 𝑏, 𝐴 𝑗𝑐).

If the set, ℛ, is closed under compressions to semi-invariant subspaces, then it follows that we can
further assume that any ℎ ∈ 𝒪0(ℛ) has a minimal descriptor realization in ℛ. Hence, if we want𝒪0 (ℛ)
to be invariant under backward left and right shifts, the vectors 𝑏, 𝑐 ∈ H must be arbitrary. In particular,
this means that ℛ is completely determined by its first co-ordinate, 𝒮 := Π1(ℛ), a subset of ℬ(H)𝑑 .
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Motivated by the above discussion, we will consider subsets, ℛ ⊆ ℬ(H)𝑑 × H × H, of descriptor
operator realizations which have the following properties. First, we will assume that all but the first
component of ℛ are completely arbitrary. That is, if𝒮 := Π1(ℛ) is projection onto the first co-ordinate,
then given any 𝐴 ∈ 𝒮, and any 𝑏, 𝑐 ∈ H, the descriptor realization (𝐴, 𝑏, 𝑐) ∈ ℛ, so thatℛ is completely
determined by 𝒮 ⊆ ℬ(H)𝑑 . Moreover, we will further assume that 𝒮 has the following properties:
(i) 𝒮 is closed under direct sums, (ii) 𝒮 is closed under arbitrary rank-one perturbations of the form
𝐴 𝑗 ↦→ 𝐴 𝑗 − 𝑔 𝑗ℎ∗ with arbitrary 𝑔 ∈ H𝑑 , ℎ ∈ H, (iii) 𝒮 is invariant under joint similarity, and (iv) 𝒮 is
closed under compressions to semi-invariant subspaces. The properties (i–iii) ensure that 𝒮 and hence
ℛ are closed under the descriptor algorithm operations of addition, multiplication and inversion given
in Equations (3.13–3.15), up to unitary similarity, so that 𝒪0(ℛ) is a ring that contains the inverses
of all elements with nonvanishing constant terms. We will write 𝒪𝒮

0 := 𝒪0(ℛ) since ℛ is completely
determined by its first co-ordinate, 𝒮 = Π1 (ℛ) ⊆ ℬ(H)𝑑 .

Lemma 6.2. If 𝒮 ⊆ ℬ(H)𝑑 has the three properties, (i) 𝒮 is closed under direct sums, (ii) 𝒮 is closed
under arbitrary rank-one perturbations of the form 𝐴 ↦→ 𝐴−𝑔ℎ∗ with 𝑔 ∈ H⊗C𝑑 and ℎ ∈ H arbitrary,
and (iii) 𝒮 is closed under joint similarity, then 𝒪𝒮

0 is a local ring. The (unique) maximal (two-sided)
ideal of this ring is the ideal of all ℎ ∈ 𝒪𝒮

0 with vanishing constant term.

Proof. This follows as in [39, Lemma 5.1]. Certainly the set of all ℎ ∈ 𝒪𝒮
0 which vanish at 0 is a two-

sided ideal, 𝒥0. If 𝒥0 ⊆ 𝒥, for another (left or right) ideal 𝒥, then any ℎ ∈ 𝒥 \𝒥0 would have ℎ(0) ≠ 0.
By the FM algorithm, it follows that ℎ−1 ∈ 𝒪𝒮

0 , so that 1 ∈ 𝒥, and hence, 𝒥 = 𝒪𝒮
0 and 𝒥0 is maximal.

Uniqueness also follows: If 𝒥 is any maximal (left or right) ideal of 𝒪𝒮
0 , then 𝒥 ⊆ 𝒥0. Otherwise,

there would exist ℎ ∈ 𝒥 so that ℎ(0) ≠ 0, and as before, this implies 𝒥 is the entire ring. Hence,
𝒥 ⊆ 𝒥0, and by maximality, 𝒥 = 𝒥0. �

Moreover, if 𝒮 = Π1 (ℛ) is assumed to have the above three properties, (i–iii), then it follows that
𝒪𝒮

0 is closed under backward left and right shifts and contains the constants, so that by Cohn’s theorem
above, 𝒪𝒮

0 is a semifir, [15, Proposition 2.9.19].

Corollary 6.3. If 𝒮 ⊆ ℬ(H)𝑑 has the above properties (i)–(iii), then the local ring 𝒪𝒮
0 is a semifir.

The embedding 𝒪𝒮
0 ↩→ C〈〈𝔷〉〉 is totally inert, and hence honest. The universal skew field of 𝒪𝒮

0 is the
subfield, ℳ𝒮

0 of ℳ𝑢
0 , generated by the inclusion 𝒪𝒮

0 ↩→ 𝒪𝑢0 .

In the above statement, an embedding of rings i : 𝑅 ↩→ 𝑆 is totally inert if given any 𝑈 ⊆ 𝑆1×𝑑 ,
𝑉 ⊆ 𝑆𝑑 satisfying 𝑈𝑉 ⊆ i(𝑅), there exists a 𝑃 ∈ GL𝑑 (𝑆) so that for any 𝑢 ∈ 𝑈𝑃−1 and 1 ≤ 𝑗 ≤ 𝑑,
either 𝑢 𝑗 ∈ i(𝑅) or 𝑣 𝑗 = 0 for all 𝑣 ∈ 𝑃𝑉 [15, Section 2.9]. Any totally inert embedding is honest [15,
Section 5.4]. Here, the inner rank of a matrix 𝐴 ∈ 𝑅𝑛×𝑛 is the smallest 𝑚 ∈ N so that 𝐴 = 𝐵𝐶 where
𝐵 ∈ 𝑅𝑛×𝑚 and 𝐶 ∈ 𝑅𝑚×𝑛, and 𝐴 ∈ 𝑅𝑛×𝑛 is full if its inner rank is n. An embedding i : 𝑅 ↩→ 𝑆 is
then honest, if every full 𝐴 ∈ 𝑅𝑛×𝑛 is such that i(𝐴) ∈ 𝑆𝑛×𝑛 is also full. We will not apply any of this
algebraic machinery directly. However, in [39, Subsection 5.2, Corollary 5.4], these results are used to
explicitly construct ℳ𝑢

0 as ‘local’ evaluation equivalence classes of NC rational expressions in elements
of the semifir 𝒪𝑢0 = 𝒪ℬ

0 where ℬ := ℬ(H)𝑑 .

Proof. The fact that 𝒪𝒮
0 is a semifir follows from Cohn’s theorem above, [15, Proposition 2.9.19] and

Lemma 6.2 since 𝒪𝒮
0 ⊆ C〈〈𝔷〉〉 satisfies the statement of Cohn’s theorem by construction. The remaining

statements follow as in [39, Proposition 5.3, Section 5.2, Corollary 5.4]. �

If 𝒮 also has property (iv), (i.e., 𝒮 is closed under compressions to semi-invariant subspaces), then
any 𝑓 ∈ 𝒪𝒮

0 has a minimal realization, 𝑓 ∼ (𝐴, 𝑏, 𝑐), with 𝐴 ∈ 𝒮. Examples of subsets 𝒮 ⊆ ℬ(H)𝑑
with all of these four properties (i)–(iv) include 𝒞 = 𝒞(H)𝑑 and 𝒯𝑝 := 𝒯𝑝 (H)𝑑 , where 𝒯𝑝 (H) denotes
the Schatten 𝑝−class ideals of trace-class operators. Here, 𝒯𝑝 (H) is the two-sided ideal of all operators
𝐴 ∈ ℬ(H) so that tr |𝐴|𝑝 < +∞, for some 𝑝 ∈ [1, +∞). Similarly, the sets of all 𝑑−tuples of ‘essentially’
normal, unitary or say self-adjoint operators, that is, operators which are normal, unitary or self-adjoint
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modulo compact perturbations, all have the properties (i–iii), and self-adjoint realizations modulo
compacts also have property (iv). As another example, the set of all Fredholm operator 𝑑−tuples has
properties (i–iii), but not (iv), since the compression of a Fredholm operator to a semi-invariant subspace
need not be Fredholm. In particular, since, as observed previously in Lemma 3.2, any ℎ ∈ 𝒪𝑢0 has an
operator realization, and any ℎ ∼ (𝐴, 𝑏, 𝑐) is uniformly analytic in a uniformly open neighbourhood of
0, it follows that 𝒪𝑢0 = 𝒪ℬ

0 and ℳ𝑢
0 = ℳℬ

0 , where ℬ = ℬ(H)𝑑 is the set of all 𝑑−tuples of bounded
linear operators on H. Similarly, if ℱ := ℱ(H)𝑑 , where ℱ(H) denotes the two-sided ideal of finite-
rank operators on H, then 𝒪ℱ

0 = C0<( 𝔷>) and ℳℱ
0 = C<( 𝔷>) .

6.1. Global uniformly meromorphic NC functions

Recall that by Theorem 5.1 and Theorem 5.3, any function of a single complex variable that is analytic
in a neighbourhood of the origin extends to a meromorphic function on C if and only if it has a compact
realization. More generally, any meromorphic function can be obtained as a rational expression in
mermorphic functions which are analytic in an open neighbourhood of 0. (Even simpler, they are ratios
of entire functions.) Moreover, we showed that any NC function is uniformly entire if and only if it has
a jointly compact and quasinilpotent realization. By the FM algorithm, it follows that any NC rational
expression in uniformly entire NC functions that is regular at 0 will have a realization that is a finite-rank
perturbation of a jointly compact and quasinilpotent realization, and hence will be compact. Motivated by
these observations, we defined the ring of global uniformly meromorphic NC functions that are analytic
at 0 as 𝒪𝒞

0 , where 𝒞 = 𝒞(H)𝑑 is the set of all compact operator 𝑑−tuples. Since we have shown that
𝒪𝒞

0 is a semifir, it is now natural to define the set of all (global) uniformly meromorphic NC functions
to be ℳ𝒞

0 , the universal skew field of fractions of 𝒪𝒞
0 , where C<( 𝔷>) = ℳℱ

0 ⊆ ℳ𝒞
0 ⊆ ℳℬ

0 = ℳ𝑢
0 . The

fact that ℳ𝒞
0 is isomorphic to the skew subfield generated by 𝒪𝒞

0 in ℳ𝑢
0 follows from the fact that the

embedding is totally inert and honest, as discussed above.
However, elements of ℳ𝑢

0 are local objects, i.e., they are uniformly meromorphic NC germs at 0.
Since ℳ𝒞

0 ⊆ ℳ𝑢
0 , it is not immediately obvious that we can view elements of ℳ𝒞

0 as ‘globally-defined’
NC functions. In this section, we will show that this is indeed the case, and that any germ in the sub-skew
field ℳ𝒞

0 , of ℳ𝑢
0 , can be identified, uniquely, with a globally defined NC function that is uniformly

analytic on its uniformly open NC domain.
In addition to 𝒪𝒞

0 and its universal skew field of fractions, ℳ𝒞
0 , we will also consider the semifirs

generated by familiar NC functions with realizations whose component operators belong to the Schatten
𝑝−classes. For 𝑝 ∈ [1,∞), recall that 𝒯𝑝 denotes the set 𝒯𝑝 (H)𝑑 , where 𝒯𝑝 (H) is the Banach space
of Schatten 𝑝−class operators on H equipped with the Schatten 𝑝−norm. Here, recall that the Schatten
𝑝−norm of an operator, 𝐴 ∈ ℬ(H), is

‖𝐴‖𝑝 := 𝑝√tr |𝐴|𝑝 ,

where tr denotes the trace on ℬ(H), and 𝒯𝑝 (H) is the Banach space of all bounded linear operators
for which this norm is finite. Every 𝐴 ∈ 𝒯𝑝 (H) is compact, elements of 𝒯1(H) are called trace-class
operators and elements of 𝒯2 (H) are called Hilbert–Schmidt operators. Each of the Schatten 𝑝−classes
is a two-sided ideal in ℬ(H) that contains the two-sided ideal of all finite-rank operators. The Schatten
𝑝−norms decrease monotonically. If 1 ≤ 𝑞 ≤ 𝑝 < +∞, then

‖𝐴‖1 ≥ ‖𝐴‖𝑞 ≥ ‖𝐴‖𝑝 ≥ ‖𝐴‖ℬ(H) ,

so that 𝒯𝑞 (H) ⊆ 𝒯𝑝 (H) for 𝑞 ≤ 𝑝. By a classical inequality of H. Weyl, if 𝐴 ∈ 𝒯𝑝 (H) has eigen-
values (𝜆 𝑗 ), arranged as a sequence of nonincreasing magnitude and repeated according to algebraic
multiplicity, then
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∞∑
𝑗=1

|𝜆 𝑗 |𝑝 ≤ tr |𝐴|𝑝 =
∞∑
𝑗=1
𝜎𝑝𝑗 < +∞,

where (𝜎𝑗 ) are the singular values of A. That is, (𝜎𝑗 ) are the eigenvalues of |𝐴|, again repeated according
to algebraic multiplicity, so that the eigenvalue sequence of A belongs to ℓ𝑝 [62].

As shown in [39, Section 5.2, Corollary 5.4], ℳ𝑢
0 can be constructed explicitly as the set of certain

local evaluation equivalence classes of NC rational expressions composed with elements of𝒪𝑢0 . Namely,
if 𝔯 is a formal NC rational expression in k variables and 𝑔1, · · · , 𝑔𝑘 ∈ 𝒪𝑢0 , then the composite expression,
𝐺 := 𝔯(𝑔1, · · · , 𝑔𝑘 ), is locally valid, if the set of points 𝑋 ∈ C(N×N) ·𝑑 at which it is defined, intersected
with 𝑟 · B(N×N) ·𝑑 is nonempty, for any 𝑟 > 0. We will denote the set of all such NC rational expressions
evaluated in elements of a ring, ℛ, asC<( 𝔷>) ◦ℛ. We will say that any two such locally valid expressions
𝐺 := 𝔯(𝑔1, · · · , 𝑔𝑘 ), and 𝐹 := 𝔮( 𝑓1, · · · , 𝑓𝑝) in C<( 𝔷>) ◦𝒪𝑢0 , i.e., for 𝑔𝑖 , 𝑓 𝑗 ∈ 𝒪𝑢0 , are locally evaluation
equivalent (at 0), and write 𝐹 ∼0 𝐺, if there is a uniformly open neighbourhood, 𝒰, of 0, so that
𝐺 (𝑋) = 𝔯(𝑔1 (𝑋), · · · , 𝑔𝑘 (𝑋)) = 𝔮( 𝑓1 (𝑋), · · · , 𝑓𝑝 (𝑋)) = 𝐹 (𝑋), for all 𝑋 ∈ 𝒰 at which both F and G
are defined. This is a well-defined equivalence relation, and the set of all equivalence classes of such
expressions can be identified with ℳ𝑢

0 [39, Section 5.2, Corollary 5.4].
In the case where 𝑓 ∈ ℳ𝒞

0 ⊆ ℳ𝑢
0 ,𝒞 = 𝒞(H)𝑑 , we can identify f with a unique NC function, defined

on a uniformly open and similarity-invariant NC subset ofC(N×N) ·𝑑 , Dom 𝑓 , so that Dom𝑛 𝑓 is analytic–
Zariski dense and open inC𝑑 ·𝑛2 for all sufficiently large 𝑛 ∈ N. First, if 𝐹 = 𝔯( 𝑓1, · · · , 𝑓𝑘 ) ∈ C<( 𝔷>) ◦𝒪𝒞

0 ,
we define the domain of F, Dom 𝐹, as the set of all 𝑋 ∈ C(N×N) ·𝑑 at which 𝐹 (𝑋) is defined. Such an
expression will be said to be valid, if it has a nonempty domain. We define a ‘global evaluation’ relation
on such (valid) expressions 𝐹, 𝐺 ∈ C<( 𝔷>) ◦𝒪𝒞

0 , by 𝐹 ∼ 𝐺 if 𝐹 (𝑋) = 𝐺 (𝑋) for all 𝑋 ∈ Dom 𝐹∩Dom𝐺.

Theorem 6.4. If 𝐹, 𝐺 ∈ C<( 𝔷>) ◦𝒪𝒞
0 , then

(i) If F is valid, then Dom 𝐹 is uniformly open, joint similarity invariant and there exists an 𝑁 ∈ N so
that for each 𝑛 ≥ 𝑁 , Dom𝑛 𝐹 is either (i) all of C𝑑 ·𝑛2 or (ii) the complement of an analytic–Zariski
closed set of codimension 1 in C𝑑 ·𝑛2 .

(ii) F is valid if and only if it is locally valid.
(iii) If 𝐹, 𝐺 are both valid, then 𝐹 ∼ 𝐺 if and only if 𝐹 ∼0 𝐺.
(iv) The (global) evaluation relation is an equivalence relation on valid elements in C<( 𝔷>) ◦𝒪𝒞

0 .

Item (i) in the above statement implies, in particular, that if 𝐹 ∈ C<( 𝔷>) ◦ 𝒪𝒞
0 , then Dom𝑛 𝐹 is

analytic–Zariski open and dense for all sufficiently large n. This implies, in particular, that Dom𝑛 𝐹 is
Euclidean and hence matrix-norm dense in C(𝑛×𝑛) ·𝑑 for all sufficiently large n.

This theorem shows that given any 𝑓 ∈ ℳ𝒞
0 , we can identify f uniquely with a (global) evaluation

equivalence class of valid elements of C<( 𝔷>) ◦ 𝒪𝒞
0 , and hence, we view f as a uniformly analytic NC

function on the domain,

Dom 𝑓 :=
⋃
𝐹 ∈ 𝑓 ,

𝐹 ∈C<( 𝔷>) ◦𝒪𝒞
0

Dom 𝐹, (6.1)

defined by 𝑓 (𝑋) := 𝐹 (𝑋) if 𝐹 ∈ 𝑓 and 𝑋 ∈ Dom 𝐹. In particular, Dom 𝑓 satisfies item (i) of the above
theorem. That is, Dom𝑛 𝑓 is analytic–Zariski open and dense for all sufficiently large 𝑛 ∈ N. The proof
of this theorem relies on several preliminary results.

Lemma 6.5. If 𝐹 ∈ C<( 𝔷>) ◦𝒪𝒞
0 , then for any 𝑋 ∈ Dom 𝐹, 𝐹 (𝑧𝑋) is a globally meromorphic matrix-

valued function.

Proof. If 𝐹 ∈ ℳ𝒞
0 , then 𝐹 = 𝔯(𝑔1, · · · , 𝑔𝑚) ∈ C<( 𝔷>) ◦ 𝒪𝒞

0 with each 𝑔 𝑗 ∈ 𝒪𝒞
0 and 𝔯 ∈ C<( 𝔷>) .

Hence, since each 𝑔 𝑗 (𝑧𝑋) is meromorphic by Theorem 5.5 and 𝔯 ∈ C<( 𝔷>) , it follows that 𝐹 (𝑧𝑋) is
meromorphic. �
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Proposition 6.6. Suppose that 𝐹, 𝐺 ∈ C<( 𝔷>) ◦ 𝒪𝒮
0 , where 𝒮 = 𝒥𝑑 , and 𝒥 ⊆ ℬ(H) is a two-sided

ideal containing all finite-rank operators. Then, for any 𝑌 ∈ Dom𝑚 𝐹 ∩ Dom𝑚𝐺, there exist matrix-
centre realizations, 𝐹 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫), 𝐺 ∼𝑌 (𝑨′, 𝑩′,𝑪 ′, 𝑫 ′) where 𝑨 𝑗 , 𝑨

′
𝑗 : C𝑚×𝑚 → C𝑚×𝑚 ⊗ 𝒥,

1 ≤ 𝑗 ≤ 𝑑. In particular, if 𝒮 = 𝒞 or 𝒮 = 𝒯𝑝 , then 𝑨 𝑗 takes values in 𝒞(C𝑚 ⊗ H) or 𝒯𝑝 (C𝑚 ⊗ H),
respectively. If 𝒮 = 𝒞 and there exists an 𝑟 > 0 so that 𝐹 (𝑋) = 𝐺 (𝑋) for all 𝑋 ∈ 𝑟 · B𝑑

N𝑚 (𝑌 ), then
𝐹 (𝑋) = 𝐺 (𝑋) for all 𝑋 ∈ 𝒟𝑌 (𝑨) ∩ 𝒟𝑌 (𝑨′).

Proof. It follows from the FM algorithm for realizations about the matrix centre Y in Subsection 3.4,
and from Equation (3.18) of Theorem 3.19 that if 𝐹 ∈ C<( 𝔷>) ◦𝒪𝒮

0 with 𝒮 = 𝒥𝑑 , and 𝑌 ∈ Dom 𝑚(𝐹),
then 𝐹 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫) has a matrix-centre realization about Y, with 𝑨 𝑗 taking values in C𝑚×𝑚 ⊗ 𝒥.

If 𝒮 = 𝒞, then the invertibility domains, 𝒟𝑌 (𝑨) and 𝒟𝑌 (𝑨′) are necessarily level-wise connected
since 𝑨 and 𝑨′ take values in compact operators. Indeed, if 𝑌 ∈ C(𝑚×𝑚) ·𝑑 , and 𝑋 ∈ 𝒟𝑌

𝑠𝑚(𝑨), consider
𝑋 (𝑧) = 𝑧(𝑋 − 𝐼𝑠 ⊗ 𝑌 ) + 𝐼𝑠 ⊗ 𝑌 , for 𝑧 ∈ C. Then 𝑋 (1) = 𝑋 , and 𝑋 (𝑧) ∈ 𝒟𝑌

𝑠𝑚(𝐴) if and only if

𝐿𝑨(𝑋 (𝑧) − 𝐼𝑠 ⊗ 𝑌 ) = 𝐼𝑠𝑚 ⊗ 𝐼H − 𝑧𝑨(𝑋 − 𝐼𝑠 ⊗ 𝑌 ),

is invertible – that is, if and only if 𝑧−1 does not belong to the spectrum of 𝑨(𝑋 − 𝐼𝑠 ⊗ 𝑌 ). However,
𝑨(𝑋 − 𝐼𝑠 ⊗ 𝑌 ) ∈ 𝒞(C𝑠𝑚 ⊗ H) takes values in compact operators so that, assuming H is separable,
𝜎(𝑨(𝑋 − 𝐼𝑠 ⊗ 𝑌 )) is either {0}, or {0} ∪ {𝜆 𝑗 }𝑁𝑗=1, 𝑁 ∈ N ∪ {∞}, where 𝜆 𝑗 is a sequence of nonzero
eigenvalues of finite multiplicities which converge to 0 if 𝑁 = +∞. It follows that we can define a
continuous path, 𝛾 : [0, 1] → C, connecting 0 to 1, so that 𝑋 (𝛾(𝑡)) ∈ 𝒟𝑌

𝑠𝑚(𝑨) for all 𝑡 ∈ [0, 1]. Hence,
𝑋 = 𝑋 (1) is path-connected to 𝐼𝑠 ⊗ 𝑌 in 𝒟𝑌

𝑠𝑚(𝑨), and 𝒟𝑌
𝑠𝑚(𝑨) is path-connected. The final claim now

follows from the identity theorem in several complex variables. �

Proposition 6.7. Consider an NC function 𝐹 := 𝔯(𝑔1, · · · , 𝑔𝑘 ) ∈ C<( 𝔷>) ◦ 𝒪𝒮
0 , with 𝒮 = 𝒥𝑑 and

𝒥 = 𝒯𝑝 (H) or 𝒥 = 𝒞(H). If 𝑌 ∈ Dom𝑚 (𝐹), then 𝐹 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫) has a matrix-centre realization
about Y with 𝑨 𝑗 : C𝑚×𝑚 → C𝑚×𝑚 ⊗ 𝒥. In particular, for any 𝑋 ∈ C(𝑠𝑚×𝑠𝑚) ·𝑑 , 𝐹 (𝑧𝑋 + 𝐼𝑠 ⊗ 𝑌 ) is a
meromorphic matrix-valued function. If 𝒮 = 𝒯𝑝 and ∅ ≠ {𝑧 𝑗 }𝑁𝑗=1 is the set of poles of 𝐹 (𝑧𝑋 + 𝐼𝑠 ⊗ 𝑌 ),
then the sequence (1/𝑧 𝑗 ), arranged in decreasing order of magnitude and repeated according to order,
is 𝑝−summable.
Proof. If 𝐹 = 𝔯(𝑔1, · · · , 𝑔𝑘 ), as above and 𝑌 ∈ Dom𝑚 𝐹, then by applying the FM algorithm to
realizations around a matrix centre, we see that 𝐹 = 𝔯(𝑔1, · · · , 𝑔𝑘 ) has a matrix centre realization
around Y, 𝐹 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫), where each 𝑨 𝑗 : C𝑚×𝑚 → C𝑚×𝑚 ⊗𝒥 takes values in compact operators,
by Theorem 3.19. For 𝑧 ∈ C \ {0},

𝐿𝑨(𝑧𝑋)−1 = 𝑧−1
(
𝑧−1𝐼𝑠 ⊗ 𝐼 − 𝑨(𝑋)

)−1
= 𝑧−1𝑅𝑨(𝑋 ) (𝑧−1).

It follows that 𝐿𝑨(𝑧𝑋)−1 is a meromorphic 𝒞(C𝑠𝑚 ⊗ H)−valued function, and hence,

𝐹 (𝑧𝑋 + 𝐼𝑠 ⊗ 𝑌 ) = 𝐼𝑠𝑚 ⊗ 𝑫 + 𝐼𝑠𝑚 ⊗ 𝑪 (𝐼𝑠𝑚 ⊗ 𝐼H − 𝑨(𝑧𝑋))−1𝑩(𝑧𝑋)

= 𝐼𝑠𝑚 ⊗ 𝑫 + 𝐼𝑠𝑚 ⊗ 𝑪
(
𝑧−1𝐼𝑠𝑚 ⊗ 𝐼H − 𝑨(𝑋)

)−1
𝑩(𝑋),

is a meromorphic matrix-valued function. If 𝒮 = 𝒯𝑝 , then 𝑨(𝑋) takes values in 𝒯𝑝 (C𝑠𝑚 ⊗ H) by
Equation (3.18) of Theorem 3.19. Moreover, if 𝑅𝑨(𝑋 ) (𝜆) has a pole of order 𝑛0 at 𝜆0 ≠ 0, it follows
that F has a pole of order at most 𝑛0 at 𝑧0 = 𝜆−1

0 . Since 𝑨(𝑋) ∈ 𝒯𝑝 (C𝑠𝑚 ⊗ H), the sequence (𝑧−1
𝑗 ),

where 𝑧 𝑗 is the sequence of poles of F repeated according to order, is a subsequence of the sequence of
eigenvalues of 𝑨(𝑋), repeated according to algebraic multiplicity, and is therefore 𝑝−summable. �

Theorem 6.8. If 𝑨 𝑗 : C𝑚×𝑚 → 𝒞(C𝑚 ⊗ H), 1 ≤ 𝑗 ≤ 𝑑 is a 𝑑−tuple of completely bounded linear
maps, 𝑋 = (𝑋 (1) , · · · , 𝑋 (𝑑) ) is a 𝑑−tuple of 𝑠𝑚× 𝑠𝑚 generic matrices, 𝑋 (ℓ) = (𝑥 (ℓ)

𝑖, 𝑗 ), and𝑌 ∈ C(𝑚×𝑚) ·𝑑

is fixed, then the set of all (𝑥 (ℓ)
𝑖, 𝑗 ) ⊆ C𝑑 ·𝑠2𝑚2 so that 𝐿𝑨((𝑥 (ℓ)

𝑖 𝑗 ) − 𝐼𝑠 ⊗ 𝑌 ) is not invertible is either (i)

https://doi.org/10.1017/fms.2025.10038 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10038


Forum of Mathematics, Sigma 47

all of C𝑑 ·𝑠2𝑚2 , (ii) empty, or (iii) an analytic subset of codimension 1. In particular, the 𝑠𝑚 level of the
invertibility domain, 𝒟𝑌

𝑠𝑚(𝑨), of 𝐿𝑨, is either empty or analytic-Zariski open and dense in C𝑑 ·𝑠2𝑚2 .
Moreover, if 𝑨 𝑗 : C𝑚×𝑚 → 𝒯𝑝 (C𝑚 ⊗ H), then ℎ(𝑥 (ℓ)

𝑖, 𝑗 ) := det𝐹 𝐿𝑨((𝑥 (ℓ)
𝑖 𝑗 ) − 𝐼𝑠 ⊗ 𝑌 ) is an entire

function so that the non-invertibility set of 𝐿𝑨

(
(𝑥 (ℓ)
𝑖 𝑗 ) − 𝐼𝑠 ⊗ 𝑌

)
is either (i) all of C𝑑 ·𝑠2𝑚2 , (ii) empty, or

(iii) the analytic-Zariski closed hypersurface given by the variety of the entire function h.

Proof. The proof is exactly the same as that of Theorem 5.8, using the results of [56] and of [54] on
Fredholm determinants. �

Proof of Theorem 6.4. Proof of (i): If 𝐹 = 𝔯( 𝑓1, · · · , 𝑓𝑝) ∈ C<( 𝔷>) ◦𝒪𝒞
0 is valid, then since 𝔯 is obtained

by applying finitely many of the arithmetic operations of addition, multiplication and inversion to k
formal NC variables, since both addition and multiplication are jointly matrix-norm continuous and
inversion is matrix-norm continuous, and since each 𝑓𝑖 ∼ (𝐴(𝑖) , 𝐵 (𝑖) , 𝐶𝑖 , 𝐷𝑖), with 𝐴(𝑖) ∈ 𝒞, can be
defined as a uniformly analytic NC function on a uniformly open and joint-similarity invariant NC
set that contains a uniformly open row-ball about 0 of positive radius, it follows that Dom 𝐹 is also
a uniformly open and joint-similarity invariant NC set, and F is a uniformly analytic NC function on
Dom 𝐹. By Theorem 3.19 and the FM algorithm for realizations about a matrix centre, if 𝑌 ∈ Dom𝑚 𝐹,
then 𝐹 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫), with 𝑨 taking values in compact operators, and the invertibility domain of 𝐿𝑨,
𝒟𝑌 (𝑨), is uniformly-open, joint similarity invariant and contained in Dom 𝐹. By Theorem 6.8, 𝒟𝑌

𝑚(𝑨)
is analytic–Zariski open and dense in C𝑑 ·𝑚2 . Furthermore, since F is valid, let 𝑁 ∈ N be the minimal
natural number so that Dom𝑁 𝐹 ≠ ∅. Theorem 6.8 and the fact that F is NC then implies that Dom𝑛 𝐹

is the complement of an analytic–Zariski closed set of co-dimension 1, or all of C𝑑 ·𝑛2 for any 𝑛 ≥ 𝑁 . In
particular, Dom𝑛 𝐹 is analytic–Zariski open and dense in C𝑑 ·𝑛2 for any 𝑛 ≥ 𝑁 .

Proof of (ii): If F is locally valid, then it is clearly valid. Conversely, if F is valid, then by (i), Dom𝑛 𝐹

is analytic–Zariski dense and open inC𝑑 ·𝑛2 for all sufficiently large n. In particular, Dom 𝐹∩𝑟 ·B(N×N) ·𝑑

is not empty for any 𝑟 > 0 so that F is locally valid.
Proof of (iii): If 𝐹, 𝐺 are both valid (or equivalently, locally valid), then 𝐹 ∼ 𝐺 necessarily implies

that 𝐹 ∼0 𝐺. Conversely, if 𝐹 ∼0 𝐺, then 𝐹 (𝑋) = 𝐺 (𝑋) for all 𝑋 ∈ Dom 𝐹 ∩ Dom𝐺 ∩ 𝒰, where 𝒰 is
a uniformly open neighbourhood of 0. Given any 𝑌 ∈ 𝒰∩ Dom 𝐹 ∩ Dom𝐺, 𝐹 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫), 𝐺 ∼𝑌
(𝑨′, · · · ), with 𝑨, 𝑨′ taking values in compact operators, and there is an 𝑟 > 0 so that 𝑟 ·B(N×N) ·𝑑 (𝑌 ) ⊆
𝒟𝑌 (𝑨) ∩ 𝒟𝑌 (𝑨′) ∩ 𝒰 ⊆ 𝒰 ∩ Dom 𝐹 ∩ Dom𝐺. Since 𝐹 (𝑋) = 𝐺 (𝑋) for all 𝑋 ∈ 𝑟 · B(N×N) ·𝑑 (𝑌 ),
Proposition 6.6 implies that 𝐹 (𝑋) = 𝐺 (𝑋) for all 𝑋 ∈ 𝒟𝑌 (𝑨) ∩𝒟𝑌 (𝑨′). Theorem 6.8 now implies that
𝒟𝑌
𝑛 (𝑨) ∩𝒟𝑌

𝑛 (𝑨′) is analytic–Zariski open and dense in C𝑑𝑛2 for all sufficiently large n, and hence, this
intersection is also matrix-norm dense in C(𝑛×𝑛) ·𝑑 . That, is 𝒟𝑌 (𝑨) ∩ 𝒟𝑌 (𝑨′) is a matrix-norm dense
subset of Dom 𝐹∩Dom𝐺 at any fixed level. Hence, since𝐹 (𝑋) = 𝐺 (𝑋) for every 𝑋 ∈ 𝒟𝑌 (𝑨)∩𝒟𝑌 (𝑨′),
and 𝐹, 𝐺 are uniformly continuous, it follows that 𝐹 (𝑋) = 𝐺 (𝑋) for all 𝑋 ∈ Dom 𝐹 ∩ Dom𝐺 and 𝐹, 𝐺
are globally evaluation equivalent, 𝐹 ∼ 𝐺.

Proof of (iv): Since 𝐹 ∼ 𝐺 if and only if 𝐹 ∼0 𝐺 by (iii), and since ∼0 is an equivalence relation, it
follows immediately that ∼ is also an equivalence relation. �

Remark 6.9. Classically, the definition of a meromorphic function is a local one. Namely, a function,
f, of several complex variables, is meromorphic on an open domain 𝑈 ⊆ C𝑑 , if it is analytic on U
with the possible exception of an analytic hypersurface. Moreover, for every 𝑧 ∈ 𝑈, there is then a
neighbourhood of z, 𝑧 ∈ 𝑉𝑧 ⊂ 𝑈, so that 𝑓 |𝑉𝑧 is a quotient of two holomorphic functions on 𝑉𝑧 . It is
then a result that on a contractible (even less is required) Stein domain, every meromorphic function
is the quotient of holomorphic functions on U. Our definition of an NC meromorphic function, in
this paper, is a global one. This raises the interesting question: What would be a satisfactory, ‘local’,
definition of an NC meromorphic function? Every global NC meromorphic function, as we have defined
it, is defined at all levels of the NC universe, from a certain level onward, with the possible level-
wise exception of an analytic hypersurface. Moreover, these analytic hypersurfaces satisfy certain NC
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regularity assumptions. However, it is not obvious that at every irreducible point such an NC function
agrees with an ‘NC uniformly meromorphic germ’ at this point.

6.2. Skew fields of uniformly meromorphic NC functions

In addition to 𝒞 = 𝒞(H)𝑑 and 𝒯𝑝 = 𝒯𝑝 (H)𝑑 , recall our notations, ℬ = ℬ(H)𝑑 and ℱ = ℱ(H)𝑑 ,
where ℱ(H) denotes the two-sided ideal of finite-rank operators on H. Further recall that we can
identify C0<( 𝔷>) with 𝒪ℱ

0 and 𝒪𝑢0 with 𝒪ℬ
0 .

Theorem 6.10. For any 1 ≤ 𝑞 < 𝑝 < +∞,

C0<( 𝔷>) � 𝒪
𝒯𝑞

0 � 𝒪
𝒯𝑝

0 � 𝒪𝒞
0 � 𝒪𝑢0 ,

and

C<( 𝔷>) �ℳ
𝒯𝑞

0 �ℳ
𝒯𝑝

0 �ℳ𝒞
0 �ℳ𝑢

0 .

Proof. Since, for any 1 ≤ 𝑞 < 𝑝 < +∞ we have the inclusions,

ℱ ⊆ 𝒯𝑞 ⊆ 𝒯𝑝 ⊆ 𝒞 ⊆ ℬ,

the inclusions of the corresponding semifirs and of their universal skew fields is immediate.
It is clear that C0<( 𝔷>) = 𝒪ℱ

0 � 𝒪
𝒯𝑞

0 since, if (𝐴, 𝑏, 𝑐) ∼ 𝑓 is a minimal realization of any 𝑓 ∈ 𝒪
𝒯𝑞

0 ,
then if 𝑓 ∈ C0<( 𝔷>) , it would follow that 𝑓 ∼ (𝐴′, 𝑏′, 𝑐′) has a minimal and finite-dimensional realization.
That is, 𝐴′ is finite-rank. However, it would then follow that 𝐴, 𝐴′ are pseudo-similar by Theorem 3.6,
which would imply that A has finite-rank, which is generally impossible. (One can easily construct
examples of compact and Schatten 𝑞−class minimal realizations that are not finite-dimensional; see, for
example, Example 3.10.)

Similarly, since we identify C<( 𝔷>) � ℳℱ
0 , where ℱ consists of all 𝑑−tuples of finite rank operators,

it follows that C<( 𝔷>) � ℳ
𝒯𝑞

0 . Indeed, take any 𝑓 ∈ 𝒪
𝒯𝑞

0 that has a minimal and Schatten 𝑞−class
realization (𝐴, 𝑏, 𝑐), where A is not finite-rank. If 𝑓 ∈ C<( 𝔷>) , then 𝑓 ∈ C0<( 𝔷>) , since f is defined at 0,
and 𝑓 ∉ C0<( 𝔷>) by the previous argument.

Suppose that 1 ≤ 𝑞 < 𝑝 < +∞ and that

𝐴1 = diag
1

𝑞√
𝑘 + 1

, and 𝐴 𝑗 = 0, 2 ≤ 𝑗 ≤ 𝑑.

Since 𝑝
𝑞 > 1, the sequence of diagonal values of 𝐴1 belongs to ℓ𝑝 but not ℓ𝑞 . Hence, 𝐴1 ∈ 𝒯𝑝 (H)\𝒯𝑞 (H)

so that 𝐴 ∈ 𝒯𝑝 \ 𝒯𝑞 . Since 𝐴1 is self-adjoint (and positive) and multiplicity–free, we can choose
𝑏 = 𝑐 = 𝑥, where 𝑥 ∈ H is any cyclic vector for 𝐴1 and (𝐴, 𝑏, 𝑐) is then a minimal realization of some
familiar 𝑓 ∈ 𝒪

𝒯𝑝

0 . Note that ‖𝐴1‖ = ‖𝐴‖col < 1, so that for any 𝑛 ∈ N, the point

𝑋 := (𝐼𝑛, 0𝑛, · · · , 0𝑛) ∈ Dom 𝑓 .

Since A is compact, the function

𝑔(𝜆) := 𝜆−1 𝑓 (𝜆−1𝑋) = 𝐼𝑛 ⊗ 𝑏∗(𝜆𝐼𝑛 ⊗ 𝐼H − 𝐼𝑛 ⊗ 𝐴1)−1𝐼𝑛 ⊗ 𝑐,

is a meromorphic matrix-valued function in C. If 𝒪𝒯𝑝

0 ⊆ 𝒪
𝒯𝑞

0 , then f also has a minimal realization
𝑓 ∼ (𝐴′, 𝑏′, 𝑐′) with 𝐴′ ∈ 𝒯𝑞 . But by Corollary 5.4, it follows that

𝜎(𝐴′
1) \ {0} = 𝜎(𝐴1) \ {0} =

{
1

𝑞√
𝑘 + 1

}
,
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which would imply that the eigenvalues of 𝐴1 are 𝑞−summable, a contradiction. We conclude that
𝒪
𝒯𝑞

0 � 𝒪
𝒯𝑝

0 for 𝑞 < 𝑝. A similar argument works for the strict inclusion 𝒪
𝒯𝑝

0 � 𝒪𝒞
0 by considering

𝐴1 := diag 1
ln(𝑘+1) , which is compact but not in 𝒯𝑝 (H) for any 𝑝 ∈ [1, +∞). Indeed, this diagonal

sequence converges to 0 but is not 𝑝−summable for any 𝑝 ≥ 1.
If 𝑓 ∈ 𝒪

𝒯𝑝

0 \ 𝒪
𝒯𝑞

0 , 𝑓 ∼ (𝐴, 𝑏, 𝑐) is the above example, we claim also that 𝑓 ∉ ℳ
𝒯𝑞

0 so that
ℳ

𝒯𝑞

0 � ℳ
𝒯𝑝

0 . Indeed, if this 𝑓 ∈ ℳ
𝒯𝑞

0 , then since f can be identified with an NC rational expression
in elements of 𝒪𝒯𝑞

0 , it has a matrix-realization about some matrix point 𝑌 ∈ C(𝑚×𝑚) ·𝑑 in its domain,
𝑓 ∼𝑌 (𝑨, 𝑩,𝑪, 𝑫), where Y can be chosen sufficiently close to 0 so that 𝑌 ∈ 𝒟(𝐴). By Proposition
6.7, it follows that the matrix-valued function, 𝑔(𝑧) := 𝑓 (𝑧𝑌 + 𝑌 ) has poles that, when inverted, and
arranged as a sequence repeated according to order, form a 𝑞−summable sequence. Also, since 𝒟(𝐴)
and 𝒟𝑌 (𝑨) are uniformly open, we can assume, without loss in generality, that𝑌1 is not nilpotent. Then,
since 𝑓 ∼ (𝐴, 𝑏, 𝑐),

𝑔(𝜆) := 𝜆−1 𝑓

(
1 − 𝜆
𝜆

𝑌 + 𝑌
)
= 𝐼𝑚 ⊗ 𝑏∗(𝜆𝐼𝑚 ⊗ 𝐼H − 𝑌1 ⊗ 𝐴1)−1𝐼𝑚 ⊗ 𝑐.

Since 𝜎(𝑌1 ⊗ 𝐴1) = 𝜎(𝑌1) · 𝜎(𝐴1) and 𝜎(𝑌1) ≠ {0} by assumption, it follows that the eigenvalues of
𝐴1 are 𝑞−summable, which is again, a contradiction. A similar argument shows ℳ𝒯𝑝

0 �ℳ𝒞
0 .

We now prove the strict inclusion of 𝒪𝒞
0 in 𝒪𝑢0 = 𝒪ℬ

0 . For simplicity, first consider the case where
𝑑 = 1. If 𝑓 ∈ 𝒪𝑢0 has a compact realization, then f is a meromorphic function in C with no pole at 0
by Theorem 5.3. If it were true that 𝒪𝒞

0 = 𝒪𝑢0 , then any analytic germ at 0, such as that of the function
𝑓 (𝑧) := 𝑒

1
1−𝑧 , would have a compact realization and hence would agree, in an open neighbourhood

of 0, with the analytic germ of a function that extends globally to a meromorphic function. This
would imply that f is itself, meromorphic, a contradiction. This proves that 𝒪𝒞

0 � 𝒪𝑢0 . Similarly, by
Lemma 6.5, this 𝑓 ∉ ℳ𝒞

0 as ℳ𝒞
0 consists of meromorphic germs at 0 that extend analytically to global

meromorphic functions. A similar argument works for 𝑑 > 1 taking, for example, 𝑓 (𝑋) = exp(𝐼−𝑋1)−1

or 𝑓 (𝑋) = exp(𝐼 − 𝑋1𝑋2)−1 and applying Theorem 5.5 and Lemma 6.5. �

Schatten 𝑝−class skew fields.
By the Weierstrass factorization theorem any entire function, h, with zero sequence, (𝑧 𝑗 ), repeated
according to order, can be expressed as a product,

ℎ(𝑧) = 𝑒 𝑓 (𝑧) 𝑧𝑚
∞∏
𝑘=1

(
1 − 𝑧

𝑧𝑘

)
𝑒𝑞𝑘 (𝑧/𝑧𝑘 ) ; 𝑞𝑘 (𝑧) :=

𝑛𝑘∑
𝑗=1

𝑧 𝑗

𝑗
. (6.2)

If 𝑓 ∈ C[𝑧] and all of the polynomials 𝑞𝑘 = 𝑞 have the same degree, n, then the above product formula
for h is called a canonical product if 𝑛 ∈ N is the minimal natural number so that the product converges.
Given a canonical product, h, the genus of h is the maximum of n and the degree of f. A canonical
product, h, has genus, 𝑛 ∈ N, if and only if the sequence, (1/|𝑧 𝑗 |), where (𝑧 𝑗 ) is the sequence of
zeroes of h, is absolutely 𝑛 + 1−summable. The order of an entire function, h, is the infimum of all
positive values, a, so that |ℎ(𝑧) | ≤ exp |𝑧 |𝑎, for sufficiently large |𝑧 |. By a theorem of Hadamard, given
a canonical product, h, genus(ℎ) ≤ order(ℎ) < genus(ℎ) + 1 [55, Theorem 5.1], [28]. Moreover, by [55,
Theorem 2.1], if order(ℎ) = 𝜆, then the sequence (1/𝑧 𝑗 ) is absolutely 𝑠−summable for any 𝑠 > 𝜆.

Consider an entire ℎ ∈ 𝒪(C) so that ℎ ∼ (𝐴, 𝑏, 𝑐) has a minimal, compact and quasinilpotent
realization on a separable Hilbert space, H. Further suppose that 𝐴 ∈ 𝒯𝑠 (H), 𝑠 ∈ [1, +∞), so that
ℎ ∈ 𝒪𝒯𝑠

0 . It follows from Theorem 5.3 and Proposition 6.7 that the zeroes of h (which are the poles of
ℎ−1), are 𝑠−summable. Namely, if (𝑧 𝑗 )∞𝑗=1 is the sequence of zeroes of h, repeated according to order,
then the sequence (1/𝑧 𝑗 ) belongs to ℓ𝑠.
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Hence, suppose that (𝑧 𝑗 ) is any sequence of complex values so that (1/𝑧 𝑗 ) is absolutely 𝑠−summable
for some 𝑠 ∈ [1, +∞), and let p be the infimum of all 𝑠 ∈ [1,∞) so that this sequence is absolutely
𝑠−summable. It follows that the canonical product, h, with zeroes (𝑧 𝑗 ), and 𝑓 = 0, has genus �𝑝 , and
also that 𝑝 ≤ order(ℎ). By Hadamard’s theorem,

genus(ℎ) ≤ 𝑝 ≤ order(ℎ) < genus(ℎ) + 1.

This suggests that in one-variable, the field, ℳ𝒯𝑝

0 , could be equal to the field of meromorphic functions
in C generated by all entire functions of order at most 𝑝 ∈ [1,∞). If this is true, it would also be
interesting to see whether uniformly entire NC functions with jointly quasinilpotent realizations in 𝒯𝑝
have ‘order of growth’ at most p in the NC universe.
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