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1. Introduction. Let M be the normed linear space whose general 
element, x, is a bounded sequence 

of real numbers, and ||x|| = l.u.b. |£w|. Let T denote the linear operation (of 
norm 1) defined by Tx — (£2, £3» • • • , £»+i, • • •)• A generalized limit is a linear 
functional <f> on M which satisfies the conditions 

(1) x > 0 (i.e., £w > 0 for all w) implies </>(x) > 0; 
(2) 0(7s) = <£(x) for all x Ç M\ 
(3) 0 ( 1 , 1 , 1 , . . . ) = 1. 

The set of all generalized limits will be denoted by L. In the presence of (1), 
condition (3) is equivalent to \\4>\\ — 1. 

The basic question of existence of generalized limits has been settled in a 
variety of ways; the standard proof appears in (2, p. 34). This proof, based 
upon the Hahn-Banach theorem, actually leads to all generalized limits, and 
this fact was used in (7) to obtain properties of L. In the present paper, 
attention is focused on another existence proof (5, p. 1010; 8; 10, p. 52) 
which depends, ultimately, on Tychonoff's theorem. In order to describe 
this proof, we must summarize some well-known properties of M and of the 
conjugate space M* (1; 5). 

Only one topology in M* will be of interest to us, namely, the weak* 
topology, which is defined as follows: A directed system {<£„} in M* converges 
to <f> if ct>v(x) —» 4>(x) for each x Ç M. An essential property of this topology 
is that the set 

B* = {(t>\\<t>(x)\ < ||*|| for all x Ç M] 

(the unit ball) is compact. 5* is also convex, and we are able to apply the 
Krein-Milman theorem to its subsets. Thus, if K is a closed convex subset of 
B*, and 5 (C.K) contains all extreme points of K, then K is the closed convex 
hull of S, denoted by &(S). In particular, if K is not empty, neither is 5*. 

We will denote by £1' the set of extreme points of B* that satisfy condition 
(1), or equivalently, the collection of extreme points of the subset of B* 
which is determined by conditions (1) and (3). Since the latter set is closed and 
convex, it is, in fact, §(Œ'). Among the functional in 12' are those of the form 
9p(%) = iv for each fixed natural number p. The collection TV of all such 
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functionals is a discrete, open, and dense subset of Q'. Since &' happens to 
by compact (1, p. 504), it is the closure of N in Af*, and it is known as the 
Stone-Cech compactification of N. The set 12, the complement of N in £2', 
is characterized, as a subset of Q', by the fact that each of its elements satisfies 
the condition 

(4) 4>(x) is independent of the value of £w for each fixed n. 

Its closed convex hull, §(Î2), is the set of all functionals in M* satisfying 
conditions (1), (3), and (4). Since (2) obviously implies (4), L C § (^ ) . 
It is important to note that L is itself a closed convex set. 

The proof of existence of generalized limits that was referred to in the second 
paragraph goes as follows: Let x ^ , or, more generally, x £ $(Û) ;a general
ized limit, i/s is obtained by setting 

*(*) = x({»_iè4) 
for x = {£n} in M. Now, a functional x £ § M has the property that if 
31 Ç M is a convergent sequence, then \(y) is the ordinary limit of y. If x 
is a sequence whose arithmetic means, n~1 J^ £*> converge to o-, say, then 
\f/(x) = a for every generalized limit yp which is obtained in this manner. 
Since it is known that there are some such sequences and some generalized 
limits which assign to them values different from a (see Theorem 4), it follows 
that this procedure does not lead to all generalized limits. It is our intention, 
therefore, to modify this procedure in such a way as to obtain all generalized 
limits. 

Let T„ be the operator 
n-l 

and let B\{x) = £1 for all x Ç M. Then {6i(Tnx)} is the sequence of arithmetic 
means of x, and the generalized limit obtained above may be defined as 
IZ'(X) = x({0i(Tnx)})- From this point of view, an obvious way to generate 
more generalized limits is to replace 0i by some other functional. Three 
observations should be made in this connection. 

(a) If 61 is replaced by 0V Ç N, nothing new is obtained, because 

dv{Tlx) = O^T^-'x), i= 1,2, . . . , 

so that 

x({0„(7»}) = x(l»i(r,rx)!) = ur-'x) = *(*). 
(b) If <t> is any functional satisfying conditions (1) and (3), i.e., </> £ &(Qf), 

and if x € $(G), then 

(5) *(x) = x({<KT„x)}) 

does define a generalized limit (Theorem 1). 
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(c) It is trivial that any generalized limit ip may be obtained from (5) 
simply by taking c/> = ^, because i/(Tnx) = ^(x) for all n. 

The purpose of this paper is to prove that the collection Q of all functionals 
of the form (5) with % and 0 in Q is sufficient to yield all generalized limits 
in the sense that §(Q) = L. 

The proof requires a surprising amount of heavy machinery: the repre
sentation of M as the space of all continuous functions on Q', the representation 
of an arbitrary continuous linear functional on M as a measure on Q', and one 
of the deep theorems of measure theory, the individual ergodic theorem. 
A similar (but apparently weaker) result can be obtained by using entirely 
different techniques. As was stated before, the set N is dense in Q', which means 
that the element x £ & is the limit of a directed system 

of elements of N. In terms of this directed system, (5) becomes 

i//(x) = lim„ (t>(Tnvx). 

Since x £ ^, nv —> «5. Let us consider, now, the set A of all continuous linear 
functionals of the form 

(6) $(x) = lim, (j>v{Tnvx) 

where nv —» °°, $„ £ 12 for all J>, and the limit is assumed to exist for all x Ç M. 
It will be seen that A is a closed subset of L, and the proposition &(A) = L 
will be proved independently of the obvious fact that Q C A. I have not 
been able to determine1 whether Q is a proper subset of A or whether the 
closure of Q is all of A. 

2. Limit points of sequences in M*. Since it is convenient to work in 
the space M* as much as possible, we introduce the operator T* on Af*, 
defined by T* 0(x) = 0(7*) for all * G M, 0 Ç ikf*. Condition (2) becomes 
(2*) T*<t> = </>. In keeping with the notation used above, we have 

ra-l 

THEOREM 1. If 

^ = lim, Tw* 0„ 

where each </>„ w a positive linear functional of norm 1 (i.e., <£„ satisfies conditions 
(1) and (3)) and nv —• œ, //^n \p £ L. 

Proof. It is clear that ^ satisfies conditions (1) and (3). For any x G M, 

lI am grateful to the referee for many suggestions for the improvement of an earlier version 
of this paper. Most important, by far, was his discovery of an error in what purported to be a 
proof that Q = A. 
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t(x - Tx) = Wmv[TVv * <j>v{x) - Tnv * <j>v{Tx)} 

= lim,, (j)v\ i~l £ (T*x - Ti+1x) 

= limv <f>v[nv (x — Tn
vx)\. 

But 

\4>,[n;\x- Tn'x)] | < 2 | | 0 , | | - n r 1 - | | x | | - > 0 

with v. Therefore, \f/(x — Tx) = 0. 
T h e existence of generalized limits is an immediate consequence of Theorem 

1; this is substant ial ly the same proof t h a t was described in the In t roduct ion. 
T a k e any 6 (E N. Since {Tn*d} C B* and the la t ter set is compact , the former 
set mus t have limit points all of which are in L, according to Theorem 1. 
We observe t h a t {Tn*d} is not a convergent sequence in M* for any 6 Çz N, 
because convergence of {Tn*d\ in M* implies convergence of the sequence 
of numbers {T„*6(x)} for every x G M. But , if 0 = 6V, then 

Tn*ep(x) = ep(Tax) 

is the nth ar i thmet ic mean of the sequence Tv~l x, and it is easy to find an x 
which will make {6p(Tnx)} diverge. W h a t is not so obvious is t ha t if co f 12, 
{JVco} need not converge either. Here is an example. 

First, construct a sequence {??*} whose ar i thmetic means do not converge. 
T h u s : 7/! = 1, Vi = 0 if 2k < i < 2k + 2k~\ and Vi = 1 if 

2* + 2k~l < i < 2k+1, k = 1 , 2 , . . . . 

Next, let 

{dn,}(k = 1 , 2 , . . . ) 

be a sequence in N such t ha t nk — nk^i > 2k, and let co be one of its limit 
points. Define %n = 0 if n = nk for some k or n < ni, and £n = rj L if i is the 
least positive integer such t h a t n = nA. + 7* for some k. T h e inequali ty serves 
to guarantee tha t , for each i, 

for all bu t a finite number of &'s. Set t ing x = {£„), we have 

co(x) = l i m j ^ e u 

provided the limit exists, and more generally, 

(a(T%x) = l i m ^ f » ^ , . 

It follows t ha t for each i, œ^x) = rj.h and therefore, 

j _ n-l | 

does not converge. But this implies t ha t \T,*w] does not converge in M*. 
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The sequence \nk) is an example of a sequence of integers of density 0 
in the number theoretic sense. Making use of the obvious one to one corre
spondence between N and the set of positive integers, we may speak, in the 
same way, of non-dense subsets of N. It is somewhat surprising, in view of the 
fact that N is a countable, dense, discrete set in Q', that there exist points co 
in Q which are not limit points of any non-dense subset of N. I conjecture 
that for some such œ the sequence {Tn*o} does converge, but I have not been 
able to prove this. It will be seen in the proof of Theorem 3 that for each 
x Ç M there exists œ 6 0 with the property that {Tn* œ(x)} is a convergent 
sequence of numbers. 

3. Sets that generate L. We have already observed that L C £>(^)-
Since Tn* is a continuous mapping and 0 is compact, the set An — TV*(12) is 
compact. From the additional fact that Tn* is linear, it follows that for any-
set 5 C ^ * , 

7V(§(S)) = $(7V(S)). 

Since L is elementwise invariant under Tn*y we have 

L = T*{L) c n*(£(o)) = $(r„*(n)) = $>(A„). 
It follows that 

oo 

L C O $04„). 
1 

This conclusion is obtained so easily because the closed convex hull of a set is, 
in general, very much bigger than the set itself. We would like to have L as 
the closed convex hull of an intersection rather than the intersection of hulls. 
It is hopeless, however, to expect that 

L = $( n An), 

because C\ An is empty in the worst possible way; namely, the sets An are 
mutually disjoint. To prove the last statement, fix n, and let x = {{<} where 
£* = 1 if i is a multiple of n and £* = 0 otherwise. Then for every œ Ç Œr, 
u(x) is either 0 or 1, there is some in tege r / such that T*y/ u(x) = 1, and 
r* jw(x) = 1 if j = / (mod n) and r*^co(a;) = 0 if j & f (mod n). Conse
quently, <j>{x) = \/n for all 0 G Any whereas, if <j> £ Ak with k < n, then 
<£(x) = 0 or l/k. Thus, Ak C\ An is empty for all k < n and for all n. 

The operation on the sequence of sets {An\ that does the job we want is 
the topological limit superior. By definition, 

\f/ ^ lim sup An 

if every neighborhood of \f/ meets infinitely many of the sets An. Equivalently, 
CO 

lim sup An = H Fmi 
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where Fm is the closure of the set 
on 

It is clear from the form of the sets An that if \p Ç lim sup Anj then there are 
directed systems 

\Tn*) and {co„} 

directed by the same set {v} and with co„ Ç Œ, such that nv —> oo and 

Conversely, every cluster point of such a directed system is in lim sup An. 
Thus, lim sup An is precisely the set A of the introduction. By Theorem 1, 
A C L, and since L is compact and convex, we conclude that $(A) C />• 

THEOREM 2. &(A) = L. 

Proof. In view of the preceding discussion, we have only to prove that 
L C &(A). But this follows easily from Theorem 2 of (4), which asserts that 
for a sequence \^>(An)} of compact convex sets, 

lim sup &(An) C £>(lim sup A.„). 

We have already seen that 

l 

which, in turn, is contained in lim sup $>(An). 

COROLLARY 1. All of the extreme points of L are in A. 

Proof. The topological limit superior is always a closed set. According to a 
theorem of Milman (9; 3, p. 84, prop. 4), all of the extreme points of the 
closed convex hull of a set are in the closure of that set. 

COROLLARY 2. 

L = H TH*mQ)). 
n = l 

This can be proved directly, but at this stage it comes very easily out of a 
string of inequalities: 

CO 

L= n T*{L) c n r„*($(n)) = n $(AU) 
C lim sup &(An) C §(lini sup An) = L. 

We turn now to the development of a sharper result. It is well known that 
M is isomorphic and isometric (equivalent in Banach's sense) with the space 
of all continuous functions on the compact set 12r, the isomorphism taking the 
element x £ M into the function whose value at co f Q' is œ(x). It is convenient 
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to identify the two spaces and use the notation x(co) to denote w(x). To each 
continuous linear functional <f> on M, there corresponds (5) a unique regular 
Borel measure m on Qf with the property 

<£(#)= I x(co) dm(œ) for all x G M. 

Conditions (l)-(4) on the functional </> may be translated into the following 
conditions on the measure m: For every Borel set r , 

(10 m ( D > 0 ; 
(20 m(T*T) = w(T); 

(30 m(Q') = 1; 

(40 m(N) = 0. 

THEOREM 3. If Q is the set of all limit points of sequences {Tn*<a}, œ £ Q, 
then §(Q) = L. 

Proof. We apply here the technique of Milman, as described in (4). Since 
L is a compact, convex set and Q C L, it suffices to prove that for every 
continuous (in the weak* topology) linear functional / on M*, 

s u p ^ / M = sup^6G/(iA). 

But every continuous linear functional on M* comes from an element of M; 
that is, given such an / , there exists x £ M such that /(</>) = <t>(x) for all 
<t> G M*. We wish to prove, then, that for all x £ M, 

(7) sup+eL ifr(x) = sup^eQ \l/(x). 

Fix x Ç M. Since L is compact, there is an element \po in L such that 

fo(x) = sup^eZr ^(x). 

Let ra0 be the regular Borel measure on Q' corresponding to the functional re
conditions (T)-(40 are satisfied by m0, so that all of the measure is carried 
by the set fi: ra0(£2) = 1. The individual ergodic theorem (6) is applicable to 
this situation, and we conclude that limw^œ Tnx(œ) exists for all œ in an in
variant (under T*) subset A of U of w0-measure 1. If we let X(œ) denote this 
limit for co £ A, and X(a>) = 0 for co Ç 0 — A, then the ergodic theorem 
states further that X is a measurable function, invariant under T*, and 

(8) I X(œ) dmo(o)) = I a;(co) dmo = \f/o(x). 

For each co Ç A, the set { rn*coj has limit points, and according to Theorem 1, 
every such limit point is in L. Consequently, there is a ^ in L, which depends 
upon co and such that 

l i nv^ Tnx(co) = \f/(x). 
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Since \//(x) < \[/0(x) for all \p Ç L, we have 

X(co) = lim Tnx(œ) < ^o(x) 

lor all co £ A. This inequali ty together with equation (8) and the fact tha t 
ra0(A) = 1 implies t h a t X(w) = ^ o W for almost all w Ç A. In part icular , 
there is a t least one w0 for which the equal i ty holds, and any limit point % of 
{ T.n*cco} has the properties : 

X G <2 and x O ) = ^o(x) = sup*eL ^ ( * ) . 

This verifies (7) and completes the proof of the theorem (cf. 6a) . 

4. A l m o s t c o n v e r g e n t s e q u e n c e s . Lorentz (7) calls a sequence x g M 
almost convergent if \p(x) is independent of ^ G L. By Theorem 3, it is obviously 
sufficient to require t ha t \p{x) be constant for yp £ Q. Observing tha t every 
*// £ Q has the form 

\j/(x) = lim, Tnvx(o>), to e 12, 

leads to the following characterization of almost convergent sequences: 

LEMMA. In order that there exist a number a such that \//(x) — a for all 
\p f L, it is necessary and sufficient that 

(9) limw^œ Tnx(co) = a 

for all ce G ïV. 

(We write &' ra ther than Q in order to facilitate the coming discussion. Both 
are correct.) 

The known characterization of almost convergent sequences is the following 
(7; see also 10, p. 53) : 

T H E O R E M 4. A necessary and sufficient condition for the existence of a such 

that \f/ (x) = a for all \p £ L is that 

1 n 

(10). lining -J2 £i+k = <r, 
n i==i 

uniformly in k. 

In our notat ion, (10) takes the form 

(10') Hm^co Tnx(k) = o-, 

uniformly in k(£N). Since N is dense in 0 ' and Tnx is a continuous function 
on fi', (10') obviously implies (9). But the converse is also t rue. For (9) implies 
weak convergence of the sequence {Tnx) in M to the cons tant a. By the mean 
ergodic theorem in Banach space (6), this implies convergence in norm, i.e. 
uniform convergence on all of W, 
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5. The maximal generalized limit of a given sequence. If p is a 
functional on M satisfying the two conditions 

(i) p(x + y) < p(x) + p(y), 

(ii) p(Xx) = Xp(a;) for all x,y £ M and X > 0, 

then, according to the Hahn-Banach theorem, there exists a linear functional 
0 such that <j>(x) < p(x) for all x. The functional r defined by 

T(X) = SUp ĉZ/ \p{x) 

satisfies conditions (i) and (ii). Noting that for a linear functional <£, <j>(x) < T ( # ) 
for all x Ç ikf implies 

- r ( - x ) < - <t>{-x) = 0(x) < r(x), 

one sees that every such </> is actually a generalized limit. 
It is clear from the proof of the Hahn-Banach theorem (2, p. 28) that not 

only is there a linear functional </> dominated by p, but also, if x0 6 M is 
given, </> may be chosen so that </>(x0) = p(#o)- Consequently, if p has the 
property that 0 < p implies </> £ L, thenp(x) < r (x) f or all x Ç M. In Banach's 
proof of the existence of generalized limits the functional which is used for 
p is 

n 
r'(x) = inf lim sup n~l j ^ £*+»»•, 

where the infimum is taken over all possible choices of non-negative integers 
mi, . . . , mn. By what was said earlier, r'(x) < r(x), and it is easy to reverse 
this inequality to obtain r'(x) = r(x). All of this has been observed before 
(7). 

Now, let us use Theorem 2 to calculate T(X) from the terms of the sequence 
{£„}. Since L = &(A), where A = lim sup Ani we have 

r ( x ) = SUp+eA t(x). 

By definition, 
oo 

A = n Fm, 

where F.m is the closure of 

\JAH. 

\t is easy to see that 
n-l 

sup </>(x) = lim sup rT1^ £k+i, 
<t>eAn k-^on 1 = 0 
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SO t h a t 

sup </>(x) = sup lim sup n~x^2 tk+i, 
0eFm ri>m Jc~)oo i=0 

and finally, 

(11) sup \f/(x) < inf sup lim sup n~l ^2 £*+*• 

We denote the right side of the inequali ty by r"' (x) : 

T " ( X ) = lim sup lim sup n~l ^ ffc+z-

Since F w is a compact set, the supremum of 4>(x) is a t ta ined a t some <j>m G Fm , 
for each m. T h e sequence {</>m} has limit points and every one of these limit 
points is in A. I t follows t ha t the inequali ty in (11) is actually an equali ty. 

T H E O R E M 5. For every x = {£n} in M, 

rc-l 

sup^€L \//(x) = r ' (x) = r " (x ) = lim lim sup n _ 1 X) £*+*• 

Everything has already been proved excepting the existence of the last 
limit, which is obtained by observing t ha t 

w - l 

r ' (x) < lim inf lim sup n~ 22 %k+i ^ r " ( x ) . 

An al ternate proof of the equali ty r" — r can be given by using the Hahn-
Banach a rgument mentioned earlier; namely, if 0 is a linear functional such 
tha t cj)(x) < r " (x ) for all x, then </> £ L. Consequently, r" < r, and a simple 
computa t ion shows t h a t \p Ç L implies ^ < r " . T h e a rgument based upon 
Theorem 2, al though more complicated than this one, has the advan tage 
tha t it enables one to discover the form of the functional r"'. In fact, the 
equali ty r = r" does not seem to have been noticed before. 

I t ought to be possible to prove t h a t r ' = r " directly from the expressions 
for T' and r " in terms of the sequence {£w}, and this was done by Professor 
J. H. B. Kemperman . T h e essential step in his proof (unpublished) is the 
following inequal i ty: if 

0 = m\ < m2 < . . . < mtn 

and p is any positive integer, then 

lim sup p~l X £*+* < n m sup n'1 J2 ih+mi + — — (n - 1) (mn - mi) . 
k->oo i=l k^oo i=l UP 
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