13

Matrix models

Matrix models first appeared in statistical mechanics and nuclear physics
[Wigh1, Dys62] and turned out to be very useful in the analysis of various
physical systems where the energy levels of a complicated Hamiltonian can
be approximated by the distribution of eigenvalues of a random matrix.
The statistical averaging is then replaced by averaging over an appropriate
ensemble of random matrices. This idea has been applied, in particular,
in studying the low-energy chiral properties of QCD [SV93, VZ93].

Matrix models possess some features of multicolor QCD described in
Chapter 11 but are simpler and can often be solved as N — oo (i.e. in the
planar limit) using the methods proposed for multicolor QCD. For the
simplest case of the Hermitian one-matrix model, the genus expansion in
1/N can be constructed.

The Hermitian one-matrix model is related to the problem of enumer-
ation of graphs. Its explicit solution at large N was first obtained by
Brézin, Itzykson, Parisi and Zuber [BIP78] and inspired a lot of activity
in this subject. Further results in this direction are linked to the method
of orthogonal polynomials [Bes79, 1Z80, BIZ80].

A very interesting application of the matrix models along this line is
for the problem of discretization of random surfaces and two-dimensional
quantum gravity [Kaz85, Dav85, ADF85, KKMS85]. The continuum limits
of these matrix models are associated with lower-dimensional conformal
field theories and exhibit properties of integrable systems.

We shall begin this chapter by describing the original approach [BIP78]
for solving the Hermitian one-matrix model at large N and then concen-
trate on a more general approach based on the loop equations. Our main
goal is to illustrate the methods described in the two previous chapters.
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288 13 Matrixz models

13.1 Hermitian one-matrix model

The unitary one-matrix model (12.135) is generically a matrix model solv-
able in the large-IV limit. A simplest and historically the first example
of this kind is the Hermitian one-matrix model, the large-N solution of
which is obtained in [BIP78].

The Hermitian one-matrix model is defined by the partition function

Ziyn = /dgpe—N“V(W, (13.1)
where
N N
d(p = Hd(piinRegoidemgpij (13.2)
=1 Jj>i

is the measure for integrating over Hermitian N x N matrices. It is
invariant under the shift

Yij T Pij € (13.3)

by an arbitrary N x N Hermitian matrix €;;.
We consider the most general potential

V(e) = > tee, (13.4)

k
where t; are coupling constants. We shall also use another normalization
th = % for k>1, (13.5)

which respects the cyclic symmetry of the trace. The simplest Gaussian
case is associated with go = 1 and g3 = 0 for k # 2.
The averages in the Hermitian one-matrix model are defined by

(Fldhn = 23 [ doe ¥V @y). (13.6)

Performing the Gaussian integral, it is easy to calculate the propagator

N2
o /d@e 2 " 0o 1
(‘Pij‘Pkl>Gauss = / = N(silékj- (13.7)

_N tr @2

dpe 2

Equation (13.7) can be obtained alternatively from the Schwinger—

Dyson equation
atrV(p) > < 1 8F[<p]>
— ] = (v (13.8)
< dpji 1h N Oeji [y,
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which results from the invariance of the measure under the infinitesimal
shift (13.3). It is enough to choose F[p] = ¢k and to calculate the
derivatives of the Gaussian potential on the LHS and of ¢g; on the RHS
by the use of

= 60%; - (13.9)

Problem 13.1 Derive Eq. (13.7) by calculating the Gaussian integral.

Solution Let us substitute ¢;; = (X;; +1Yi;) /v/2 with real symmetric Xi; =

Xj; and antisymmetric Y;; = —Y};. The number of independent components is

N (N +1)/2 for X and N (N — 1) /2 for Y, i.e. N? in total as it should be.
We then obtain

1 1
<¢ij(pk7l>(}auss = 5 <Xinkl>Gauss - 5 <Y;-7'Ykl>Gauss
1 1
= 3N (0041 + 0djk) — IN (0ir0j1 — diadj)
1
= Néiléjk (1310)

as in Eq. (13.7).

The Feynman graphs of the Hermitian one-matrix model can be repre-
sented by the double index lines quite similarly to Sect. 11.1. Now there
are no commutators so all vertices are symmetric in the indices.

Generically, the Hermitian one-matrix model generates graphs of a zero-
dimensional field theory. Since there is no momentum variable and each
propagator is 1/N, the contribution of each graph is simply 1/N?28&enus
times a symmetry factor. Hence solving the Hermitian one-matrix model
is equivalent to calculating the number of graphs with a given genus.

A very important property of the model is that tr V(¢) depends only on
the eigenvalues of the matrix ¢. Similarly, representing ¢ in a canonical
form

¢ = VPVI (13.11)
with unitary N x N matrix V' and diagonal

the measure (13.2) can be written in a standard Weyl form

N
dp = AV [[dp: A*(P), (13.13)
=1
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where
A(P) = H(pi— ;) (13.14)

is the Vandermonde determinant.
We see that the contribution from angular degrees of freedom residing
in V factorizes, so the partition function (13.1) becomes

TN N
Zim = / Hdpi H (pi — pj)* exp [—Nz Vpi)|.  (13.15)
oi=l i< i=1

Problem 13.2 Derive Eq. (13.13).

Solution The representation (13.11) of ¢ in the canonical form reminds one of
fixing a gauge where V are matrices of a gauge transformation. The measure dp
can then be represented as

N
dp = dV [[dp:i J(P), (13.16)
=1

where the Jacobian J(P) depends only on the eigenvalues of ¢ since dy is in-
variant under

o — QpQf. (13.17)

To calculate the Jacobian, it is convenient [BIZ80] to apply the Faddeev—Popov
method inserting

1 = Az(go)/dQ [16® (0e1;)) (13.18)

i<j

in the measure dy. Here dfQ is the Haar measure for U(N) and the N? — N
distributions are only present for off-diagonal components. It is easy to see that
A%(p) depends solely on eigenvalues of ¢ since the measure df2 is invariant under
multiplication by a unitary matrix.

We can insert the unity (13.18) into the integral of a function f(¢) which is
invariant under (13.17) and hence depends only on the eigenvalues of ¢:

/ dof(p) / dp A2(p) / a0 T[ 62 (12091];) 1)

N
= /dQ/Hdcpij (5(2)(4,01'.7')1_[(1]91' A*(P) f(P)
i<j i=1
N
— Hdpi A2(P) f(P). (13.19)

Comparing with Eq. (13.16), we conclude that J(P) = A?(P).
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Let us now find A%(P) by evaluating the integral over Q in Eq. (13.18).
We first reduce ¢ to the diagonal form (13.12) by the transformation (13.17).
Then Qs which are essential in the integral of the delta-function are close to
a diagonal unitary matrix €g. The integral can be calculated by substituting
0 = (1+1h)2 with an infinitesimal off-diagonal Hermitian matrix h. Since

[QPQT] ij = lh” (pl — pj) for i 7é j, we obtain
AT2(P) = /dQO/Hdhzj 8@ (hij (pi = py))
1<J
= H (pi —Pj)_Q : (13.20)

i<j
This reproduces the Weyl measure (13.13).

We have therefore rewritten the Hermitian one-matrix model via N
degrees of freedom in the spirit of Sect. 11.7. The integral on the RHS of
Eq. (13.15) can be calculated as N — oo using the saddle-point method.

To write down the saddle-point equation, let us introduce the spectral
density

1 N
o) = D 0V —p) (13.21)
=1

which becomes a continuous function of p as N — oo. It describes the
distribution of eigenvalues of the matrix .
The spectral density (13.21) obeys

p(p) = 0, (13.22)

/dpp(p) = 1 (13.23)

as it follows from the definition (13.21).
Given the spectral density, we have

1
N et = / dp p(p) p" (13.24)
and, in particular,
1
Ve = [ o) V). (13.25)

In the large-N limit where the integral over p; is dominated by a saddle-
point configuration, we obtain

def 1 N=co
W, = — tr gok = /dp Psp(P) pk’ (13.26)
N 1h

where pg,(p) describes the distribution of eigenvalues at the saddle point.
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Extrema of the integrand on the RHS of Eq. (13.15) are reached when

2
Viipi) = NZ
J#i

1
, (13.27)
bi — Py

where V'(p) = dV (p)/dp.
This determines the large-N saddle-point equation to be [BIP78]

Vi(p) = 2 dk% ‘p € support of p

p_

, (13.28)

where the RHS involves the principal part of the integral. Equation
(13.28) holds only when p belongs to the support of p as is clear from
the derivation.

Before solving the saddle-point equation (13.28), let us mention that the
support of p must be finite for a general potential, say, the support is to be
included in an interval [a, b]. Otherwise, the saddle-point equation would
be inconsistent as p — oo except for V(p) which behaves asymptotically
as 21n |p|.

Remark on discretization of random surfaces

Matrix models are associated generically [Kaz85, Dav85, ADF85, KKMS85]
with discretization of random surfaces. The simplest Hermitian one-
matrix model corresponds to a zero-dimensional embedding space, i.e. to
two-dimensional Euclidean quantum gravity described by the partition
function

= / Dge | Prvorx/G (13.29)

Here A denotes the cosmological constant, R is the scalar curvature, and y
is the Euler characteristic of the two-dimensional world, while the coupling
G weights topologies. The path integral in Eq. (13.29) is over all metrics
Gy ().

The idea of dynamical triangulation of random surfaces is to approxi-
mate a surface by a set of equilateral triangles. The coordination number
(the number of triangles meeting at a vertex) does not necessarily equal
six, which represents internal curvature of the surface.
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Fig. 13.1. Generic graph constructed from equilateral triangles (depicted by
bold lines) and associated with dynamical triangulation of random surfaces. Its
dual graph (depicted by double lines) coincides with that in the Hermitian one-
matrix model with a cubic interaction potential.

The partition function (13.29) is approximated by

Zpr = Y ITMION " emom (13.30)

h Th

where we split the sum over triangles into the sum over genus i and the
sum over all possible triangulations T}, at fixed h. In (13.30) ny denotes
the number of triangles which is not fixed at the outset, but rather is a
dynamical variable similar to that in Problem 1.12 on p. 27 for random
paths.

The partition function (13.30) can be represented as a matrix model. A
graph dual to a generic set of equilateral triangles coincides with a graph
in the Hermitian one-matrix model with a cubic interaction as is depicted
in Fig. 13.1. The precise statement is that Zpt equals the (logarithm of
the) partition function (13.1) with N = exp (1/G) and the cubic coupling
constant gz = exp (—o). This can be easily shown by comparing the
graphs. The logarithm is needed to pick up connected graphs in the
matrix model.

Analogously, the interaction tr¢* in the matrix model is associated
with discretization of random surfaces by regular k-gons, the area of which
is k — 2 times the area of the equilateral triangle.
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13.2 Hermitian one-matrix model (solution at N = c0)

The saddle-point equation (13.28) can be solved by the Riemann-Hilbert
method introducing an analytic function

b
W(w) = / d)\w(—j\))\ . (13.31)

a

It has cuts (or simply one cut) in the complex w-plane at the real axis
where p has support. These cuts are included in the interval [a, b].
Asymptotically, we have
1
Ww) — — (13.32)
w
as w — 00, as a consequence of the normalization (13.23) of p.
The idea is now to have Re W = V’/2 at the support of p, i.e. where
Im W # 0, to satisfy Eq. (13.28). This is equivalent to the equation

Im (V'W-W?) = (V/'—2ReW)ImW =0  (13.33)

which holds for the whole real axis: at the support owing to Eq. (13.28)
and outside of the support since there Im W = 0.
Equation (13.33) tells us that

VW -w? = Q, (13.34)

where an analytic function Q(w) should have no singularities at the real
axis. For a polynomial V(p) it must be a polynomial of the same degree
as V'(p)/p to satisfy asymptotically Eq. (13.32).

We therefore find
Vo1 2
W = ?—5\/(‘/) —4Q) (13.35)

where the minus sign is chosen to again provide the asymptotic behav-
ior (13.32). Then p is given by the discontinuity of this W at the cuts
(cut):

V'(p)
2

The simplest example is the Hermitian one-matrix model with the
Gaussian potential when V'(p) = up (u = g2). The asymptotic behavior
of Eq. (13.34) fixes Q(p) = . Then Eq. (13.35) simplifies to

W (p+i0) =

Fimp(p). (13.36)

4
W(w) = % - g w2 = (13.37)
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for which the discontinuity determines the spectral density

p(p) = %\/%—pz- (13.38)

Note that this spectral density is nonnegative and has support on a finite
interval [-2/,/p,2/,/p]. The spectral density (13.38) was first calculated
by Wigner [Wigh1] and is called Wigner’s semicircle law.

Problem 13.3 Calculate the density of eigenvalues for the Gaussian Hermitian
one-matrix model using the Schwinger—Dyson equations.

Solution The calculation is similar to that in Problem 12.13 on p. 285. The
difference is that now ¢;; is a Hermitian matrix with eigenvalues p; which can
take on values along the whole real axis.

The Schwinger—Dyson equations for W,,, defined in the Hermitian one-matrix
model by Eq. (13.26), can be obtained from Eq. (13.8) by choosing F[¢] = (¢"),;.
Proceeding as before and using the large-/N factorization, we obtain the set of
equations [Wad81]

n—1
W = WiW_k forn >0,
e kz_o (13.39)
Wo = 1.
Introducing the generating function
1 1 — W,
Wip) = <— tr > = _—, 13.40
W= (Fry=p), = Ly (13.40)

we rewrite Eq. (13.39) as the quadratic equation

ppWp)—p = W2(p), (13.41)

the solution of which is given by Eq. (13.37) determining the spectral density
(13.38) which has support on a finite interval [-2/,/1,2/,/11] in analogy with the
unitary one-matrix model it the weak-coupling regime.

We have already met the semicircle distribution in Problem 12.13 for the
spectral density of the unitary one-matrix model at small A (see Eq. (12.158)).
This is because we can always substitute U = exp (ip) where U is unitary and ¢ is
Hermitian and expand for small A in ¢ up to the quadratic term. We then obtain
the Hermitian model (13.1) with g = 1/A from the unitary model (12.135).

For a general polynomial potential, we are looking for a one-cut so-
lution at small couplings g3, g4, ... bearing in mind that it should look
similar to the Gaussian case which is perturbed by the interactions. The
expression (13.35) then takes the form

W(w) = Vé“’) _ Mé”) Vo~ a) @ =0, (13.42)

https://doi.org/10.1017/9781009402095.014 Published online by Cambridge University Press


https://doi.org/10.1017/9781009402095.014

296 13 Matrixz models

where a and b are the ends of the cut and M (w) is a polynomial of degree
K —2if V(w) is a polynomial of degree K.
The coefficients of M are determined together with a and b from the
asymptotic condition
V'(w) 2

— =" M) — = (13.43)

as w — 00. There are precisely K conditions in Eq. (13.43) to unambigu-
ously determine these K numbers.

A solution is acceptable if M(p) is not negative in the interval [a, b].
Then the spectral density equals

p(p) = %

which solves the problem for a general polynomial potential. This solution
was first obtained in [BIP78] for cubic and quartic potentials.

For small values of the couplings g3, g4, ..., the one-cut solution is al-
ways realized. With increasing coupling, a third-order phase transition
of the Gross-Witten type (see Sect. 12.9) may occur after which a more
complicated multicut solution is realized.

An example of when such a phase transition happens is the quartic
potential

(p—a)(b—p) (13.44)

Vip) = %p%%p‘* (13.45)

when the one-cut solution exists only for —gs < p?/12.
Problem 13.4 Elaborate the solution (13.44) for the quartic potential (13.45).

Solution Substituting the quartic potential (13.45) into Eq. (13.42), we obtain

P+ gap® + gap? + gaa®/2
wp) = F 294 —(“ % 5 910’/ Vp? —a?, (13.46)

2 < / 1294)

2

a® = — | —14+4/1+—— 13.47
394 I ( )

reproducing a? — 4/u as g4 — 0.

The RHS of Eq. (13.47) is well-defined only for —g4 < p?/12 which determines
the critical value (g4). = —pu?/12. At —gqs — p?/12 from below, two zeros of
M (p) approach two ends of the cut so that

3/2
p(p) — L <§—p2> : (13.48)

The one-cut solution is no longer realized for —gy > pu?/12.

where
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The reason why we are interested in the one-cut solution is simple. This
solution sums planar graphs of the Hermitian one-matrix model.

Remember that an effective expansion parameter associated with each
quartic vertex in graphs is —g4/u?. Therefore, g4 must be negative for the
weight of each graph to be positive. At the critical value —u2/(g4)s = 12,
the sum of the planar graphs diverges, which determines the constant in
Eq. (11.23) for the number of planar graphs with quartic vertices. Analo-
gously, for a cubic potential, the solution (13.42) gives u3(g3);2 = 12V/3,
which results in Eq. (11.43) for the number of trivalent planar graphs.

13.3 The loop equation

In the previous section, we have solved the Hermitian one-matrix model
at N = oo using the saddle-point equation for the spectral density. This
method of solution was historically the first one but cannot be extended
to higher orders in 1/N2. In this section we present a very closely related
method of solving the matrix model using loop equations which allows us
to find a solution systematically order by order in 1/N?2.

Choosing F[¢] = (p — ¢);; in Eq. (13.8), we obtain the Schwinger—
Dyson equation

1V 1 1 1
e T S
N p—o/u N2 p—¢ p—9 /i

Equation (13.49) can be expressed entirely via the resolvent

-1
ij

W) = <%trpi(p>lh (13.50)

which is a Laplace transform of the “Wilson loop”:

7 1
W(p) = /dle_pl<ﬁtr el“o> . (13.51)
1h
0

The resulting loop equation reads

dw V'(w 1 9
[ W) = WA+ ), (35
C1

where the contour C encloses counterclockwise singularities of W (w) leav-

ing outside the pole at w = p as depicted in Fig. 13.2. The contour integral

on the LHS simply acts as a projector picking up negative powers of p.
At N = oo, when the second term on the RHS can be omitted,

Eq. (13.52) coincides for polynomial V' with Eq. (13.34) derived above by
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C1

Fig. 13.2. Contour C; in the w-plane for integration on the LHS of Eq. (13.52).

the other method. The polynomial () can then be calculated by deform-
ing the contour to infinity and taking the residue at w = oo. The residue
at w = p simply yields V' (p)W (p) which enters the LHS of Eq. (13.34).

The first term on the RHS of Eq. (13.52) is associated with the factor-
ized part of the correlator, while the second term represents the connected
part of the two-loop correlator which is ~ 1/N? as N — oo. It involves
the variational derivative

) = 4 0
_ = - = 13.53
3V (p) kzzop ot (18.53)

acting on W (p). For this reason the operator (13.53) is often called the
loop insertion operator.

Consequently, Eq. (13.52) is closed and determines W (p) unambigu-
ously, providing the boundary condition W(p) — 1/p is imposed as
p — 0.

Note that we obtained a single (functional) equation for W (p) . This
is due to the fact that trV(p) contains a complete set of traces troF.
They become independent as N — oc.

Problem 13.5 Obtain Eq. (13.52) from Eq. (13.49).

Solution The coupling #; plays the role of a source for tr ":

—t = ——F 13.54
< e >1h T (13.54)
where the free energy is
1
Analogously, using the definition (13.53) and Eq. (13.54), we find
1 1 é
—tr = ——F. 13.56
<N p- e0>1h 5V (p) (13.56)
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Applying the operator (13.53) one more time, we obtain [AM90] the connected
correlator of two Wilson loops:

6 1 1 conn
) P = <tr(P1—<P)tr(P2—<P)>1h (1857

which enters the RHS of Eq. (13.52). The higher-loop correlators can be obtained
by further applying 6/0V (p;).

Instead of introducing the sources tx, we can consider V (p) as a source for the
Wilson loop tr[1/(p — ¢)] from the very beginning by writing

+ioco+40

dw
trVi(p) = / %V(w)trw_(p.

(13.58)
—ioco+0
According to this definition 6§V (p)/6V (q) = 1/(p — q) which plays the role of a

delta-function when integrated along the imaginary axis.
The LHS of Eq. (13.49) is transformed into the LHS of Eq. (13.52) using

1 V() P Vi) 1 1
— 2 = / @)y , (13.59)
p— Jo 2m (p—w) N w—¢

taking the average and deforming the contour to encircle singularities of W (w).

Remark on the Virasoro constraints

The loop equation (13.52) can be represented as a set of Virasoro con-
straints imposed on the partition function.
We first rewrite Eq. (13.52) using the definitions (13.1) and (13.4) as

o0

1 1
——L,Zy, = 0, 13.

where the operators

— o) 1 0?

L, = Zk‘tk—+—2 Z — (13.61)

Pt Otkrn N 05 hen Ot 0ty
satisfy the Virasoro algebra

Ly, L] = (n—m)Lpgm. (13.62)

Equation (13.52) is therefore represented as the Virasoro constraints
L,Ziyn = 0 for n> —1. (13.63)

It is enough to consider the constraints (13.63) only with n = 2 and
n = —1. Then all the others are satisfied because of Eq. (13.62).
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13.4 Solution in 1/N

Equation (13.52) can be solved order by order of the genus expansion in
1/N2.
The genus zero one-cut solution to Eq. (13.52) can be written as [Mig83]

_ [dw V(w) [(p—a)(p—Db)
Wolp) = C/ -\ woa)w=0) (13.64)

where a and b are determined by

dw V' (w) _ 0 dw  wV'(w) _ 9
0/127“ (w—a)(w—"b) 0/127“ (w—a)w—"b)

(13.65)

Performing the contour integral in (13.64) by taking the residues at
w = p and w = 00, we reproduce Eq. (13.42) for polynomial V. However,
Eq. (13.64) remains valid in the more general case of nonpolynomial V',
e.g. having logarithmic singularities. The position of the cut is always
such as to avoid these singularities of V.

Problem 13.6 Reproduce Egs. (13.37) and (13.46) for the Gaussian and quartic
potentials from the general one-cut solution (13.64) and (13.65).

Solution We substitute a = —b for even potentials, then the first equation
in (13.65) is always satisfied, while the second one yields
J . ,
(25)! (a)2J
G — Z = 2 13.66
; J (]!)2 2 ( )

for an even polynomial potential of degree K = 2.J. This equation is derived by
expanding the square root in a?/w? and taking the residue at infinity. Analo-
gously, Eq. (13.64) yields

J

J—j
M(p) = Zij_Q Z 92k+2j% (g)% (13.67)
k=0 :

J=1

for the polynomial M(p) in Eq. (13.42).

A solution to Eq. (13.66) reproduces the above explicit calculation for the
Gaussian and quartic potentials. Analogously, Eqgs. (13.37) and (13.46) are re-
produced by substituting Eq. (13.67) into Eq. (13.42).

Problem 13.7 Elaborate the solution (13.64) and (13.65) for the Penner model
where the potential is logarithmic:

Vig) = ¢—Alnp. (13.68)
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Solution The calculation is similar to the previous Problem, while now the
residue is to be taken at w = 0 since

A
w)y =1-2 13.
V' (w) ” (13.69)
has a pole there. For A > 0 we find
a = 24+A=2V1+ X, b =24+ A+2V14+ A (13.70)
and
b—p)p—a
p(p) = vib-plp—a) 2>( ) (13.71)
s

so that W (p) is analytic at p = 0. The Gaussian formula (13.38) is reproduced
as A — oo substituting p — A + p.

Note that both a and b are positive so the support is located for A > 0 at
the positive real axis where p(p) > 0. This is a manifestation of the general
property already mentioned that the cut always avoids possible singularities of
the potential. The location of the support of eigenvalues in the complex w-plane
for A < 0 is studied in [AKM94].

The multiloop correlators in genus zero can be obtained from Wy(p)
given by Eq. (13.64) applying the loop insertion operator (13.53). For
example, the two-loop correlator [AJM90]

1 { 2pg — (p + g)(a +b) + 2ab _2}
Alp—a)* | Vip—a)(p—b)/ (¢ —a)(g—Db)

WO(p7 q) =

(13.72)

depends on the potential V only via a and b but not explicitly. This
property is called universality.* It does not hold for higher multiloop

correlators.
To calculate the 1/N? correction to the genus-zero result (13.64), we
substitute
a—b)?
Wolpp) = o) (13.73

16(p — a)*(p — b)?

extracted from Eq. (13.72) into the RHS of Eq. (13.52). We can now
obtain Wi(p) by solving a linear equation which, in turn, determines F.

An advantage of this method of solving the Hermitian one-matrix model
using the loop equation over the orthogonal polynomial technique, used
originally [Bes79, 1780, BIZ80] in calculating the higher genera for poly-
nomial potentials, is that now the free energy generates all multiloop
correlators at a given genus.

* An analog of this correlator in condensed-matter physics is the correlator of two
densities of energy eigenvalues which is universal [BZ93].
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Remark on the iterative solution

The iterative procedure [ACK93] of solving the loop equation is based on
the genus-zero solution (13.64). Inserting the genus expansion of W(p)

and F:
=1 =1 , oF,
h=0 h=0
(13.74)

into Eq. (13.52), we obtain the following equation for Wpy(p) at h > 1:

dw V'(w)
C/ T T W) — 2Wolp) Wi(p)

4]

h—1
= > Wulp) Waw(p)+ )

h'=1

Wh-1(p) - (13.75)

It expresses Wy (p) entirely in terms of W/ (p) with A’ < h. This makes
it possible to solve Eq. (13.75) iteratively genus by genus.

The iterative procedure simplifies if we introduce, instead of the cou-
pling constants ¢;, the moments M}, and Jj, defined for k > 1 by

M, = /dw V' (w)

211 (w — a)F 172 (w — b)1/2°

(&5

I V')

o (w—a)l/2 (w — b)k+1/2"

(13.76)

Cy

These moments depend on the couplings ¢; both explicitly and via a and
b which are determined by Eq. (13.65). Note that M} and Ji depend
explicitly only on ¢; with j > &k + 1.

Problem 13.8 Elaborate the moments (13.76) for the quartic potential (13.45).
Solution Given Eq. (13.47) for a, we simply calculate the moments (13.76)
for the quartic potential (13.45), taking the residue at infinity. This results in

an explicit representation of the moments via p and g4 which are given by the
algebraic formulas

3
M, = J = u+§g4a2, My = —J3 = 2g4a, Mz = J3 = g4,

and M, = J, =0 for k > 4.
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The main motivation for introducing the moments (13.76) is that Wy ()
depends only on 2 x (3h — 1) lower moments (2 x (3h — 2) for Fy). This
is in contrast to the t-dependence of W), and F}, which always depend on
the infinite set of ¢; (1 < j < 00).

To find Fj, we first solve Eq. (13.75) for W, () and then use the last
equation in (13.74). The result in genus one reads [ACM92]

1 1
F, = —ﬁln(Mljl)—gln(b_a)- (1378)

The genus-two results are obtained in [ACK93]. More details on this
subject can be found in Section 4.3 of the book [ADJ97].

The results for F; and Fy for the quartic potential were first obtained
in [Bes79] using the method of orthogonal polynomials.

13.5 Continuum limit

Continuum limits of the Hermitian one-matrix model are reached at the
points of phase transitions. While no phase transition is possible at finite
N since the system has a finite number of degrees of freedom, it may
occur as N — oo which plays the role of a statistical limit as has already
been pointed out in the Remark in Sect. 11.8.

This third-order phase transition is of Gross—Witten type (see
Sect. 12.9). It is associated with divergence of the sum over graphs at
each fixed genus rather than with divergence of the sum over all graphs.
The contribution of a graph with ng trivalent vertices is ~ (—g3)™ but
an entropy (= the number) of such graphs at fixed genus is given by
Eq. (11.23) so the sum can diverge at a certain critical value of g3 calcu-
lated in Sect. 13.2.

This divergence has nothing to do with the divergence of the sum over
all graphs which always occurs owing to a factorial growth of the total
number of diagrams. The latter divergence is simply associated with the
divergence of the integral over ¢. For an even potential V', the couplings
gk are negative for k > 2 so the potential V' is upside-down.

The phase structure of the Hermitian one-matrix model can be de-
termined from the spectral density p(p) given by (13.44) which vanishes
under normal circumstances as a square root at both ends of its support.
The critical behavior emerges when one or more roots of M (p) approaches
the end points a or b.

For example, the even potential

1 - J'J—l) e\’
R R e7i] () ww
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becomes critical at 5 = 1 when (J — 1) zeros of M(p) approach each of
the two end points of the cut. They are determined by the equation

J

B = Z(_l)j_lﬁ (%“zy - 1- (1_ ’%2)] (13.80)

J=1

which results from the substitution of Eq. (13.79) into Eq. (13.66).

The critical potential (13.79) with 5 = 1 is associated with the Jth
multicritical point [Kaz89]. The case of J = 2 describes two-dimensional
quantum gravity. The resulting continuum theory is unitary only at this
critical point.

The continuum limit can be obtained near the critical point:

p? — a +er, a?> — a?—eVA, (13.81)

so that 7 plays the role of the continuum momentum and A is the cosmo-
logical constant.

The susceptibility near the critical point can be represented by the
genus expansion

2
f(3) i( d )mzlh

N2 \d1/B
= const + Y N (1—-p)"" fy (13.82)
h
with the indices
1 27+1
= —= h. 13.
Vh S+ (13.83)

The genus-zero contribution to the susceptibility (13.82) does not di-
verge but rather exhibits a root singularity. This can be easily deduced
by noting that f to genus zero is analytic in a? and contains a term ~ e,
when the expansion (13.81) is substituted. According to Eq. (13.80), we
have
: 1/
¢ \/K(l 3) (13.84)
for the Jth multicritical point which explains Eqgs. (13.82) and (13.83) to
genus zero.

The dimensional cutoff € should depend on N in such a way for the
parameter G = N~ 2¢72/~1 of the genus expansion to remain finite as
N — oo. Then all terms of the genus expansion contribute in the contin-
uum limit. This continuum limit was obtained in [BK90, DS90, GM90a]
and is called the double scaling limit.
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The double scaling limit of the partition function (13.1) determines the
genus expansion of the continuum partition function:

(1-p)* ™
(2 =) =)
JEICTRRMCESY

G h—1
= const + Zh: <m> 2 — )L — ) In- (13.85)

At J = 2 this determines the partition function (13.29) of two-dimensional
quantum gravity.

It is possible to construct explicitly a continuum theory which inter-
polates between multicritical points. We associate with Jth multicritical
behavior a conformal operator of a certain scale dimension and introduce
a proper source T}.

The relation between the set of sources t9 for the Hermitian one-matrix
model with an even potential when t911 = 0 and their continuum coun-
terparts T can be obtained* from the equation

W) -5V = —

describing [Dav90, AM90, FKN91] a multiplicative renormalization of the
Wilson loops.
Then a source for a continuum Wilson loop is

InZy, — const +ZN2_2h In
h

[2WC0nt (71') - V/(TF)} (1386)

V(r) = Y Trt/? (13.87)
n=0
and
= — " — 13.
3V (m) HZ::O” a7, (13.88)
is the continuum loop insertion operator:
) )
Weon ey Tm) = In Zeont , 13.89
(T Tm) = G - Gy I Zeont (13.89)
where

Zcont X \/Zlh (1390)

up to an infinite constant which is determined only by genus zero. The
appearance of the square root is associated with a “doubling” of degrees
of freedom for the even potential.

* These (linear algebraic) relations are obtained [MMM91] equating positive powers of
p or 7 in Eq. (13.86) and using Eq. (13.81).
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The continuum loop equation can be obtained from Eq. (13.52) by
substituting Eq. (13.86) and using Egs. (13.87) and (13.88):

5Wcont(77) + g +T_02
oV(m) 1672 167

dQ V'(Q) I
/ Tmmwcont(g) - Wcont (7T) + g
Cy

(13.91)

This equation describes a model which interpolates between different mul-
ticritical points. The Jth multicritical point corresponds to T = 0 except
for k =0 and k = J while

—1)7 12\
VA = <((2}T)”T—3> . (13.92)

The continuum loop equation (13.91) can be solved order by order
in G (genus expansion) analogously to that of Sect. 13.4. If V(7) is a
polynomial (7, = 0 for k£ > K), K —1 lower coefficients of the asymptotic
expansion of Wi (7) are not fixed and should be determined by requiring
the one-cut analytic structure in 7.

The continuum analog of Eq. (13.64) is given by

)

cont

) = /@ V(Q) Vi—u
VT mir-0)a-u

C

(13.93)

where u coincides to genus zero with —v/A at a given multicritical point.
Then the vanishing of the 1/y/7 term is equivalent to Eq. (13.92). The

cut of Wc(ggt (m) is from u to co. This is because we are magnifying the
region near the end a of the cut in the one-matrix model.

The function u versus T} is determined to all genera from the asymp-
totic behavior. This dependence can be obtained by comparing 1/7 terms
in Eq. (13.91). Denoting the derivative with respect to z = —Ty/2 by D,

this relation can be represented conveniently as

Q 1 B
/2—7“1} (Q) <DWCont(Q) + m) == 0, (1394)
C1
where
pwO ()4 = 2 (13.95)
cont 2,/ 2T —u

for the genus-zero solution (13.93).
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Remark on the KdV hierarchy

Equation (13.95) can be extended to all genera using the representation

DWcont(w)+ﬁ = <x (—gDz—u(aj)+7r)_1 a:>
= iﬁiﬂ = R(m), (13.96)

where the diagonal resolvent of the Sturm—Liouville operator is expressed
via the Gel’fand-Dikii differential polynomials [GD75]

Ruu] = 277! (%D2+u+D_1uD> 1. (13.97)
We have explicitly
_1 _u _ 9. 3 o
Ry = 5 R, = 1 Ry = 16D u+16u , (1398)

for the lower polynomials. Equation (13.97) can be easily obtained from
Eq. (1.127) derived in Problem 1.11 on p. 25.

Substituting the RHS of Eq. (13.96) into Eq. (13.94), we obtain the
string equation [GM90b, BDS90]

i(k“‘%)TkRk[u] =0 (13.99)
k=0

which determines u versus T}.
The meaning of u is clear from Egs. (13.96) and (13.89):

u = 4R, = 2GD?In Zeop (13.100)

i.e. u is the continuum susceptibility. It is negative to genus zero because
of the performed “renormalization”.

Problem 13.9 Elaborate Eq. (13.99) for two-dimensional quantum gravity.

Solution Choosing T5 = 16/15 and using Eq. (13.92), which gives A = —T}/2,
and Eq. (13.98), we represent Eq. (13.99) as the Painlevé equation
g d
A = v+ ZD? D = — 13.101
u® + 3D, I (13.101)
the solution of which is given by a Painlevé transcendental. It can be found by
solving Eq. (13.101) iteratively in G:

) h
u = VA —1+Z<%) Xh], (13.102)
h=1
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where the numerical coefficients x; > 0 are determined by a recursion relation.
This reproduces the indices (13.83) for J = 2. Substituting into Eq. (13.100)
and integrating, one can obtain the genus expansion of the partition function
of two-dimensional Euclidean quantum gravity introduced in Eq. (13.85). The
series is asymptotic, since x5 ~ (2h)! for large h.

These results were first obtained in [BK90, DS90, GM90a].

Problem 13.10 Show that the ansatz (13.96) satisfies Eq. (13.91).

Solution It is convenient to introduce

Wr) = mem—%,

V() = Tov/m =y Tpn"t1/2 (13.104)
n=1

(13.103)

=
3
I

In the new variables, the last term on the RHS of the loop equation (13.91)
disappears and it can be written as

/%(:Eﬂg)z)w(ﬂ) = Wz(ﬂ)ﬂLg?fj(%) —%. (13.105)

Cy

We then apply the operator

Ay = —(gD3+uD+Du—27rD)D, (13.106)

which annihilates W(w) given by the Gel'fand-Dikii ansatz (13.96) (cf.
Eq. (1.127)), to both sides of Eq. (13.105).
The following terms emerge:

o [V ey [T

27i (m — Q) 27i (m — Q)
Cl Cl
+2D/ @9’(Q)DW i DLRylu] = 1, (13.107)
27 - KBilu] =1, '
Ch -
AW3(r) = 2WAW —4GDWDPW — 3G(D*W)? + A(x — u)(DW)?
—4GRD*R — 3G(DR)? + 4(7 — u)R?, (13.108)
0 = ) —~ ou —~ 0(Du) _—~
Ap——e = — A, 92— D> D
v ) 5v(m) AW ) + 2555 D) + Sy PW )
= 4(DR)*+2RD?R. (13.109)
We have used Eq. (13.99) in deriving Eq. (13.107), the equation
5
= 2D 13.11
" R(m), (13.110)
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which arises from acting by the loop insertion operator on Eq. (13.100) and the
expansion of which in 1/7 reproduces the Korteweg—de Vries (KdV) hierarchy,

ou

in deriving Eq. (13.109), and the fact that AW = 0 for the Gel’fand-Dikii ansatz
owing to Eq. (1.127).
Combining the RHSs of Egs. (13.107), (13.108), and (13.109), we obtain

1 = —2GRD?R+ G(DR)? + 4(m — u)R? (13.112)

which is the same as Eq. (1.134) satisfied by the Gel’fand-Dikii resolvent. Its
solution is unambiguous (at least perturbatively in G).

Thus, the Gel'fand-Dikii ansatz is obtained [DVV91] as a solution of the
continuum loop equation (13.91).

Remark on the continuum Wilson loop

The continuum Wilson loops are related [Kaz89] to boundaries of surfaces
in two-dimensional quantum gravity. Given the path integral (13.29) over
surfaces with fixed boundary, we integrate over metrics (including the
metric at the boundary). The result can depend solely on the length of
the boundary which is the only invariant. Then Wopn(7) is simply the
Laplace transform of this object.

Remark on the continuum Virasoro constraints

The continuum loop equation (13.91) can be represented as a set of the
continuum Virasoro constraints [FKN91, DVV91]

L Zons = 0 for n > —1, (13.113)
where
> 0 02 Som  O_1.aT3
Lot = N (k+ 1) T +6 Y ettt
P OTiin iz OTkOTn g1 16 16G
(13.114)

obey the Virasoro algebra (13.62). This is a consequence of conformal
invariance of the continuum theory.

The Virasoro constraints (13.113) and (13.114) can be obtained
[MMMO1] from their matrix-model counterparts (13.63), (13.61) by pass-
ing from the variables to; to the variables T}.
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Remark on the Kontsevich matriz model

The above continuum model interpolating between multicritical points
can be formulated as a matrix model [Kon91]:

/dXetr(éégX?’—%MXQ)

/d)(e—étrM)(2

Zxont|[M] : (13.115)

where the integral goes over the Hermitian N x N matrix X. The RHS
of Eq. (13.115) is well-defined perturbatively in G.

The couplings T}, are expressed via the positive-definite Hermitian ma-
trix M by

\/g —2k—1
T, = ——tr(M — =01k - 13.11
k P r( )~ 301 (13.116)

2
The identification (13.116) makes sense as N — oo when all tr (M ~2F—1)
become independent but M is chosen such that they are finite. Alter-
natively, the standard topological expansion of the Kontsevich model in
1/N? is associated with G ~ 1/N?2.
The partition function of continuum two-dimensional quantum gravity
coincides with the partition function of the Kontsevich model:

Zcont[T] = ZKont[M]- (13117)

This equality is valid in the sense of an asymptotic expansion at large M,
each term of which is finite providing M is positive definite.

Remark on 2D topological gravity

Equation (13.117) represents the fact that quantum gravity is, in fact, a
topological theory in two dimensions:

‘2D quantum gravity‘ = ‘2D topological gravity‘ . (13.118)

A crucial property of topological theories is that correlators of operators
on, (;) with definite (nonnegative integer) scale dimension n;, located at
the point z; of a two-dimensional Riemann surface of genus h, depend only
on the dimensions n; and genus h but not on the metric on the surface
and, therefore, not on the positions of the punctures z;. The Kontsevich
matrix model appeared [Kon91] as an explicit realization of the Witten
geometric formulation [Wit90] of two-dimensional topological gravity.
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13.6 Hermitian multimatrix models

An obvious extension of the Hermitian one-matrix model is the model
of two Hermitian matrices ¢ and ¢o. The partition function of the
Hermitian two-matrix model is

Zop, = /d801 dpy eVt [=V(p1)=V(p2)+erpe] (13.119)

where for simplicity we take the same potentials for self-interactions of
each matrix.

The presence of two matrices adds matter to two-dimensional gravity.
The Hermitian two-matrix model is precisely associated with the Ising
model on a random two-dimensional lattice.

There is a vast literature on the Hermitian two-matrix model starting
from the work by Itzykson and Zuber [IZ80], who showed how to reduce
it to an eigenvalue problem. We shall rather briefly review the loop equa-
tions for the Hermitian two-matrix model.

Let us define the Wilson loop average and the one-link correlator in the
Hermitian two-matrix model (13.119), respectively, by

W) = <%tr)\ ! > , (13.120)

G, \) = <%tr((v—lwl)(k—lw2))>2h' (13.121)

The definition of W () is similar to Eq. (13.50) while G(v, A), which is
symmetric in v and A since the potentials of self-interaction are the same
for both matrices, is absent in the one-matrix model. Expanding G(v, \)
in 1/v, we obtain

G(V,)\) = v +Z pynt+l
n=1 (13.122)

oy = (heliso)),

In the large-N limit, the correlator G(v,\) obeys the following loop
equation:

/;1_;(‘:/_(?) Gw,A) = W) G, A) +AGW,A) = W(v),  (13.123)
C1

where the contour C) encircles counterclockwise the cut (or cuts) of the
function G(w, \) as depicted in Fig. 13.2.
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To analyze Eq. (13.123), let us consider the Hermitian two-matrix
model with the general potential (13.4). The solution for W(\) versus
V(A) is determined by the equation

> aGra(N) = AW -1 (13.124)

k>1

which is just the 1/v term of the expansion of Eq. (13.123) in 1/v.
The functions G, () are expressed via W () using the recurrence rela-
tion

dw V'(w)
Gnra(A) = o Gp(w) = W(A) Gn(A),
" c[ 2mi(A =) (13.125)

Go(A) = W)

which is obtained by expanding Eq. (13.123) in 1/A. If V(\) is a poly-
nomial of degree K, Eq. (13.124) contains W (A) up to degree K and the
solution is algebraic [GN91, Alf93, Sta93].

For a cubic potential, this equation for W(\) is cubic and determines
the critical index of the susceptibility 79 = —1/3. This is in contrast to
the Hermitian one-matrix model where the loop equation is quadratic in
W(A). We see that matter changes [Kaz86] the critical behavior of pure
quantum gravity. The continuum theory associated with the v = —1/3
critical point of the Hermitian two-matrix model is unitary.

The correlator G(v,\) is symmetric in ¥ and A for any solution of
Eq. (13.124). This symmetry requirement can be used directly to deter-
mine W () alternatively to Eq. (13.124).

It is possible to further extend the Hermitian two-matrix model by
considering a chain of matrices with the nearest-neighbor interaction:

q q q—1
Zgn = H dy; exp {Ntr [— Z Vi) + Z 4,02-4,02-4_1] } (13.126)
i=1 i=1 i=1
In the limit of ¢ — oo, we obtain an infinite chain associated with dis-
cretization of a one-dimensional theory.
The Hermitian ¢g-matrix model possesses unitary continuum limits with
7 = —1/(¢ +1). In the ¢ — oo limit, this gives y9 — 0.

Remark on the d =1 barrier
The d = 1 barrier is associated with the formula [GN84, OW85, KPZ8§]
d—1—-+/{1—-ad) (25 —d)

= 13.12
Y0 7 (13.127)
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for the critical index of string susceptibility of the bosonic string in a d-
dimensional embedding space. Alternatively, it describes two-dimensional
quantum gravity interacting with conformal matter of central charge
c=d.

The RHS of Eq. (13.127) is well-defined for d < 1, where it is associated
with topological theories of gravity (with matter). They can also be
described by the Hermitian (multi)matrix models.

The RHS of Eq. (13.127) becomes complex for d > 1 which is physically
unacceptable. This is termed the d = 1 barrier.

Remark on the Kazakov-Migdal model

A natural multidimensional extension of the matrix chain (13.126) is the
Kazakov-Migdal model [KM92], which is defined by the partition function

kM = / [T aU.(2) ] des el (13.128)
T, x
with the action

Sxullig] = N [— S peraiUn@)pe Ul @) + 3 vuox)} .
T, T

(13.129)

Here ¢, and U,(x) are N x N Hermitian and unitary matrices, respec-
tively, with x labeling lattice sites on a d-dimensional hypercubic lattice.
The integration over the gauge field U,(x) is over the Haar measure on
SU(N) at each link of the lattice.

The Kazakov—Migdal model is of the same type as Wilson’s lattice
gauge theory with adjoint matter but without the action for the gauge
field, i.e. at 8 = 0 in front of the plaquette term. When integrated over
g, it induces an action for the gauge field U, (z) of the type discussed in
Problem 8.6 on p. 155.

The model (13.128) obviously recovers the open matrix chain (13.126)
if the lattice is just a one-dimensional sequence of points for which the
gauge field can be absorbed by a unitary transformation of ¢,.

The Kazakov—Migdal model is described at N = oo by the loop equa-
tion which coincides with Eq. (13.123) for the two-matrix model with the
potential [DMS93]

Viiw) — V() = V(w)—(2d - 1)F(w). (13.130)

The function
Flw) = ) Fuw" (13.131)
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is defined by the pair correlator of the gauge fields
N tr (QUTUT) i a t
/dUe Ntr(t U\I/U)

/ dU eV tr (eUwUt)

> 1
— tr (t9®" 13.132
Z:: vt ), ( )

where ® and ¥ play the role of external fields and t* (a =1,..., N? — 1)
denote the generators of SU(N). Eq. (13.132) holds [Mig92] at N = occ.
The function F(w) is determined by the loop equation itself.

The loop equation of the Hermitian two-matrix model emerges because
the last term on the RHS of Eq. (13.130) disappears at d = 1/2, which
is associated with the Hermitian two-matrix model, and we simply have
V(w) =V(w).

An exact solution of the Kazakov—Migdal model was found for the
quadratic potential [Gro92] and the logarithmic potential [Mak93].

Continuum limits of the Kazakov—-Migdal model are associated again
with lower-dimensional theories. It does not allow us to go beyond the
d =1 barrier.
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Reference guide

The large-N methods are briefly described in the book by Polyakov
[Pol87]. The book edited by Brézin and Wadia [BW93] contains reprints
of original papers on this subject.

The large-N limit of the four-Fermi and ¢* theories was obtained
in the paper by Wilson [Wil73]. The renormalizability of the 1/N-
expansion of four-Fermi theory in d < 4 dimensions was demonstrated
by Parisi [Par75]. The appearance of conformal invariance in the
1/N-expansion of four-Fermi theory in three dimensions is discussed
in [CMS93]. The scale and conformal symmetries are described in the
lectures by Jackiw [Jac72].

The 1/N-expansion of SU(N) Yang-Mills theory and its relation to
the topology of Riemann surfaces was introduced by 't Hooft [Hoo74a].
The incorporation of quarks into this picture was accomplished by
Veneziano [Ven76]. The geometric growth of the number of planar graphs
was demonstrated by Koplik, Neveu and Nussinov [KNN77]. The large-N
factorization was observed by A.A. Migdal in the late 1970s (first pub-
lished in [MMT79]). Its consequences for the semiclassical nature of the
large-N limit are discussed in the lectures by Witten [Wit79] and Cole-
man [Col79].

The loop equation of multicolor QCD was derived in [MM79]. The
program of reformulating QCD entirely in loop space was realized
in [MMS81]. The renormalization of the Wilson loops was investigated
in [GN80, Pol80, DV80, BNS81]. A solution of the loop equation in two
dimensions was found by Kazakov and Kostov [KK80]. A string repre-
sentation of large-N QCDs was constructed by Gross and Taylor [GT93].

For a canonical book on the matrix models see the one by Mehta
[Meh67]. The solution of the Hermitian one-matrix model at large N
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was found by Brézin, Itzykson, Parisi and Zuber [BIP78]. The large-N
phase transition in lattice QCDy was first observed by Gross and Wit-
ten [GW80]. The application of matrix models to discretization of ran-
dom surfaces is described in the review by Di Francesco, Ginsparg, and
Zinn-Justin [DGZ95] and in the book by Ambjgrn, Durhuus, and Jons-
son [ADJ97] which contain extensive references.
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